新北师大版八年级下1.1等腰三角形(二)教学设计
北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

1.分组讨论等腰三角形的性质及应用
我会将学生分成若干小组,让他们讨论等腰三角形的性质在实际问题中的应用。例如,如何利用等腰三角形的性质求解底边长度、底角大小等。
2.分组探讨等腰三角形的判定定理
各小组学生还需探讨等腰三角形的判定定理,并尝试运用定理解决实际问题。在此过程中,我会巡回指导,解答学生的疑问。
-对于作业中的共性问题,将在课堂上进行集中讲解,确保学生理解到位。
-表现优秀的作业将在课堂上展示,以激发学生的学习积极性。
2.学会使用等腰三角形的判定定理,判断一个三角形是否为等腰三角形。
-学生能够理解并掌握“两边相等的三角形是等腰三角形”这一判定定理,并能够运用到实际问题的解决中。
3.掌握等腰三角形的周长和面积计算方法,能够解决相关问题。
-学生能够根据等腰三角形的性质,运用周长和面积公式进行计算,解决实际应用问题。
(二)过程与方法
2.培养学生合作交流的意识,增强团队协作能力。
-教学过程中,教师鼓励学生进行小组合作、讨论交流,培养学生合作解决问题的能力。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
-教师引导学生面对问题,勇于尝试,不怕困难,培养积极思考、解决问题的精神。
-学生在学习过程中,认识到数学知识在解决实际问题中的价值,树立正确的价值观。
3.提高学生的应用意识,将等腰三角形的知识与实际生活相结合。
-重难点:将理论知识应用于解决生活中的问题。
-设想:设计真实的情境问题,如建筑物的平面设计、艺术作品的对称性分析等,让学生在解决问题的过程中体验数学的价值。
(二)教学设想
1.采用探究式学习法,激发学生的求知欲和主动性。
-设想:通过引入富有挑战性的问题,如“如何确定等腰三角形的高线和中线?”激发学生的好奇心,引导学生通过实验、观察、推理等手段自主探索答案。
北师大版数学八年级下册1.1 等腰三角形

AD=AD (公共边),
B
∴ △BAD≌ △CAD (SAS).
∴ ∠B= ∠C (全等三角形的对应角相等).
DC
探究新知
结论 定理 等腰三角形的两个底角相等. 这一定理可简述为:“等边对等角”.
思考:由△BAD≌ △CAD,除了可以得到∠B= ∠C之外, 你还可以得到哪些相等的线段和相等的角?
探究新知
可以作一条辅助线,运用全等三 角形的性质“对应角相等”来证.
思考:如何构造两个全等的三角形?
探究新知
方法一:作底边上的中线
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
A
证明: 作底边的中线AD,则BD=CD.
在△BAD和△CAD中,
AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边),
(2)如果∠ABD= ∠ABC,∠ACE= ∠ACB,那么BD=CE吗?
由此你得到什么结论?
A
结论 在△ABC中,如果AB=AC,∠ABD= ∠ABC,
∠ACE= ∠ACB,那么BD=CE.
E
D
B
C
简述为:过底边的端点且与底边夹角相等的两线段相等.
探究新知
猜想证明: 等腰三角形两腰上的中线相等.
已知: 如图, 在△ABC中, AB=AC,BM,CN是△ABC两腰上的
思考2:你能利用已有的公理和定理证明这些结论吗?
探究新知 证明定理:等腰三角形的两个底角相等.
已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C.
思考:如何证明两个角相等呢?
