归纳,猜想,证明的教案
猜想验证大班科学教案

猜想验证大班科学教案一、引言科学教育是培养学生科学素养和创新能力的重要途径,而科学教案则是教师实施科学教学的重要工具之一。
大班科学教学面临着人数众多、教学资源有限、课堂管理难度高等挑战。
因此,制定一套有效的猜想验证大班科学教案具有重要意义。
本文将就猜想验证大班科学教案的制定和实施等方面进行探讨与分析。
二、猜想验证教学法的意义猜想验证教学法是一种以学生主动探究和发现为基础,通过猜想、实验证明、总结归纳等环节,促使学生全面理解和掌握科学知识的教学方法。
采用猜想验证教学法可以有效激发学生的学习兴趣,并培养学生的科学思维和实践能力。
对于大班科学教学来说,猜想验证教学法具有以下几个方面的意义。
1. 激发学生学习的主动性大班科学教学中,学生数量多、课堂时间有限,传统的讲授式教学往往缺乏互动和思辨性。
而猜想验证教学法可以让学生充分参与到学习过程中,主动提出猜想、进行实验,并通过实验结果来验证自己的猜想,培养学生的主动学习能力。
2. 培养学生的科学思维和实践能力猜想验证教学法强调学生的实践操作和思维训练,能够培养学生的科学思维和实践能力。
在猜想验证的过程中,学生需要运用科学方法进行观察、记录、分析和推理,锻炼了学生的逻辑思维和科学探究能力。
3. 提高教学效果通过猜想验证教学法,学生可以更加深入地理解和掌握科学知识,而不仅仅停留在知识表面的记忆。
同时,学生在实验中亲身体验和感受到科学现象的本质,加深了对知识的理解和记忆,从而提高了教学效果。
三、猜想验证大班科学教案的制定制定一套合理有效的猜想验证大班科学教案需要考虑以下几个方面。
1. 分析学生特点和教学目标首先,教师需要对大班学生的特点进行分析,了解他们的认知水平、兴趣爱好、思维方式等,以便制定适合他们的教案。
同时,明确教学目标,确定想要培养学生的科学思维和实践能力。
2. 确定教学内容和实验项目根据教学目标,选择符合学生认知水平和兴趣爱好的教学内容和实验项目。
教师可以根据教材或者课程标准确定教学内容,并在此基础上设计相应的实验项目,让学生通过实验来验证自己的猜想。
人教a版数学必修1教案6篇

人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
总复习-解决问题的策略—归纳策略(教案)北师大版六年级下册数学

总复习-解决问题的策略—归纳策略(教案)北师大版六年级下册数学一、教学目标1. 让学生掌握归纳推理的基本方法,能够运用归纳推理解决问题。
2. 培养学生观察、分析、归纳、概括的能力,提高学生解决问题的策略意识。
3. 培养学生合作交流、积极探究的学习态度,激发学生学习数学的兴趣。
二、教学内容1. 归纳推理的概念及特点。
2. 归纳推理的基本方法:枚举法、猜想-证明法。
3. 归纳推理在解决问题中的应用。
三、教学重点与难点1. 教学重点:归纳推理的基本方法及应用。
2. 教学难点:如何引导学生运用归纳推理解决问题,提高解决问题的策略意识。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、彩笔。
五、教学过程1. 导入:通过生活中的实例,引导学生发现规律,激发学生运用归纳推理解决问题的兴趣。
2. 新课:讲解归纳推理的概念、特点及基本方法,并通过例题展示归纳推理在解决问题中的应用。
3. 活动一:学生分组讨论,运用归纳推理解决实际问题,巩固所学知识。
4. 活动二:学生独立完成练习题,教师巡回指导,解答学生疑问。
5. 课堂小结:总结本节课所学内容,强调归纳推理在解决问题中的重要性。
