青蒿素的化学全合成

青蒿素的化学全合成
青蒿素的化学全合成

青蒿素的合成与研究进展

摘要:青蒿素是目前世界上最有效的治疗疟疾的药物之一,存在活性好、毒副作用小、市场需求大、来源窄等特点。目前,青蒿素的获取途径主要有直接从青蒿中提取、化学合成和生物合成。本综述将针对近年来青蒿素的发展特点及合成方法进行论述。

关键词:青蒿素;合成方法;研究进展

青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用1;具有影响人体白血病U937细胞的凋亡及分化的作用2;还具有部分逆转MCF-7/ARD细胞耐药性作用3;还具有抑制人胃癌裸鼠移植瘤的生长的作用4;还具有一定的抗肿瘤作用5等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。6。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床医学研究奖和2015年诺贝尔医学奖。

1 青蒿素的理化性质及来源

青蒿素的分子式为C15H22O5, 相对分子质量为282. 33。是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三烷结构单元,它的分子中还包括7个手性中心,合成难度很大。中国科学院有机所经过研究,解决了架设过氧桥难题,在1983年完成了青蒿素的全合成。青蒿素也有一些缺点, 如在水和油中的溶解度比较小, 不能制成针剂使用等。

2 青蒿中提取青蒿素

青蒿素是从菊科植物黄花蒿中提取出来的含有过氧桥的倍半萜内酯类化合物,在治疗疟疾方面具有起效快、疗效好、使用安全等特点。目前主要的提取方法有溶剂提取法、超临界提取法、超声波萃取法、微波萃取法、其他萃取法等。2.1有机溶剂萃取青蒿素

水蒸气蒸馏(steam distillation,SD)法由于其具有设备简单,操作安全,不污染环境,成本低,避免了提取过程中有机溶剂残留对油质造成影响等特点,是有效提取中药挥发油的重要方法。有机溶剂提取法是目前青蒿中许多有效成分的提取目前仍然常用的方法,常用的溶剂有醇类(甲醇、乙醇等) 、醚类(乙醚、石油醚等) 、烷类(环己烷、氯仿等) 。Filip 等7人选用6 mL 的氯仿对 1 g 新鲜黄花蒿提取 1 min,通过HPLC-Q-TOF-MS 测定,青蒿素回收率大于97% 。Yang 等8首先用甲醇提取青蒿叶与茎杆,然后用一系列有机溶剂

提取,其中乙酸乙酯部分含有11 个类黄酮,4 个黄酮苷。但溶剂提取存在提取率不高的问题,而且所用溶剂大多有毒有害,易对人和环境造成危害。

2.2 超临界CO2萃取青蒿素

超临界流体萃取(su-percritical fluid extraction,SFE)技术是20 世纪60 年代兴起的一种新型分离技术,其具有选择分离效果好,提取率高,产物没有有机溶剂残留,有利于热敏性物质和易氧化物质的萃取等特点。青蒿中挥发油、青蒿素及其他活性成分的CO2-SFE 提取,国内外已进行了大量的研究,但还没有进入产业化阶段。Kohler9等采用CO2-SFE 技术从黄花蒿中提取青蒿素和青蒿酸,压力15 MPa,温度50 ℃,并用3%甲醇做夹带剂,在20 min 内完成了提取过程,而且效果优于传统的溶剂提取法。何春茂等10对黄花蒿中萃取青蒿素的SFE工艺进行了优化研究,得到纯度超过95%的青蒿素。

2.3 分子蒸馏技术提取青蒿素

目前分子蒸馏(molecular distillation,MD)已在化学工业和许多天然植物的挥发油的精制方面获得良好应用。国内已经有人将MD技术应用于青蒿挥发油的精制中,李银塔11等用CO2-SFE 技术制得青蒿油浸膏,然后用MD 技术进行精制,所得青蒿油呈淡黄色,得率为0. 47% ,高于传统的SD 法; 所得精油经气质联用(GC-MS) 分析,检测出60 个成分,

主体成分为萜类化合物。

2.4 HFC 134a溶剂萃取技术提取青蒿素

HFC 134a化学名为1,1,1,2-四氟乙烷( 1,1,1,2-tetrafluoroethane)具有无毒、无色、不燃、热稳定性好等特点,化学性质稳定。HFC 134a 对青蒿素有比较好的选择性,提取物中蜡质和分子量高的挥发油含量很少12。HFC 134a溶剂萃取技术效率适中(62%) ,但设备投资与运行费用最低。因此,HFC 134a 溶剂萃取技术是一种极具潜力的可规模化的青蒿素的分离和提取技术。

综上所述,青蒿有效成分提取分离技术中,溶剂提取法主要存在提取纯化效率不高,再应用和综合利用困难等问题; 基于此,许多现代分离方法受到越来越多的重视,CO2-SFE 技术在青蒿素及其挥发油的分离提取中显示出较强的优势,但是由于其设备投资大,维护费用高,工业化受到一定限制,HFC134a 溶剂提取技术也有很好的前景,可应用于青蒿中如挥发油、黄酮类化合物等其他成分提取。总之,对青蒿中活性成分进行连续提取,有效提高青蒿利用率,减低成本,仍是值得研究和开发的领域。