A
B
C
探究新知 在七下学习轴对称时,我们利用折叠的方法说明了等腰
北师大版八年级下册数学《1.1 第2课时 等边三角形的性质》教案

北师大版八年级下册数学《1.1 第2课时等边三角形的性质》教案一. 教材分析北师大版八年级下册数学《1.1 第2课时等边三角形的性质》这部分内容是在学生已经掌握了三角形的基本概念和等腰三角形的性质的基础上进行学习的。
本节课的主要内容是让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过引出等边三角形的定义,引导学生探究等边三角形的性质,并通过例题和练习题让学生加以巩固。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,对三角形的基本概念和等腰三角形的性质已经有了一定的了解。
但是,对于等边三角形的性质,学生可能还比较陌生,需要通过一定的引导和探究才能理解和掌握。
此外,学生可能对于如何运用等边三角形的性质解决实际问题还比较困惑,需要通过例题和练习题的讲解和演练才能加以巩固。
三. 教学目标1.知识与技能:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:让学生在学习的过程中体验到数学的乐趣,增强学生对数学的学习兴趣。
四. 教学重难点教学重点:让学生掌握等边三角形的性质。
教学难点:如何引导学生探究等边三角形的性质,并能够运用这些性质解决实际问题。
五. 教学方法采用问题驱动法,引导学生自主探究等边三角形的性质,并通过合作交流,共同解决问题。
同时,通过例题和练习题的讲解和演练,让学生加以巩固。
六. 教学准备教师准备PPT,包括等边三角形的定义、性质以及例题和练习题。
同时,准备一些相关的教具,如三角板、直尺等,以便于学生进行实际操作。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和等腰三角形的性质,引出等边三角形的定义。
2.呈现(10分钟)教师通过PPT呈现等边三角形的性质,引导学生进行自主探究。
同时,教师给予适当的引导和提示,帮助学生理解和掌握等边三角形的性质。
最新北师大版八年级下册数学全册教案(新教材)

新版北师大版八年级下册数学全册教案教学设计DBCAE F OABCDE二.【效果检测】1.如图1 (1),在△ABC 与△A 'B 'C '中,若AB =A 'B ',AC =A 'C ',∠C =∠C '=90°,这时Rt △ABC 与Rt △A 'B 'C '是否全等?导学: 把Rt △ABC 与Rt △A 'B 'C '拼合在一起 ,如图1(2),因为 ∠ACB =∠A 'C 'B '=90°,所以B 、C(C ')、B '三点在一条直线上, 因此,△ABB '是一个等腰三角形,可以知道∠B =∠B '.根据AAS 公理可知Rt △A 'B 'C '≌Rt △ABC 。
请你按照上面的分析,尝试着完成本题的证明过程。
证明:反思:1.为什么要说明B 、C(C ')、B '三点在一条直线上呢?2.前面我们曾用画图剪拼的方法,比较感性的获得“斜边和一条直角边对应相等的两个直角三角形的全等。
”但由于观察并不一定可靠,通过今天严谨逻辑证明,我们确信这是一条数学真理。
3.根据勾股定理、SAS 公理你还有其他证明方法吗?三.【布置任务】师生互动探究问题1. 证明:在直角三角形中,30°角所对的直角边等于斜边的一半。
点拨:1.我们可构造如图1(2)的图形所示中,在等边三角形AB B '中,如 ∠BA C =30°,那么△ABC 是一个直角三角形,且BC =21AB 。
四.【小组交流】学生展示问题2. 如图所示,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=AC点拨:要证AB=AC ,只要分别证AE=AF ,BE=CF,因而只要用”HL ”证明Rt △AED ≌Rt △AFD, Rt △BED ≌Rt △CFD 。
六.【课堂训练】拓展延伸问题3 如图,CD ⊥AB,BE ⊥AC,垂足分别是D 、E,BE 、CD 相交于点O ,如果AB=AC ,哪么图中有几对全C=90度,点D在BC上,课外作业第二章 一元一次不等式与一元一次不等式组2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
第一章 三角形的证明 1.1等腰三角形 2课时 导学案(最新北师大版)

1.1 等腰三角形第一课时一、课前准备:1、有 的三角形叫做等腰三角形,相等的两边叫做 ,腰与底边的夹角叫做 ; 的三角形是等边三角形。
2、公理、定理、证明公理:公认的 称为公理。
定理:经过证明的 称为定理。
证明: 的过程称为证明。
3、证明的一般步骤是:根据题意 ;根据条件、结论,结合图形 ;经过分析,找出由已知推出求证的途径, 。
对假命题的判断,只要举 来证明即可。
二、学习目标:1、了解作为证明基础的几条公理、定理的内容,掌握证明的基本步骤和书写格式。
2、掌握等腰三角形的性质。
3、结合实例体会反正法的含义。
三、自学提示: 1、你知道吗?全等三角形的判定及性质(见课本P2想一想) 2、你发现了吗? (1)把探究1中剪出的△ABC 沿折痕AD 对折,根据得到的信息,填入右表:(2)从上表中你能发现等腰三角形的角有什么样的特点吗?底边上的中线,高线,顶角平分线有什么样的特点吗? (3)你能证明你所得到的结论吗?求证:等腰三角形的两个底角相等。
已知: ΔABC 中,AB=AC.求证: ∠B= ∠C.证明:.等腰三角形的性质:性质1 等腰三角形的两个底角 (简写成“ ” );性质2 等腰三角形的顶角的 、底边上的 、底边上的 相互 。
【我是小翻译】请将等腰三角形性质(文字语言)“翻译”成图形和符号语言。
B五、夯实基础:1.等腰三角形一个底角为70°,它的顶角为______.2.等腰三角形的顶角为100°,它的底角为______.3.等腰三角形一个角为110°,它的另外两个角为___________.4.等腰三角形一个角为70°,它的另外两个角为__________________.5.在△ABC 中,AB=AC ,∠1=∠2=55°,则BD=5,CD=____。