6. 课后作业布置:布置与归纳推理相关的练习题,要求学生在课后独立完成。
六、板书设计1. 板书总复习-解决问题的策略—归纳策略2. 板书提纲:- 归纳推理的概念及特点- 归纳推理的基本方法- 归纳推理在解决问题中的应用七、作业设计1. 基础题:完成课后练习题,巩固归纳推理的基本方法。
2. 提高题:解决实际问题,运用归纳推理找出规律,提高解决问题的能力。
3. 拓展题:研究归纳推理在其他领域的应用,撰写小论文。
八、课后反思1. 学生对归纳推理的理解程度,是否能够灵活运用归纳推理解决问题。
2. 教学过程中,学生的参与度、合作交流情况,以及对归纳推理的兴趣。
3. 教学方法、教学内容的调整与优化,以提高学生对归纳推理的应用能力。
初中数学归纳教案

初中数学归纳教案一、教学目标:1. 让学生理解归纳法的概念和意义,能够运用归纳法进行简单的数学推理和证明。
2. 培养学生的逻辑思维能力和数学素养,提高学生解决数学问题的能力。
3. 通过对归纳法的教学,培养学生的创新意识和团队合作精神。
二、教学内容:1. 归纳法的概念和意义2. 归纳法的分类:数学归纳法和完全归纳法3. 归纳法的步骤:观察、归纳、证明4. 归纳法的应用:解决数学问题、数学证明等三、教学重点和难点:1. 教学重点:归纳法的概念和意义,归纳法的步骤,归纳法的应用。
2. 教学难点:归纳法的证明过程,数学归纳法的应用。
四、教学方法:1. 讲授法:讲解归纳法的概念、意义、分类、步骤和应用。
2. 案例分析法:分析具体案例,让学生理解归纳法的运用。
3. 实践操作法:让学生通过实际操作,掌握归纳法的证明过程。
4. 小组讨论法:分组讨论,培养学生的团队合作精神。
五、教学步骤:1. 导入:通过一个简单的数学问题,引导学生思考如何解决类似问题。
2. 讲解归纳法的概念和意义,让学生理解归纳法的作用。
3. 讲解归纳法的分类:数学归纳法和完全归纳法。
4. 讲解归纳法的步骤:观察、归纳、证明。
5. 通过具体案例,让学生理解归纳法的应用。
6. 讲解归纳法的证明过程,引导学生掌握归纳法的证明方法。
7. 练习时间:让学生通过实际操作,巩固所学内容。
8. 总结和拓展:总结本节课所学内容,提出更高层次的问题,激发学生的创新意识。
六、课后作业:1. 复习本节课所学内容,整理归纳法的步骤和证明方法。
2. 完成课后练习题,巩固所学知识。
3. 探索归纳法在解决其他数学问题中的应用,提高自己的数学素养。
七、教学反思:通过本节课的教学,检查学生对归纳法的理解和掌握程度,对教学方法和教学内容进行调整,以提高教学效果。
同时,关注学生在学习过程中的表现,鼓励优秀学生发挥榜样作用,帮助后进生提高。
4.1数学归纳法-教案(优秀经典公开课比赛教案)

课题:4.1数学归纳法一、教材分析:本节内容是人教A 版选修4-5《不等式选讲》的最后一章内容,数学归纳法在讨论涉及正整数无限性的问题时是一种重要的方法,它的地位和作用可以从以下三方面来看:1.中学数学中的许多重要结论,如等差数列,等比数列的通项公式与前n 项和公式,二项式定理等都可以用数学归纳法进行证明.由归纳猜想得出一些与正整数有关的数学命题,用数学归纳法加以证明,可以使学生更深层次地掌握有关知识.2.运用数学归纳法可以证明许多数学命题(不等式、数列、等式、整除),既可以开阔学生的眼界,又可以使他们受到推理论证的训练.3.数学归纳法在进一步学习数学时要经常用到,因此掌握这种方法为今后的学习打下了基础.二、教学目标:1、知识与技能:(1)了解数学归纳法的原理,能用数学归纳法证明一些与正整数有关的数学命题;(2)能以递推思想为指导,规范数学归纳法证明中的2个步骤,1个结论。