3 生物合成青蒿素

青蒿素是应用广泛的一线抗疟药。青蒿分布地域狭窄, 青蒿素含量低(0.01%~0.5%).现在市售的青蒿素主要是从植

物中提取出来的, 含量稀少和需求广泛导致青蒿素供应不稳定。建立一种环境友好、廉价的生产青蒿素的方法将是未来解决青蒿素来源问题的有效方法。近10年来, 为了从根本上解决青蒿素的供需矛盾, 国内外争相开展了青蒿素合成生物学及代谢工程研究, 一方面尝试在微生物体内重建青蒿素生物合成途径, 另一方面对青蒿中原有的青蒿素生物合成途径进行遗传改良。

3.1 从乙酰辅酶A到法呢基焦磷酸(FDP)生物合成青蒿素

青蒿素的生物合成途径属于植物类异戊二烯代谢途径。近年来的研究表明,植物类异戊二烯的生物合成至少存在两条途径,即甲羟戊酸途径和丙酮酸磷酸甘油醛途径。青蒿素等倍半萜类的生物合成途径属于甲羟戊酸途径,该途径在细胞质中进行。首先,由3个乙酰辅A 缩合生成3羟基3甲基戊二单酰辅酶A(HMGCoA) ,随后,在HMGCoA还原酶(HMGR) 的作用下,产生甲羟戊酸(MVA) 。以后MVA经焦磷酸化及脱羧脱水作用,形成C5的异戊烯基焦磷酸(IPP) 。在这个过程中,由于甲羟戊酸的形成是一个不可逆的过程,因此,HMGR 被认为是该途径中的第一个限速酶13。然IPP与其异构体二甲基烯丙基焦磷酸(DAMPP) 在法呢基焦磷酸合酶(FDPS) 的催化下,通过亲电反应机制形成牛儿基焦磷酸(GPP),进而形成法呢基焦磷酸(FDP),如图(1)。

Akhila 等14通过放射性同位素示踪法研究了青蒿素的生

物合成途径,提出青蒿素生物合成的框架为: 法呢基焦磷酸(FDP)青蒿酸二氢青蒿酸青蒿素。在此过程中,首先由FDP 经过酶促反应形成一种未知的倍半萜类中间产物,该步反应被认为是青蒿素形成过程的重要限速步骤。1999 年, Bouwmeester等15从青蒿叶片中分离到青蒿素生物合成途径的重要倍半萜类中间产物amorpha4, 11diene, 并进一步分离了催化morpha4, 11diene形成的酶, 该酶是催化青蒿素生物合成的关键酶。

. 图1

3.2 通过调节植物激素及发育基因表达促进青蒿素的合成

细胞分裂素可刺激叶片生长, 而青蒿素主要由青蒿叶片合成. 因此, 提高青蒿中的细胞分裂素水平有可能促进青

蒿素的合成. 叶和春小组曾将异戊烯基转移酶基因(ipt)导入青蒿, 结果使细胞分裂素水平提高2~3倍, 青蒿素含量增加30%~70%16.有关植物激素与青蒿素合成的相关性及其作用机理详见后述.

为了阐明青蒿生长发育(尤其是生殖发育)与青蒿素高产的关系, 叶和春小组曾用拟南芥开花促进因子1基因(fpf1)及成花基因(CO)分别转化青蒿, 结果发现, 虽然青蒿开花时间大大提前(分别提前20和14d), 但青蒿素含量并无明显提高, 表明开花并非青蒿素高产的先决条件17。

4 化学合成青蒿素

青蒿素是中国学者在20世纪70年代初从药用植物黄花蒿中分离得到的抗疟疾的有效成分是含内过氧基团的半萜内酯化合物。由于具有速效和低毒性的特点,已成为世界卫生组织推荐的治疗疟疾的首选药物18。今年来发现青蒿素除了具有抗疟疾作用外,还有多种其他的药理作用,包括抗细菌脓毒症、放疗增敏、抗菌曾敏、抗肿瘤19等作用。虽然青蒿素主要来自于天然采集的野生植株和人工栽培青蒿,但是天然野生青蒿受地理环境和季节的限制以及资源的日益匮乏,难以获得持续的发展。人工栽培占地大,耗时耗力,且植株易变异,也使得产量难以保证,因而开发新的青蒿素来源途径具有重要的实际意义。所以,非常有必要研究青蒿素化学合成方法,实现工业化生产。目前现有的青蒿素化学合

成法有化学全合成和化学半合成法。

4.1 青蒿素的化学全合成

4.1.1 香茅醛为原料

1986年,周维善20等以香茅醛为原料经13步合成了青蒿素,实现了青蒿素的立体选择性的全合成如图(2)。该方法首次采用在氧气和四碘四氯荧光素存在下对中间体12a 采用光氧化的方法引入过氧桥,随后通过高氯酸酸化以总收率不到1% 制得青蒿素。该路线首次实现了青蒿素的立体选择性全合成,虽然该路线步骤长,总收率低,但这也为青蒿素的全合成研究奠定了坚实基础。