6.在△ABC 中,AB=AC ,BM=CM ,∠BAM=35°,则∠CAM=_____°,∠AMB=_____°。
八年级数学下册 1 三角形的证明 课题 等腰三角形的判定与反证法学案 (新版)北师大版

课题等腰三角形的判定与反证法【学习目标】1.理解等腰三角形的判定定理,并会运用其进行简单的证明.2.了解反证法的基本证明思路,并能简单应用.【学习重点】等腰三角形的判定定理,并会运用其进行简单的证明.【学习难点】反证法的证明方法.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:1.等腰三角形的判定方法有两种:①根据定义判定;②等角对等边.2.“等角对等边”可以将图形中角的等量关系转化为线段的等量关系,是证明线段相等的一种重要方法.情景导入生成问题旧知回顾:1.等腰三角形性质定理内容是什么?等腰三角形两底角相等.2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两角所对的边也相等吗?答:还成立.如图,△ABC中,∠B=∠C.求证:AB=AC.证明:作AD⊥BC于D,由∠ADB=∠ADC=90°,∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.自学互研生成能力知识模块一等腰三角形的判定【自主探究】阅读教材P8的内容,回答下列问题:等腰三角形的判定定理内容是什么?答:有两个角相等的三角形是等腰三角形,简称“等角对等边”.范例:如图,在△ABC中,AB=AC,点D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于点F.求证:AD=AF.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠2+∠B=∠F+∠C=90°,∴∠2=∠F,∵∠1=∠2,∴∠1=∠F,∴AF=AD(等角对等边).仿例1:如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明.证明:∵AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD(SAS),∴∠OAB=∠OBA,∴OA=OB(等角对等边),∵OE是中线,∴OE⊥AB.仿例2:如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是5 cm.归纳:注意等角对等边的灵活应用,仿例2中平行线和角平分线结合是得出等腰三角形的范例.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:教会学生整理反思.知识模块二反证法阅读教材P8-9的内容,回答下列问题:什么是反证法?有哪些重要步骤?答:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【合作探究】1.用反证法证明“等腰三角形的底角都是锐角”.已知:在△ABC中,AB=AC,求证:∠B、∠C都是锐角.证明:假设∠B、∠C都是直角或钝角,∴∠B≥90°,∠C≥90°,∴∠B+∠C≥90°+90°=180°,∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,∴假设不成立,原命题的结论正确,即∠B、∠C都是锐角.2.用反证法证明一个三角形中不能有两个直角的第一步是假设这个三角形中有两个角是直角.3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.归纳:对直接证明有困难的命题均可用反证法证明,它有三个基本步骤:①反设;②推出矛盾;③否定反设、肯定命题成立.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形的判定知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
北师大版初二下册数学 1 等腰三角形 教案(教学设计)

1 等腰三角形第1课时【教学目标】知识技能目标1.理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理.2.在证明过程中,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理.3.熟悉证明的基本步骤和书写格式.过程性目标1.经历“探索—发现—猜想—证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力.2.鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平.情感态度目标1.启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系.2.培养学生合作交流的能力,以及独立思考的良好学习习惯.【重点难点】重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法.难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等.【教学过程】一、创设情境提醒学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两条平行线被第三条直线所截,同位角相等.3.两边及其夹角对应相等的两个三角形全等(SAS).4.两角及其夹边对应相等的两个三角形全等(ASA).5.三边对应相等的两个三角形全等(SSS).在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质.