2、过程与方法:(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想到证明的数学方法;(2)进一步发展学生的抽象思维能力和创新能力,让学生经历知识的建构过程,体会类比的数学思想。
3、情感、态度与价值观:感受逻辑证明在数学以及日常生活中的作用,体会数学来源于生活,养成言之有理、论证有据的习惯。
三、教学重点:能用数学归纳法证明一些简单的数学命题.四、教学难点:学归纳法中递推思想的理解.五、教学准备1、课时安排:1课时2、学情分析:学生在学习本节之前已经学习过归纳推理,以及一些简单的数学证明方法,并且已经开始使用与正整数有关的结论(例1的公式),但学生只是停留在认知阶段;另外高二学生经过了一年半的高中学习之后,已初步具有了发现和探究问题的能力,这为本节学习数学归纳法奠定了一定基础。
3、教具选择:多媒体六、教学方法:运用类比启发探究的数学方法进行教学;七、教学过程1、自主导学:复习回顾引入:<师>(1)请同学们回顾学习过的证明方法有哪些?<生> 请一名学生回答该问题。
初中数学精品教案 :圆周角定理及其推论证明

1[实验名称] 圆周角定理及其推论证明实验目标:1.理解圆周角的概念.2.经历探索圆周角定理及其推论的过程,体验实验、汇总、猜想、证明的方法.3.贯彻数学分类讨论、数形结合、一般到特殊再到一般、化归等数学思想.实验方式:自主探究,合作交流,教师指导.实验步骤:一、设置情景:1.∠BAC 的顶点在圆上.....,它的两边都和圆相交.......,像这样的角叫做圆周角(inscribed angle ). 2.作线段OB ,以O 为圆心,OB 为半径构造圆.3.在圆周上任取两点A 、C ,连接AB 、AC ,∠BAC 即圆周角,如图一.4. 连接OB 、OC ,∠BOC 即圆周角∠BAC 所对弧BC 所对的圆心角,如图二.5. 选中圆O 和点B 、C 构造弧BC ,如图三.6. 分别度量∠BAC 、∠BOC 、弧BC ,计算∠BAC 除以∠BOC 的值,如图四.二、观察与猜想:7. 拖动点B ,观察圆周角∠BAC 、圆心角∠BOC 、弧BC 的度数和比值的变化,发现圆周角∠BAC 和同弧所对圆心角∠BOC 的大小关系是 ,发现圆周角∠BAC 和所对弧BC 的度数大小关系是 .8. 拖动点O ,使其落在∠BAC 边AB 上,如图五.拖动点O ,使其落在∠BAC 内,如图六. 拖动点O ,使其落在∠BAC 外,如图七.9. 再猜想:圆周角∠BAC 和同弧所对圆心角∠BOC 的大小关系是 .三、验证10. 在五、六、七的情况下拖动点C ,发现圆周角∠BAC 和同弧所对圆心角∠BOC 的大小关系始终成立.四、概括:11.表达您的重大发现: ;五、证明:12.利用图五、图六、图七,证明你得到的结论.(教师预设证明并设计成隐藏显示)六、变式和应用13.利用几何画板说明圆周角定理的推论成立.14.利用几何画板作出课本P90页例1的图形,并度量出弧BD 、DE 和AE 的度数.图一 图二 图三 图四 图五 图六 图七证:当圆心O在圆周角∠BAC的外部时连接AO并延长交⊙O于D由1已证可知:∠BAD=12∠BOD ,∠CAD=12∠COD∴∠CAD-∠BAD=12(∠COD-∠BOD)即∠BAC=12∠BOC2。
数学归纳法教案