图2

2010年,Yadav21也报道了以香茅醛为起始原料的全合成路线(图3),该路线通过脯氨酸衍生物和3,4-二羟基苯甲

酸乙酯共催化的香茅醛和甲基乙烯基甲酮(MVK)的1,4 不对称加成合成中间体2b,随后经分子内羟醛缩合可得到不饱和醛酮中间体3b。3b与甲基格氏试剂加成,得到非对映异构体4b和4b'的混合物,该混合物在SnCl4存在下环烯化得到关键中间体5b。化合物5b和9-BBN经立体选择性不对称硼氢化、氧化可以85%收率和90%制得伯醇6b。6b经两步氧化成相应酸8b后再与碘甲烷甲酯化制得关键前体9b,9b最后经过光氧化反应等一共12步反应合成了青蒿素。该路线关键前体9b的总收率可达13%,但由于最后一步光氧化的收率较低只有25%,总收率为5% 。

图3

4.1.2 环己烯酮为原料合成青蒿素

2012年,Cook课题组22报道了一条非常简洁的青蒿素全合成路线(图4) ,他们以廉价易得的环己烯酮为起始原料,通过使用串联反应等策略,避免使用保护基,通过5步合成得到青蒿素,总收率可达10% 以上。此路线合成主要步骤包括5步:首先,通过联苯亚膦酰胺为配体,三氟甲磺酸铜为催化剂催化二甲基锌对环己烯酮进行共轭加成,再一锅进行对巴豆基溴的烷基化,以61%的收率得到酮2j(trans-cis = 7∶1,91%ee) 。随后2j和对甲苯磺酰肼反应生成相应的腙,再由正丁基锂低温锂化得到烯丙基负离子,该负离子用DMF 淬灭可得到α,β-不饱和醛3j,总收率为72%。然后3j和硅基缩酮6j在Et2AlCl或Me2AlCl作用下,发生[4+2]环化反应得到原酸酯4j的4种不可分离的非对映异构体的混合物(10∶4∶1∶1) ,总收率大于95%,而且最大制备量可达50g。这4个异构体无需分离,可直接用于下步反应,因为该化合物的3个手性中心的2个的构型不影响最后青蒿素的合成。原酸酯4j以PdCl2作为催化剂,直接用H2O2水溶液氧化,能以90% 的收率得到烯烃氧化产物,其中甲基酮5j的收率为61% 。该步直接在H2O2水溶液中氧化,操作简单而且催化剂回收方便。最后,利用钼酸铵催化H2O2现场分解得到的单线态的氧先对5j进行氧化,然后在酸存在下将氧化物中间体最终转化为青蒿素,总收率在29%~42%之间。该合

成路线比较简洁,成本较以往合成路线有大幅降低,总收率高达14%,并且最终可以放大到几十克规模,有望实现规模化生产。

图4

4.1.3 薄荷酮为原料合成青蒿素

1992年,Avery等23以薄荷酮为原料,经10 步反应,实现了蒿素立体选择性全合成(5) 。薄荷酮经碱性的H2O2环氧化反应得到环氧化物2h再经苯硫酚钠反Aldol 反应,消除丙酮得到苯硫醚酮3h。3h 在CH2Cl2中,-78 ℃条件下经m-CPBA 氧化得到亚砜4h。参考Roush[11]等的方法,他们先将亚砜4h 在LDA 和HMPA 的作用下与2-( 2-溴乙基) -2,5,5-三甲基-1,3-二氧六环烷基化,得到混合物直接用铝汞齐脱硫,能以70的收率得到C-2 不同构型的非对映体混合物(β/α= 9∶1) 6h。在通过生成烯丙基负离子与DMF 反应,制备不饱和醛8h 时,为了提高立体选

择性,他们将酮6h 与甲苯磺酰肼反应,转化为相应的腙7h。腙7h 无需分离纯化,直接抽干用于下步反应,不但可避免水解和异构化,而且能够定量转化。腙7h 在四甲基乙二胺和4当量的正丁基锂作用下,得到红色的烯丙基负离子溶液直接与DMF反应,能立体选择性的以70% 收率,得到不饱和醛8h,生成的很少量2α 异构体也很容易在柱色谱时除去。为提高反应异柠檬烯为起始原料的青蒿素化学全合成路线1·的立体选择性,他们采用大位阻的三( 三甲基硅烷基) 乙醚络合物(TTAE)作为亲核试剂,对不饱和醛8h直接进行1,2加成,生成的醇直接用醋酐/DMPA现场酰化,能以88%的收率得到单一的异构体9h。通过尝试不同锂试剂摸索Claisen重排条件,最终采用9h在3当量二乙胺锂(LDEA) 作用下进行重排制备10h。10h 不经分离直接一锅法,在 2 当量的LDA作用下与碘甲烷在羧基α位烷基化得到重要中间体11h,2步总收率为63% 。11h 的二氯甲烷溶液中加入硫酸水溶液脱去保护,再直接用O3一锅法氧化,能以33% ~39% 的收率得到青蒿素。此路线的关键步骤包括不饱和醛8h 的和11h 的合成,前者通过三甲基硅烷负离子对α,β-不饱和醛的立体选择性加成得到,后者通过串联Claisen 酯-烯醇重排和烷基化得到。最后11h 采用一锅法经酸性硅胶脱保护和O3氧化,多步环化等复杂的过程,最终得到青蒿素,总收率为5% 。