有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提醒学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程.二、探究归纳探究一:活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程.具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为一小组进行交流,互相弥补不足.活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式.活动效果与注意事项:由于有了教师引导下学生的活动,以及具体的折纸操作,学生一般都能得到有关等腰三角形的性质定理,当然,可能部分学生得到的定理并不全面,在学生小组的交流中,通过同伴的互相补充,一般都可以得到所有的性质定理.在教学过程中,教师应注意小组的巡视,提醒学生思考多种证明思路,思考不同的辅助线之间的关系从而得到“三线合一”. 探究二:活动内容:在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以下两个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,让学生明晰证明过程.(1)等腰三角形的两底角相等.(2)等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,给学生一定的规范,起到一种引领作用;活动2则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习.三、交流反思1.具体有关性质定理.2.通过折纸活动对获得的定理给予了严格的证明,为今后解决有关等腰三角形的问题提供了丰富的理论依据.3.体会了证明一个命题的严格的要求,体会了证明的必要性.4.通过这节课的学习,掌握探索的步骤:观察—归纳—猜想—证明;探索出等腰三角形的性质.四、检测反馈学生自主完成P4第2题:如图,在△ABD中,AC⊥BD,垂足为C,AC=BC=CD.(1)求证:△ABD是等腰三角形.(2)求∠BAD的度数.五、布置作业P4 习题1.1 第1,2题.六、板书设计全等三角形的判定学生板演练等腰三角形的性质七、教学反思本节关注学生已有活动经验的回顾过程,关注了“探索—发现—猜想—证明”的活动过程,关注了学生的自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果.在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整.第2课时【教学目标】知识技能目标探索—发现—猜想—证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.过程性目标1.经历“探索—发现—猜想—证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生初步的演绎逻辑推理能力.2.在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性.3.在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉.情感态度目标1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.2.体验数学活动中的探索与创造,感受数学的严谨性.【重点难点】重点:经历“探索—发现—猜想—证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.难点:能够用综合法证明有关三角形和等腰三角形的一些结论.【教学过程】一、创设情境内容:在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?引入本课研究内容.二、探究归纳1.探究活动一内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.问:你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?学生通过观察,归纳发现:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.2.探究活动二内容:提醒学生在得到上面等腰三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.已知:在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.活动效果:学生一般都能得到这些定理的证明,能规范地写出“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程.三、交流反思1.通过这节课的学习,掌握探索的步骤:观察—归纳—猜想—证明.2.通过本节课探索出等腰三角形的性质及推论.四、检测反馈1.等边三角形练习:如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD.2.等腰三角形特殊线段的应用:如图,在△ABC中,若AB=AC,∠A=40°,O点是△ABC的角平分线BD与高线CE的交点,则∠DOC的度数为________.五、布置作业1.已知:如图,在△ABC中,AB=AC,BD,CE是△ABC的角平分线.求证:BD=CE.2.证明: 等腰三角形两腰上的高相等.六、板书设计等腰三角形两个底角的平分线相等; 等腰三角形腰上的高相等;等腰三角形腰上的中线相等. 等边三角形的性质七、教学反思本节课关注了问题的变式与拓广,实际上引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力,但也应注意根据学生的情况进行适度的调整,因为学生先前这样的经验较少,因而对一些班级学生而言,完成全部这些教学任务,可能时间偏紧,为此,教学中可以适当减少一些内容,将部分内容延伸到课外,当然,也可以设计为两个课时,将研究过程进一步展开.