《数学归纳法》高三复习课张绍红教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:经历试值、猜想、归纳、证明的过程来解决问题.教学过程:1、归纳法的概念对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法,叫归纳法。
归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.小题训练1 . 如图,把边长为1的正方形看作第一层壳,其面积为s 1,在它外面再镶上面积为s 2 的第二层外壳,使之构成边长为1+2的正方形,再镶上面积为 s 3的第三层外壳,使之构成边长为1+2+3的正方形,依次下去,试猜测第n 层外壳的面积s n小题训练2满足 的自然数n 等于( )A 1B 1,2C 1,2,3D 1,2,3,42、数学归纳法的概念:证明某些与自然数有关的数学命题P (n ),可用下列方法来证明它们的正确性:(1)验证当n 取第一个值n 0(例如n 0=1)时命题成立,(2)假设当n=k(k ∈N* ,k ≥n 0 )时命题成立,证明当n=k+1时命题也成立小题训练3 .证明凸n 边形的对角线为 条时,第一步验证n 等于( ) A 、1 B 、2 C 、3 D 、4小题训练4用数学归纳法证明“当n 为正奇数时, 能被x+y 整除”的第二步是( )A 、假使n=2k+1时正确,再推n=2k+3正确( )B 、假使n=2k-1时正确,再推n=2k+1正确( )C 、假使n=k 时正确,再推n=k+1正确( )212233413-32n n n n ⨯+⨯+⨯+⋯++=+()()1n n-32n n x y +D 、假使n ≥ k (k ≥1)时正确,再推n=k+2时正确( )小题训练5 . F (n )是一个关于自然数n 的命题,若F (k )真,则F (k+1)真,现已知F (7)不真,则有: ( ) ①F (8)不真;②F (8)真;③F (6)不真; ④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是 ( )A 、③⑤B 、①②C 、④⑥D 、③④3.数学归纳法的应用例1 用数学归纳法证明:例2 求证:练习 在数列 中, (1)求a 2 ,a 3 ,a 4(2)猜想的通项公式,并加以证明。
九年级数学上册《猜想证明与拓广》教案、教学设计
1.回顾本节课所学的内容,让学生总结数学猜想的提出、证明方法和拓广应用等方面的重要知识点。
2.学生分享自己的学习心得,讨论在学习过程中遇到的困难和解决方法。
3.教师点评学生在课堂上的表现,鼓励学生积极参与讨论,培养其勇于探索、严谨治学的精神。
五、作业布置
为了巩固本节课所学知识,提高学生的数学素养,特布置以下作业:
5.预习新课内容:
-预习下一节课将要学习的内容,为新课的学习做好准备;
-针对新课内容,提出自己的疑问和猜想,培养自主学习能力。
教师在批改作业时,应关注学生的思维过程和解答方法,及时给予评价和指导,鼓励学生发挥潜能,提高作业质量。同时,教师应认真总结学生的作业反馈,为今后的教学提供参考。通过以上作业布置,使学生更好地巩固所学知识,提高数学素养,为未来的学习奠定坚实基础。
3.注重数学思想的渗透,引导学生运用数形结合、化归等数学思想方法,简化问题,提高解题效率。
4.通过拓广练习,培养学生将理论知识应用于实际问题的能力,提高学生的数学素养。
(三)情感态度与价值观
本章节教学应关注以下情感态度与价值观的培养:
1.培养学生勇于探索、敢于质疑的精神,激发学生学习数学的兴趣和热情。
-数形结合、化归等数学思想方法的运用。
2.教学难点:
-学生对数学猜想的提出缺乏创新性,难以跳出传统思维框架;