图5

后期又陆续出现了以柠檬烯24、β-蒎烯22、异胡薄荷醇25等为原料的全合成路线。但是青蒿素的全合成的路线总收率都不是很高。

4.2 青蒿素的化学半合成

通过前面总结可知,通过全合成方法来合成青蒿素,通常路线较长,因此总收率较低,成本也居高不下。因此利用具有适宜青蒿素骨架的青蒿素前体,如青蒿酸( arte-annuic acid) 、青蒿素 B( arteannuin B) 、青蒿烯 ( artemisitene)等,采用半合成方法,可以有效减少合成步骤。目前半合成方法研究大都集中在生物合成方面,采用的中间体也多达十几种。笔者将总结青蒿素的化学半合成方法,由于青蒿酸在

黄花蒿中含量高,具有适宜的化学构象,因此目前化学半合成方法大都以青蒿酸为原料。此外,青蒿素 B 是黄花蒿中最丰富的杜松交酯,上海有机化学研究所和美国纽约州立大学也以青蒿素 B 为前体进行了不少研究。

1986,Jung等26就尝试以青蒿酸为原料合成青蒿素(5 )。他们将青蒿酸用LiBH4和NiC12·6H2O还原双键得到2k,再经臭氧氧化得到酮醛化合物3k,收率为 75% 。3k 在 HClO4作用下发生环合反应,以52% 的收率得到烯醇内酯4k。遗憾的是,作者尝试了很多氧化方法,最终没有成功得到蒿素。但是他们得到了青蒿素重要的代谢产物脱氧青蒿素 5k,并通过单晶确定了其结构,同时这也为以后研究青蒿素半合成奠定了一定的基础。

图5

1989年,吴毓林等27也以青蒿酸为原料合成了青蒿素( 图6 ) ,他们先用重氮甲烷甲酯化,再经NaBH4/ NiCl2还原可得到双氢青蒿素甲酯 2L,最后经LiAlH4还原可得到

青蒿醇3L。青蒿醇经臭氧环化反应,得到环状烯醇醚 4L。4L在低温下以亚甲基蓝为光敏剂光照氧化后用三甲基硅氟甲磺酸酯处理以 62% 的收率得到了脱氧青蒿素5L。5L最后经RuCl3和高碘酸钠氧化得到最终产物青蒿素,该路线的总产率在 35% ~ 53% 之间。该合成路线较简便,条件易于控制,总收率可达 37% ,是一条具有工业化价值的合成路线。

图6

此外,1992年,Peter等28报道了另外一条用青蒿酸或者青蒿素B经关键中间体3n合成青蒿素的半合成路线,并在1998年29,他们重新对该路线进行优化。2011年上海有机所伍贻康等30,首先参考Perter等的方法制备了关键醛原料1m,青蒿素的收率接近70%。2012年,根据新华社报道上海交通大学的张万斌等31研发出一种常规的化学半合成法高效合成青蒿素,最后青蒿素的收率接近60%,改方法合成路线段收率高,有望实现大规模工业化生产。

5 展望

青蒿素作为世界卫生组织推荐的抗疟疾特效药,世界各国都在加紧开展青蒿素及其衍生物的开发研究。但是,长期稳定和大量地供应青蒿素成为各国科学家面临的严峻考验。虽然青蒿素的化学全合成还没实现商业应用,但是经过科学家几十年的努力,全合成研究已取得一些突破性的进展。同时,在化学半合成方面,利用常规化学合成方法实现了青蒿素的高效人工半合成,使青蒿素有望可以实现大规模工业化生产。如果顺利实现工业化生产,有望解决困扰世界医药产业界三十多年的青蒿素高效人工合成重大难题,使青蒿素类药物更加便宜、易得,造福数亿患者

参考文献:

1. 覃等,青蒿素的免疫抑制作用及其调控机制研究. 2011.

2. 薄剑等,青蒿素对人白血病U937细胞凋亡及分化的影响. 2008.

3. 余和平等,青蒿素对乳腺癌多药耐药MCF -7/ ADR细胞的逆转作用. 2011.

4. 牛高华等, 青蒿素对人胃癌裸鼠移植瘤的生长抑制作用及其机制的研究. 2010.

5. 李燕飞, 青蒿素抗肿瘤作用的研究进展. 2009.

6. <青蒿素生物合成研究进展_孔建强.pdf>.

7. al,V.N.V.C.M.L.e., Quantification of artemisinin and its biosynthetic precursors in Artemisia annua L.by high performance liquid chromatography-electrospray quadrupole time-of-ighttandem mass spectrometry.. 2006.