第3课时【教学目标】知识技能目标1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.过程性目标在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性.情感态度目标鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.【重点难点】重点:理解等腰三角形的判定定理,并会运用其进行简单的证明.难点:灵活应用等腰三角形的性质和判定定理.【教学过程】一、创设情境活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进行交流.问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究归纳探究一:教师: “等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?[学生]如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.探究二:导出反证法:小明说:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC.你能理解他的推理过程吗?反证法的定义是先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.三、交流反思(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别与联系.(4)举例谈谈用反证法证明的基本思路.四、检测反馈1.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长.2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?五、布置作业已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.六、板书设计等腰三角形的判定:反证法有两个角相等的三角形是等腰三角形本节课关注了问题的变式与拓广,实际上引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力,但也应注意根据学生的情况进行适度的调整,因为学生先前这样的经验较少,因而对一些班级学生而言,完成全部这些教学任务,可能时间偏紧.第4课时【教学目标】知识技能目标1.理解等边三角形的判别条件及其证明.2.理解含有30°角的直角三角形的性质及其证明,并能利用这两个定理解决一些简单的问题. 过程性目标1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.2.经历实际操作,探索含有30°角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力.情感态度目标积极参与数学学习活动,对数学有好奇心和求知欲.【重点难点】重点:等边三角形判定定理.含30°角的直角三角形的性质定理.难点:含30°角的直角三角形性质定理的探索与证明.引导学生全面、周到地思考问题.【教学过程】一、创设情境活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等边三角形呢?从而引入新课.二、探究归纳探究一:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:1.顶角是60°的等腰三角形是等边三角形.2.底角是60°的等腰三角形是等边三角形.3.三个角都相等的三角形是等边三角形.4.三条边都相等的三角形是等边三角形.探究二:教师直接提出问题:1.将等边三角形沿对称轴能剪成两个什么特殊的三角形?2.你能猜测这个含30°角的直角三角形有哪些性质吗?学生发现结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.三、交流反思让学生对课堂学习进行小结,注意总结具体的知识、结论,以及解决问题的方法和蕴含其中的思想,如分类讨论思想、逆向思维等.四、检测反馈等腰三角形的底角为15°,腰长为2a,求腰上的高CD的长.解:∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠ACB=15°+15°=30°,∴CD=AC=×2a=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).五、布置作业P12 习题1.4 第1,2题六、板书设计等边三角形的判定1.2.3. 含30°角的直角三角形的性质学生板演本节课,难点在于探究两个定理:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”和“在直角三角形中,30°角所对的直角边等于斜边的一半”,由于设计了三角板操作的实践活动,有效地突破了难点,因而,课堂上学生思维非常灵活,方法多样,取得较好的效果.。
北师大版八年级数学下册1.1等腰三角形(第2课时)优秀教学案例

3.鼓励学生提出自己的问题,培养学生的提问能力和批判性思维。
(三)小组合作
1.将学生分成小组,每组成员共同讨论和探索等腰三角形的性质。
2.设计具有合作性的任务,如共同完成一个等腰三角形的拼图游戏,或者一起解决一个实际问题。
4.教师通过观察学生的学习行为和表现,了解学生的学习状况,及时调整教学策略,提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些生活中常见的等腰三角形形状的物体,如金字塔、梯子等,引发学生对等腰三角形的关注。
2.提出与等腰三角形相关的问题,如“你们观察过这些物体的形状吗?它们有什么特点?”等,激发学生的思考和探索兴趣。