-学生在证明过程中,逻辑推理能力不足,容易陷入思维误区;
-学生在拓广练习中,难以将所学知识灵活应用于实际问题。
(二)教学设想
1.针对教学重点,设计以下教学策略:
-创设问题情境,引导学生通过观察、思考、讨论等方式提出数学猜想,培养学生创新意识;
(四)课堂练习
高中数学高三第六章不等式数学归纳法(教案)
高三一轮复习 6.7 数学归纳法【教学目标】1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【重点难点】1。
教学重点:了解数学归纳法的原理并能用数学归纳法证明一些简单的数学命题;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】叫做数学归纳法.2.数学归纳法的框图表示1.必知关系;数学归纳法是一种只适用于与正整数有关的命题的证明方法,第一步是递推的“基础”,第二步是递推的“依据",两个步骤缺一不可.2.必清误区;运用数学归纳法应注意以下两点:(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.(2)第二步中,归纳假设起着“已知条件”的作用,在证明n =k+1时,命题也成立的过程中一定要用到它,否则就不是拨从而提高学生的解题能力和兴教师引导学生及时总结,以帮助学生形成完整的认知结构。
强理解记忆,提高解题技能。
k+1·错误!=错误!,要证当n=k+1时结论成立,只需证错误!≥错误!,即证错误!≥k+1k+2,由基本不等式得错误!=错误!≥错误!成立,故错误!≥错误!成立,所以,当n=k+1时,结论成立.由①②可知,n∈N*时,不等式错误!·错误!·……·错误!〉错误!成立.跟踪训练:1。
已知数列{a n},a n≥0,a1=0,a错误!+a n+1-1=a错误!。
求证:当n∈N*时,a n<a n+1.【证明】(1)当n=1时,因为a2是方程a错误!+a2-1=0的正根,所以a1〈a2。
(2)假设当n=k(k∈N*)时,。
七年级数学下册《猜想与证明》教案、教学设计
-重点:通过课堂教学和练习,让学生习惯于用数学语言表述问题和证明过程。
-难点:提高学生在数学表达中的准确性和逻辑性。
(二)教学设想
1.创设情境,激发兴趣:
-利用数学历史故事、现实生活中的问题等情境,引导学生感受数学猜想的魅力,激发他们探索和证明的热情。
2.分步引导,逐步深入:
四、教学内容与过程
(一)导入新课
在本章节的导入环节,我将通过一个有趣的故事来激发学生的兴趣和好奇心。我会讲述古希腊数学家毕达哥拉斯发现直角三角形边长关系的故事,他通过观察和猜想,得出了著名的毕达哥拉斯定理。然后,我会提出问题:“毕达哥拉斯是如何发现这个规律的?他又是如何证明这个定理的呢?”通过这个故事,让学生感受到数学猜想在数学发展中的重要作用,从而引出本节课的主题——猜想与证明。
4.数学猜想与证明的拓展:介绍一些著名的数学猜想及其证明过程,让学生了解数学发展的前沿动态,激发学生的学习兴趣。
5.总结与反思:通过对本章节的学习,让学生总结猜想与证明的方法,反思自己在学习过程中的收获和不足,为后续学习奠定基础。
在教学过程中,教师应关注学生的个体差异,给予每个学生充分的时间和空间进行思考和探究,鼓励学生提出自己的猜想,并尝试进行证明。同时,注重教学评价,全面了解学生的学习情况,及时调整教学策略,提高教学效果。
3.探究题:鼓励学生提出自己的数学猜想,并尝试用不同的证明方法进行证明,培养学生的创新意识和探究精神。
例题:
请观察以下数列:1, 3, 6, 10, 15, ...