8. al.,Y.S.R.M.O.M.e., Flavonoids and chromenes from Artemisia annua.Phytochemistry. 1995.

9. a.,K.M.H.W.C.P.e., Extraction of artemisinin and artemisinic acid from Artemisia annua L.using supercritical carbonb dioxide.1997.

10. H.C.m..L.Z.y.何梁., Studies on extraction of artemisinin from Artemisia annua L.by supercritical carbon dioxide( 用超临界CO2萃取技术提取青蒿素的研究) 1999.

11. al.,L.Y.t .Z.G.d.李庄.W.w.. e., Extraction and purification of southern-wood oil with CO2-SFE and its component analysis( 超临界CO2技术分离提纯青蒿挥发油及成分分析) .Fine Chem Icals( 精细化工) 2007.

12. M.,L.A.P.P.C.,Comparative assessment of tech-nologies for extraction of artemisinin.2006.

13. TJ., B., Synthesis and metabolism of mevanoic acid in plants.Plant Physiol Bio chem ,. 1987.

14. Akhila A,T.h.R.S.,Popli S P Biosynthesis of artemisinin in Artemisia annua . . 1987.

15. Bouwmeester H J, W. T. E., Janssen M H A et al

Amorpha4,11diene synt hase cat alyses the first probable st ep in artemisinin biosynthesis. Phytochemi stry , .

16. Geng S, M. M., Ye H C, et al, Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. 2001.

17. Wang H, G. L., Ye H C, et al. , Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. . 2004.

18. artemisinin), K. D. L. Q., An antimalarial drug from China. Science 1985.

19. H.,L.B.Z., Research progress on pharmacological activities of artemisinin and its derivatives. 中国临床药理学与治疗学2010.

20. (a) al, Z.W.S.X.X.X.Z.J. e., Total synthesis of arteannuin and deoxyarteannuin. 1986; (b) XU X X.ZHU J.ZHOU W S , e. a., Studies on structure and syntheses of arteannuin and related compound 1984.

21. P.,Y.J.S.T.B.S., A concise stereoselective total synthesis of (+)-artemisinin. 2005.

22. P.,Z.C.Y.C.S, A concise synthesis of (+)-artemis-inin. 2012.

23. C.,A.M.A.W.K.M.J.-W., Stereose-lective total synthesis of ( + ) -artemisinin,the antimalarial constituent of Artemisia annua L. 1992.

24. E,,R.W.R.W.A.,Total Synthesis of(-)-ptilocaulin. 1984.

25. G,B.M.G.M.J.,A novel asymmetric total synthesis of (+)-artemisinin. 1996.

26. al.,J.M.E.H.N.C.E.M., Pracital conver-sion of artemisinic acid into desoxyartemisinin. 1989.

27. L.,Y.B.W.Y., A method of synthesis of artemisinin from arte-annuic acid: China. 1991.

28. N.,P.T.L.D.M.,An efficient partial synthesis of(+)-artemisinin and (+)-deoxoartemisnin. 1992.

29. L, D. M. N. P. T., Synthesis of (+)-artemisinin and(+)-deoxoartemisnin from arteannuin B and

arteannuic acid. 1998.

30. al., H. H. D. L. Y. H. W. B. e., A hydrogen peroxide based access to Qinghaosu. 2011.

31. M., Q. Y. G. W., Chinese scientists using conventional chemical methods for the first time efficient synthetic of artemisinin. 2012.

青蒿素相关试题

屠呦呦获医学诺奖给中学化学教育的几点启示 启示1:学科方法胜于学科知识 青蒿素的成功发现可以说运用化学进行物质研究的成功范例。化学研究物质的一般思路为:哪些物质中含所要提取的物质;如何获得纯净的该物质;该物质的结构如何;该物质可能有哪些性质;能否在关键的点位植入需要的基团;工业上如何大规模生产该物质,等等。青蒿素的发现遵循了这个思路。评审委员会称屠呦呦的获奖是为了奖励她对药物的一种孜孜不倦地寻找过程。 启示2:观念的渗透是学科方法的核心 传统提取青蒿素的煎熬法致使有效成分在高温下被破坏了。屠呦呦一改传统的煎熬法,改用沸点较低的乙醚进行提取实验,她在60摄氏度下制取了青蒿提取物,取得了较好的效果。我们知道,条件的控制是化工生产的核心思想,屠呦呦改用乙醚的成功,说明化学的一些观念在她的心里深深地扎下了根。正是这一观念的运用是她获得诺奖的关键。评审委员会认为,屠呦呦提出用乙醚来提取,对于发现青蒿素的抗疟疾作用和进一步研究青蒿素起了很关键的作用。 启示3:失败是学生最大的权利,但失败能否成功在于坚持和反思 “也是1971年10月4日,那是第191号样品。”在190次失败之后,1971年屠呦呦课题组在第191次低沸点实验中发现了抗疟效果为100%的青蒿提取物。190次失败的痛楚才换来成功的喜悦。所以,在学科教学中要允许学生犯错,给学生机会犯错,但也要让学生悟错、知错、改错。 启示4:任务驱动不可或缺 1967年,一个由全国60多家科研单位、500多名科研人员组成的科研集体,悄悄开始了一项特殊的使命,代号“523”,志在帮助北越政府“打击美帝”,研究的指向正是——防治疟疾新药,因为1960年代的东南亚战场上,疟原虫已经对奎宁类药物产生了抗性。如果没有这场“政治任务”,也许青蒿素的发现与使用要延后许多年。现在,对于抗癌药物的研制是否也来一场“任务驱动”呢?是否也可以集中几十个有实力的研究机构进行集中研究呢?青蒿素的研究是针对病毒,抗癌药的研制也是针对“癌细胞”这种病毒。这些研究机构是否从青蒿素的研究发现史得到一些启示呢?