2.问题导向的教学策略:通过设计具有挑战性和启发性的问题,引导学生主动思考和探索,培养了学生的逻辑思维能力和问题解决能力。同时,教师还鼓励学生提出自己的问题,培养了学生的提问能力和批判性思维。
3.小组合作的学习方式:通过小组合作,学生能够共同探索等腰三角形的性质,培养团队合作意识和沟通能力。同时,小组合作也能够激发学生的学习积极性和主动性,提高学习效果。
4.教师在课后与学生进行交流,了解学生在作业过程中遇到的问题,给予针对性的指导和建议。
五、案例亮点
1.生活情境的创设:通过引入金字塔、梯子等实际生活中的等腰三角形形状的物体,激发了学生的学习兴趣,使学生能够更好地理解和应用所学的数学知识。这种生活情境的创设,不仅能够激发学生的学习兴趣,还能够让学生认识到数学与生活实际的联系,提高学生运用数学解决问题的能力。
本节课的教学目标是让学生掌握等腰三角形的性质,并能够运用这些性质解决实际问题。同时,通过小组合作、讨论交流等方式,培养学生的团队合作意识和沟通能力。在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探索、发现和总结等腰三角形的性质,从而提高他们的数学素养和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章三角形的证明
1. 等腰三角形(二)
一、学生知识状况分析
在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题;而前一课时,学生刚刚证明了等腰三角形的性质,这为本课时拓展等腰三角形的性质、研究等要三角形的判定定理都做了很好的铺垫。
二、教学任务分析
本节将利用前一课时所证明的等腰三角形的性质定理,进一步研究等腰三角形的一些特殊性质,探索等边三角形的性质。
为此,确定本节课的教学目标如下:
1.知识目标:
①探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;
2.能力目标:
①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;
②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;
③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;
3.情感与价值观要求
①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.
②体验数学活动中的探索与创造,感受数学的严谨性.
4.教学重、难点
重点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.
三、教学过程分析
本节课设计了六个教学环节:第一环节:提出问题,引入新课;第二环节:自主探究;第三环节:经典例题变式练习;第四环节:拓展延伸、探索等边三角形性质;第五环节:随堂练习及时巩固;第六环节:探讨收获课时小结。
第一环节:提出问题,引入新课
活动内容:在回忆上节课等腰三角形性质的基础上,提出问题:
在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?
活动目的:回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力。
第二环节:自主探究
活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。
活动目的:让学生再次经历“探索——发现——猜想——证明”的过程,进一步体会证明的必要性,并进行证明,从中进一步体会证明过程,感受证明方法的多样性。
活动效果与注意事项:活动中,教师应注意给予适度的引导,如可以渐次提出问题:你可能得到哪些相等的线段?
你如何验证你的猜测?
你能证明你的猜测吗?试作图,写出已知、求证和证明过程;
还可以有哪些证明方法?
通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:
等腰三角形两个底角的平分线相等;
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
并对这些命题给予多样的证明。
如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:
已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.
求证:BD=CE.
证法1:∵AB =AC ,
∴∠ABC=∠ACB(等边对等角).
∵∠1=12 ∠ABC,∠2=12
∠ABC, ∴∠1=∠2.
在△BDC 和△CEB 中,
∠ACB=∠ABC,BC=CB ,∠1=∠2.
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等)
证法2:证明:∵A B=AC ,
∴∠ABC=∠ACB.
又∵∠3=∠4.
在△ABC 和△ACE 中,
∠3=∠4,AB=AC ,∠A=∠A.
∴△ABD≌△ACE(ASA).
∴BD=CE(全等三角形的对应边相等).
在证明过程中,学生思路一般还较为清楚,但毕竟严格证明表述经验尚显不足,因此,教学中教师应注意对证明规范提出一定的要求,因此,注意请学生板书其中部分证明过程,借助课件展示部分证明过程;可能部分学生还有一些困难,注意对有困难的学生给予帮助和指导。
第三环节:经典例题 变式练习
活动内容:提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:
在课本图1—4的等腰三角形ABC 中,
(1)如果∠ABD=13 ∠AB C ,∠ACE=14
∠ACB 呢?由此,你能得到一个什么结论? (2)如果AD=12 AC ,AE=12 AB ,那么BD=CE 吗?如果AD=13 AC ,AE=13
AB 呢?由此你得到什么结论?