(1)你能发现这个数列的规律吗?请提出你的猜想。
(2)请尝试用归纳法或直接证明法证明你的猜想。
4.小组合作题:安排一些需要团队合作完成的题目,让学生在合作中交流、分享,提高团队协作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列、极限、数学归纳法·归纳、猜想、证明教学目标1.对数学归纳法的认识不断深化.2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法.3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明.教学过程设计(一)复习引入师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明?生:与连续自然数n有关的命题.师:用数学归纳法证明的一般步骤是什么?生:共有两个步骤:(1)证明当n取第一个值n0时结论正确;(2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确.师:这两个步骤的作用是什么?生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程.师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么?生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题.今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1.(二)归纳、猜想、证明1.问题的提出a3,a4,由此推测计算a n的公式,然后用数学归纳法证明这个公式.师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上)师:正确.怎么推测a n的计算公式呢?可以相互讨论一下.2.归纳与猜想生:我猜出了一个a n的计算公式.(许多学生在偷笑)师:大家在笑什么?是笑他的“猜”吗?“猜”有什么不好.人们对事物的认识很多都是以“猜”开始的,探索新领域就需要大胆,敢猜敢想,当然还要有严谨的思维做后盾.我想他的“猜”,也一定不是胡蒙乱猜,一定会有他的道理的,说说你是怎么“猜”的.师:大家也一定觉得他说的有道理,但为什么用“猜想”呢?生:我只是通过对a1,a2,a3,a4的观察,就去归纳a n的计算公式,这个公式不一定对,所以还只能是“猜想”.师:他是经观察有限个特例从中获取一定信息、分析它们共同具有的特征后,归纳出对一切自然数的一般结论.他用的是不完全归纳法.他的结论虽不一定正确,但这却是探索新知识,发现新规律的重要途径,归纳法是可以用于猜测与发现的.我们一起把他的“猜想”记录下来.(教师板书)师:这个“猜想”的正确性怎么能保证?生:用数学归纳法证明.3.证明(学生口述,教师板书)师:证得非常好.在证明n=k+1时,每一步的依据是什么?生:因为在这里,能否用上归纳假设是关键.因此先根据定义用a k表示a k+1,然后就可代入归纳假设,再化简整理,即可证出n=k+1的相应结论.师:这才能体现出递推性.必须注意要由归纳假设(n=k时)的正确性来推n=k+1时的正确性,这是用数学归纳法证题的核心与关键.回顾我们的解题过程,光用不完全归纳法对事物的一部分特例,通过观察,加以归纳,得到猜想,再用数学归纳法对猜想加以证明.这种从观察到归纳到猜想到证明的过程,是一种科学的思维模式,也正是我们今天要研究的课题.(板书课题:归纳、猜想、证明)4.不完全归纳法中的“猜测”二法师:高斯说过:“发现和创新比命题论证更重要,因为一旦抓住真理之后,补行证明往往是时间问题.”在“归纳、猜想、证明”的过程中,猜想准确是关键.我们再看一个例题,在解题过程中重点思考:如何猜想.且n≥2).先求出f(2),f(3),f(4)的值,再由此推测f(n)的计算公式,并对其正确性作出证明.(学生们在笔记本上解答,教师巡视完成情况,请两位同学把自己的解法写到黑板上)(学生甲书写如下)则f(n)=f(n-1)+lg 2n-1(n≥2).f(3)=f(2)+lg 23-1=0+2 lg 2=2lg 2,f(4)=f(3)+lg 24-1=2lg 2+3 lg 2=5lg2.