青蒿素的化学全合成.总结

青蒿素的合成与研究进展 摘要:青蒿素是目前世界上最有效的治疗疟疾的药物之一,存在活性好、毒副作用小、市场需求大、来源窄等特点。目前,青蒿素的获取途径主要有直接从青蒿中提取、化学合成和生物合成。本综述将针对近年来青蒿素的发展特点及合成方法进行论述。 关键词:青蒿素;合成方法;研究进展 青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用1;具有影响人体白血病U937细胞的凋亡及分化的作用2;还具有部分逆转MCF-7/ARD细胞耐药性作用3;还具有抑制人胃癌裸鼠移植瘤的生长的作用4;还具有一定的抗肿瘤作用5等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。6。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床

医学研究奖和2015年诺贝尔医学奖。 1 青蒿素的理化性质及来源 青蒿素的分子式为C15H22O5, 相对分子质量为282. 33。是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三烷结构单元,它的分子中还包括7个手性中心,合成难度很大。中国科学院有机所经过研究,解决了架设过氧桥难题,在1983年完成了青蒿素的全合成。青蒿素也有一些缺点, 如在水和油中的溶解度比较小, 不能制成针剂使用等。 2 青蒿中提取青蒿素 青蒿素是从菊科植物黄花蒿中提取出来的含有过氧桥的倍半萜内酯类化合物,在治疗疟疾方面具有起效快、疗效好、使用安全等特点。目前主要的提取方法有溶剂提取法、超临界提取法、超声波萃取法、微波萃取法、其他萃取法等。2.1有机溶剂萃取青蒿素 水蒸气蒸馏(steam distillation,SD)法由于其具有设备简单,操作安全,不污染环境,成本低,避免了提取过程中有机溶剂残留对油质造成影响等特点,是有效提取中药挥发油的重要方法。有机溶剂提取法是目前青蒿中许多有效成分的提取目前仍然常用的方法,常用的溶剂有醇类(甲醇、乙醇

fy青蒿素结构与性质-高考化学复习测试题20160115

“青蒿素”结构与性质-高考化学复习测试题 编制:冯涌(QQ:1078875886) 青蒿素是我国药学家屠呦呦根据中医典籍从主要生长于我国的青蒿中提取的治疗疟疾的有效成分。下图是屠呦呦在瑞典发表诺贝尔奖主题演讲时的画面,她的左边是诺奖主题演讲会的主持人卡罗林斯卡学院传染病学教授Jan Andersson先生,他在屠呦呦演讲的半个小时里双膝轮换一直跪在地上,为屠呦呦举着话筒。 Ⅰ.称取14.1mg青蒿素样品,如下图,在足量氧气中完全燃烧后,依次通过高氯酸镁和氢氧化钠固体粉末,燃烧产物被完全吸收,两种固体分别增重9.9mg和33.0mg 。 1 (1)计算确定青蒿素分子的最简式; (2)能不能由此确定青蒿素的分子式?

Ⅱ.已知青蒿素中含有过氧键官能团(也称过氧基)。称取1.41g青蒿素,完全溶解后在100mL容量瓶中定容、摇匀,取出25.00mL置于锥形瓶中,加入少量硫酸、足量的KI 和4滴淀粉溶液,锥形瓶中溶液呈蓝色。向锥形瓶中滴入0.1250mol/L的Na2S2O3溶液20.00mL,蓝色恰好消失。计算: (1)该青蒿素溶液可能的浓度; (2)青蒿素分子的最小摩尔质量。 Ⅲ.下面左图是主要生长在我国的植物青蒿茎和叶背面的照片,右图是某研究室通过晶体衍射测定得到的有关青蒿素分子结构中一些主要共价键的键长数据(单位:pm),图中元素符号右下角的数字是相应原子的编号。 (1)写出青蒿素的分子式。现代化学快速、精确测定相对分子质量的仪器名称是。 (2)试分析在青蒿素分子中可能形成双键的原子及其编号。 (3)青蒿素的药用机理复杂。试根据化学原理推测青蒿素能杀灭疟原虫最关键的原子及其编号。 Ⅳ.根据上述结构判断下列有关青蒿素的说法不正确的是: A.含有醚键 B.由于青蒿素几乎不溶于水,水浸青蒿对治疗疟疾毫无作用 C.用乙醇浸取,挥发浓缩后可以结晶析出 D.受热易分解 E.能与碱反应 Ⅴ.双氢青蒿素的疗效更好。青蒿素经还原剂处理,原来的双键加氢,得到双氢青蒿素。写出双氢青蒿素的结构简式,并从理论上分析制备双氢青蒿素的困难所在。