活动目的:提高学生变式能力、问题拓广能力,发展学生学习的自主性。
活动注意事项与效果:教学中应注意对学生的引导,因为学生先前这样的经验比较少,可能学生一时不知如何研究问题,教师可以引导学生思考:把底角二等份的线段相等.如果是三等份、四等份……结果如何呢?从而引出“议一议”。
由于课堂时间有限,如果学生全部解决上述问题,时间不够,可以在引导学生提出上述这些问题的基础上,让学生证明其中部分问题,而将其余问题作为课外作业,延伸到课外;当然,也可以对不同的学生提出不同的要求,如普通学生仅仅证明其中部分问题,而要求部分学优生解决所有的问题,甚至要求这部分学优生思考“还可以提出哪些类似问题,你是如何想到这些问题的”。
在学生解决问题的基础上,教师还应注意揭示蕴含其中的思想方法。
下面是学生的课堂表现:
[生]在等腰三角形ABC 中,如果∠ABD=13
∠ABC ,那么BD=CE .这和证明等腰三角形两底角的角平分线相等类似.证明如下:
∵AB=AC ,
∴∠ABC=∠ACB(等边对等角).
又∵∠ABD=13 ∠ABC, ∴∠ACE=13
∠ACB, ∴∠ABD=∠ACE .
在△BDC 和△CEB 中,
∵∠ABD=∠ACE ,BC=CB ,∠ACB=∠ABC,
∴△BDC ≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等)
[生]如果在△ABC 中,AB=AC, ∠ABD=14 ∠ABC ,∠ACE=∠14
∠ACB ,那么BD=CE 也是成立的.因为AB=AC ,所以∠ABC=∠ACB ,利用等量代换便可得到∠ABD=∠ACE ,△BDC 与△CEB 全等的条件就能满足,也就能得到BD=CE .由此我们可以发现:
在△ABC 中,AB=AC ,∠ABD=∠1n ∠ABC ,∠ACE=1n
∠ACB ,就一定有BD=CE 成立. [生]也可以更直接地说:在△ABC 中,AB=AC ,∠ABD=∠ACE ,那么BD=CE .
[师]这两位同学都由特殊结论猜想出了一般结论.请同学们把一般结论的证明过程完整地书写出来.(教师可巡视指导)下面我们来讨论第(2)问,请小组代表发言.
[生]在△ABC中,AB=AC,如果AD=1
2
AC,AE=
1
2
AB,那么BD=CE;如果AD=
1
3
AC,AE=
1
3
AB,
那么BD=CE.由此我们得到了一个更一般的结论:在△ABC中,AB=AC,AD=1
n
AC,AE=
1
n
AB,
那么BD=CE.证明如下:∵AB=AC.
又∵AD=1
n
AC,AE=
1
n
AB,
∴AD=AE.
在△ADB和△AEC中,
AB=AC,∠A=∠A,AD=AE,
∴△ADB≌△AEC(SAS).
∴BD=CE(全等三角形的对应边相等).
[生]一般结论也可更简洁地叙述为:在△ABC中,如果AB=AC,AD=AE,那么BD=CE.[师]这里的两个问题都是由特殊结论得出更一般的结论,这是我们研究数学问题常用的一种思想方法,它会使我们得到意想不到的效果.例如通过对这两个问题的研究,我们可以发现等腰三角形中,相等的线段有无数组.这和等腰三角形是轴对称图形这个性质是密不可分的.
第四环节:拓展延伸,探索等边三角形性质
活动内容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.
已知:如图,ΔABC中,AB=BC=AC.
求证:∠A=∠B=∠C=60°.
证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).
同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).
又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.活动效果:学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程:
第五环节:随堂练习及时巩固
活动内容:在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。
1.如图,已知△ABC 和△BDE 都是等边三角形.
求证:AE=CD
活动意图:在巩固等边三角形的性质的同时,进一步掌握综合证明法的基本要求和步骤,规范证明的书写格式。
第六环节:探讨收获 课时小结
本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,
四、教学反思
本节课关注了问题的变式与拓广,实际上引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力,但也应注意根据学生的情况进行适度的调整,因为学生先前这样的经验较少,因而对一些班级学生而言,完成全部这些教学任务,可能时间偏紧,为此,教学中可以适当减少一些内容,将部分内容延伸到课外,当然,也可以设计为两个课时,将研究过程进一步展开。
C。