猜想:……(学生乙书写如下)得f(n)=f(n-1)+lg 2n-1(n≥2).则f(2)=f(1)+lg 22-1=-lg 2+(2-1)lg 2=(-1+2-1) lg 2,f(3)=f(2)+lg 23-1=(-1+2-1+3-1) lg 2,f(4)=f(3)+lg 24-1=(-1+2-1+3-1)lg 2+(4-1)lg 2=(-1+2-1+3-1+4-1)lg 2.由此可以推测:f(n)=[-1+(2-1)+(3-1)+…+(n-1)]lg2=[-1+1+2+…+(n-1)]lg 2f(k+1)=f(k)+lg 2(k+1)-1师:我们一起来看两位同学的解题过程.学生甲的计算结果正确,但没有猜出来.学生乙没有求出f(2),f(3),f(4)的值,但猜出了计算公式,并用数学归纳法给予了证明.题目要求求值,还是应写出结果的,说说你这么写的理由吧.生乙:其实一开始,我跟学生甲一样,先算出了f(2),f(3),f(4)的值,但从-lg 2,0,2lg 2,5lg 2我除发现了应是多少倍的lg2就再无收获了,这“多少倍的”从-1,0,2,5实在无法断定,于是我就往回找,从计算的过程中,我发现了规律,一高兴就忘了写结果了.师:你是怎么从计算的过程中发现规律的?生乙:我是看f(2),f(3),f(4)每一个的计算过程都是在前一个结果的基础上加上(n-1)lg 2,也就是从n=2,3,4,…分别代入递推关系式f (n)=f(n-1)+(n-1)lg 2的求值计算过程中得到的.这里算每一个时要用前一个的结果,写时也用它的计算过程来表示,这样就容易发现规律了.师:实际上,他是通过算式的结构特征作出归纳、推测的,这种归纳我们不妨称之为:“猜结构”,而例1那种归纳我们就叫它做“猜结果”吧.其实,我们在猜想时,往往是先看结果,从结果得不出猜想时,再看过程,从解题过程中的式子结构去思考.但不管怎么猜想,都离不开对题目特征的认识.学生乙在用数学归纳法证明猜想时,注意了两个步骤及归纳假设的使用,证明正确.这个问题解决得非常好.归纳、猜想、证明是一种科学的思维方法,重要的解题途径,它是我们认识数学的一把钥匙.(三)练习已知数列{a n}和{b n},其中a n=1+3+5+…+(2n+1),b n=1+2+22+…+2n-1,(n∈N+)当n∈N+时,试比较a n与b n的大小,并证明你的结论.(教师巡视学生的解题情况,适时点评)师:有的同学面对问题无从下手,一下子就想得到一个一般性的结论是不太容易,但我们可以从特殊的n=1,n=2,……入手,通过观察归纳,猜想出一个一般的结论,这应是可以做到的吧.……有的同学结论下得太草率,只看了a1与b1,a2与b2,a3与b3就下结论了,急于去证明,证的时候就有困难了.这种时候该怎么办?①看证法是否正确;②回过头来多试几个,甚至还应看看a n,b n的结构,再慎重下结论.(待大部分学生都解出后,教师将课前准备好的写在投影片上的解答在投影机上打出来并讲评.)当 n=1时,a1=4,b1=1,则a1>b1;当n=2时,a2=9,b2=3,则a2>b2;当n=3时,a3=16,b3=7,则a3>b3;当n=4时,a4=25,b4=15,则a4>b4;当n=5时,a5=36,b5=31,则a5>b5;当n=6时,a6=49,b6=63,则a6<b6;当n=7时,a7=64,b7=127,则a7<b7;……由此得到:当n≤5(n∈R)时,a n>b n;猜想:当n≥6(n∈R)时,a n<b n.前一结论在推导时已用穷举法得到证明,后一猜想我们用数学归纳法加以证明.证明:(1)当n=6时,上面已证得a6<b6,命题成立.(2)假设当n=k(k≥6)时命题成立,即k≥6时,(k+1)2<2k-1.则当n=k+1时,bk+1=2k+1-1=2·2k-1=2(2k-1)+1>2(k+1)2+1=2k2+4k+3=k2+4k+4+(k2-1).因k≥6,则k2-1>0.所以k2+4k+4+(k2-1)>k2+4k+4.