青蒿素综述

青蒿素综述 刘兵情 (井冈山大学11级药本(1)班学号:111116023) 摘要:青蒿素类抗疟药物的发现是全球抗疟药物发展史上继奎宁之后的又一里程碑[1], 是目前治疗疟疾的特效药.本文简要介绍青蒿素的发现过程、药源、生物合成、应用前景和青蒿素及其衍生物药理活性,重点在于介绍青蒿素生物合成过程。 关键词:青蒿素发现过程药源生物合成药理活性前景 引言:青蒿素是在科研计划组织下,全国多部门、多学科专家尽心协作、相互 配合取得的重大成果,是继承发扬我国传统医药宝库的成功范例[2]。青蒿素主要有抗疟、抗孕、抗纤维化、抗吸血虫等药理作用[3]。青蒿素生物合成三个阶段分为从乙酰辅酶A 到法呢基焦磷酸的“上游”途径、从法呢基焦磷酸到双氢青蒿酸的“中游”途径和从双氢青蒿酸到青蒿素的“下游”途径,其中上游途径青蒿及其他高等植物与酵母等真核微生物完全相同,因而只需在酵母中额外增加一个青蒿素合成代谢支路, 就能让酵母全合成青蒿素。而中游的酶促反应在酵母中已经完全建立,下游途径的反应条件在酵母中则未建立[4]。而且青蒿素及其衍生物在抗肿瘤和葡萄膜炎免疫治疗上也具有应用前景 。 一.青蒿素药物来源 1967 年北京《5·23 抗疟计划》付诸实施, 1969 年1 月北京中医研究院加入 5·23 计划,任命屠呦呦为科研组组长, 在全国多个研究单位协作下, 组织植物化学与药理学等专业200 多人参加, 并与中医药工作者密切合作[5].从追索我国历代抗疟方剂入手, 科研组调查了 2 000 种中草药制剂, 从中选出可能具抗疟活性的达640 种. 余亚纲梳理开列了有808 个中药的单子,其中有乌头、乌梅、鳖甲、青蒿等[6]共用约200种国产草药制成380 多种抽提物, 再筛查它们对小鼠疟疾模型的疗效,但实验不易获得明显结果[7]军事医学科学院用鼠疟模型筛选了近百个药方,青蒿提取物的抑制率虽达60%~80%, 而效力不够稳定[6]继后, 研究组经余亚纲和顾国明复筛, 肯定了青蒿的抗疟作用[8]他们也研究了中药常山,其抗疟作用虽强, 但呕吐的副作用亦强而妨碍推广应用. 转折点出现在黄花蒿的抽提物. 传统中药青蒿包括两个品种: 学名黄花蒿(Artemisia an-nua L.)的抽提物能对小鼠疟原虫的生长显示良好的抑制作用;而学名青蒿(Artemisia apiaceaHance)则无任何抗疟作用[7][9],继后的实验中, 上述结果未能重复, 这同中医文献的记载相矛盾. 为解开此疑惑, 再深入查阅古代医学文献, 最后在晋朝葛洪著《肘后备急方》中找到“青蒿一握, 以水二升渍, 绞取汁, 尽服之”的抗疟记录. 惯常煎熬中药的高温抽提法已破坏了抗疟的活性组分;温度高于60 ℃将使青蒿素完全分解. 在较低温度下进行青蒿抽提后, 获得了很满意的效果[7][9][10]