即bk+1>k2+4k+4=(k+2)2=[(k+1)+1]2=a k+1.故a k+1<b k+1,所以当n=k+1时,命题也成立.由(1),(2)得a n<b n对任意n≥6且n∈N+都成立.第(2)步亦可由分析法证得.(2)假设当n=k(k≥6)时命题成立,即k≥6时,(k+1)2<2k-1,则当n=k+1时,要证a k+1<b k+1,即证:(k+2)2<2k+1-1.这只要证(k+2)2<2·2k-1.由归纳假设2k>(k+1)2+1,只要证(k+2)2<[(k+1)2+1]×2-1,只要证k2+4k+4<2k2+4k+3,只要证1<k2.这由k≥6是显然成立的,所以当n=k+1时命题也成立.师:本题不能只对n=1,2,3,4做出检验,就冒然断定当n∈N+时,a n>b n 成立.如果仓促做出此推测,在后面证明受阻时,也应重新检查猜想是否准确.其实,仔细看看式子a n=(n+1)2,b n=2n-1的结构,就不难发现:随着n的不断增大,b n的增长速度明显快于a n.想想这些,对结论的猜测会是大有好处的.(四)小结(引导学生一起归纳小结)1.归纳、猜想、证明是一个完整的思维过程,既需要探求和发现结论,又需要证明所得结论的正确性.它引导我们在数学的领域中积极探索,大胆猜想,可以充分地发挥我们的数学想象力.同时又要求我们注意对所得的一般结论作严格的数学证明.2.归纳法是一种推理方法,数学归纳法是一种证明方法.归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想.在归纳、猜想、证明的过程中,猜想是关键.我们可以“猜结果”,也可以“猜过程”,只要抓住问题的本质特征、知识的内在联系,就不难得到猜想.在用数学归纳法证明时,有时还可以弥补猜想中的不足.(五)布置作业1.高级中学课本《代数》下册(必修)P129第35题.2.(选作)已知数列{a n}满足S n+a n=2n+1,其中S n是{a n}的前n项和.先求出a1,a2,a3,a4的值,再推测{a n}的通项公式,并用数学归纳法加以证明.本题的求值计算、猜想都不是很困难,但用数学归纳法证明有一定难度.在由归纳假设a k成立推证a k+1成立时,需a k+1与ak的关系式,而题目条件中没有直接给出,这就需要学生能有意识地利用条件S n+a n=2n+1①.由于n∈N,就可以得到S n+1+a n+1=2(n+1)+1②.将数学归纳法的证明中起着重要作用,而且可简化计算.有整体构想的同学应先推导出此关系式,再计算、猜想、证明)课堂教学设计说明利用“归纳、猜想、证明”这一思维方法解题,在课本中虽无这类例题,但复习参考题的最后一道却属此类.它对于学生认识数学、提高数学修养、发展数学能力的作用重大.在归纳、猜想、证明中,准确猜想是关键.因此我们把重点放在了如何猜想.它不仅能帮助学生使问题得以顺利解决,而且对于开发学生的想象力、培养学生的创新意识、培养新世纪人材都很有意义.在例题、习题、作业题的配备上,我们认为高中的学习特点是梯度陡、跨度大、思维能力要求高(较初中而言).因此在题目的设置上,我们加大了思维的含量.让学生在处理每一个问题,操作每一步时都必须有所思考,使学生深切体会到:数学不能死记硬背,也不能生搬硬套.要用数学的思想方法观点学习数学、看待数学.本节安排的这道练习题.从题目本身看,学生得不到一个解题程序,似乎无从下手.但如果他已掌握了归纳、猜想、证明的思想而不只是方法的话,他就会有解题意识与思路.更可从中领略到发现、观察、归纳、猜想、证明这一数学研究的全过程,体会有限与无限、特殊与一般等辩证关系.至于课后思考题,其计算、猜想都不困难,使学生对此题轻松上手.但证明时的不顺利会引发他们的思考:照搬例习题的模式是不行的,它与例习题的区别何在?数学归纳法的本质特征是什么?……这些思考不仅有助于学生解出此题,更有助于学生从实质上理解数学归纳法,抓住其核心——递推.这节课的教学,我们始终以问题为主线,让学生的思维由问题开始,到问题深化.通过问题的研讨,帮助学生从认识上得到提高.逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入.从而提高学生的思维层次与思维水平.。