【免费下载】青蒿素生物合成

青蒿素生物合成 10生物技术(2)班 曾庆辉 201024112211 青蒿素是我国科研人员从传统中医药黄花蒿中提取出来并自主研发的一种抗疟疾特效药[1]。20世纪70年代,我国科技工作者从黄花蒿中分离提纯出一种抗疟活性单体——青蒿素,以后又确定了它的分子结构和构型。1986年我国自主研发的蒿甲醚油针剂、青蒿琥酯钠盐的水针剂以及青蒿素栓剂等抗疟疾药作为一类新药在我国批准生产。1995年蒿甲醚率先被收入国际药典,这是我国首次得到国际认可的自主研发新药。目前,青蒿素系列抗疟药已有5种新药(青蒿素、青蒿琥酯、蒿甲醚、双氢青蒿素、复方蒿甲醚)共9种剂型上市并在世界各国销售,每年挽救了数百万重症疟疾患者的生命。除了独特的抗疟作用外,青蒿素系列药物还具有抗血吸虫、肺吸虫、红斑狼疮、皮炎以及免疫调节,抗流感等多种疗效[2]。但是,目前国际抗疟药市场上青蒿素类药物只占有很少的份额,其原因主要在于青蒿素原料缺乏。由此,有研究者另辟蹊径,设想通过生物合成青蒿素。时至今日,青蒿素的生物合成已经取得一定进展,介绍如下:早在20世纪80年代,中国科学院上海有机化学研究所汪猷院士领导的研究小组就利用放射性同位素标记的2-14C-青蒿酸与青蒿匀浆(无细胞系统)保温法证明,青蒿酸和青蒿B 是青蒿素的共同前体[3]。青蒿素生物合成途径仅见于青蒿,但其“上游”途径为真核生物所共有,可望通过“下游”途径重建,在真核微生物(如酵母)中全合成青蒿素。过去10年来,青蒿素合成基因被国内外研究团队陆续克隆并导入酿酒酵母细胞,已成功合成青蒿酸及双氢青蒿酸等青蒿素前体。由于酵母缺乏适宜的细胞环境,尚不能将青蒿素前体转变成青蒿素。因此,青蒿依然是青蒿素的唯一来源,凸显出继续开展青蒿种质遗传改良的必要性。同时,青蒿素生物合成的限速步骤尤其是终端反应机制已基本得到阐明,有助于开展青蒿素形成与积累的环境模拟及仿生,从而为彻底缓解青蒿素的供求矛盾创造先机[4]。若以双氢青蒿酸为青蒿素的直接前体,则青蒿素生物合成过程如下:首先是从乙酰辅酶A 经异戊烯基焦磷酸(IPP)、二甲基烯丙基焦磷酸(DMAPP)、法呢基焦磷酸到紫穗槐-4,11-二烯的合成途径,其中DMAPP 与IPP 受IPP 异构酶(IPPI)催化发生互变,二者再被法呢基焦磷酸合成酶(FDS)作用生成法呢基焦磷酸,并在紫穗槐二烯合酶(ADS)催化下闭环产生紫穗槐-4,11-二烯;其次是从紫穗槐-4,11-二烯到双氢青蒿酸的合成途径,紫穗槐-4,11-二烯在细胞色素P450单加氧酶(CYP71AV1)催化下,经连续氧化依次生成青蒿醇、青蒿醛和青蒿酸,其中青蒿醛受青蒿醛双键还原酶2(DBR2)催化而还原成双氢青蒿醛,后者再在青蒿醛脱氢酶1(ALDH1)催化下氧化成双氢青蒿酸。双氢青蒿醇转变成双氢青蒿醛由ALDH1/CYP71AV1催化,其逆反应则由双氢青蒿酸还原酶1(RED1)催化,最后是从双氢青蒿酸到青蒿素的合成途径,双氢青蒿酸经过未知的多个非酶促反应最终生成青蒿素。此外,青蒿酸可能经多步反应合成青蒿素B 后再转变成青蒿素[5]。 青蒿素的生物合成主要任务有:①青蒿素前体合成工程菌的构建。在这里为了便于叙述,将上述青蒿素生物合成过程分为“上游”、“中游”和“下游”三个途径,分别是从乙酰辅酶A 到法呢基焦磷酸的“上游”途径、从法呢基焦磷酸到双氢青蒿酸的“中游”途径和从双氢青蒿酸到青蒿素的“下游”途径。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

诺贝尔生理医学奖青蒿素相关高中生物试题

2015年诺贝尔生理医学奖青蒿素相关高中生物试题 屠呦呦获2015年诺贝尔生理医学奖,这是国人的骄傲,我们第一时间采编了抗疟药青蒿素相关高中生物试题。 1.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。在野生植物中提取青蒿素治疗疟疾,这体现了野生生物的( ) A. 直接使用价值 B. 间接使用价值 C. 潜在使用价值 D. A与B的总和 【答案】A 2.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。青蒿素是从植物黄花蒿的组织细胞中所提取的一种代谢产物,其作用方式目前尚不明确,推测可能是作用于疟原虫的食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡。从上述的论述中,不能得出的是( ) A.疟原虫对外界食物的获取方式主要是胞吞,体现了细胞膜的流动性特点B.细胞质是细胞代谢的主要场所,如果大量流失,甚至会威胁到细胞生存C.疟原虫寄生在寄主体内,从生态系统的成分上来看,可以视为分解者 D.利用植物组织培养的方式,可以实现青蒿素的大规模生产 【答案】C 3.中国女科学家屠呦呦获2015年诺贝尔生理医学奖,她研制的抗疟药青蒿素挽救了数百万人的生命。但是青蒿中青蒿素的含量很低,且受地域性种植影响较大。研究人员已经弄清了青蒿细胞中青蒿素的合成途径(如图实线框内所示),并且发现酵母细胞也能够产生青蒿素合成的中间产物FPP(如图虚线框内所示)。请回答问题: (1)在FPP合成酶基因表达过程中,完成过程①需要酶催化,完成过程②需要的物质有、、等,结构有。 (2)根据图示代谢过程,科学家在设计培育能生产青蒿素的酵母细胞过程中,需要向酵母细胞中导入、等基因。

青蒿素的工业生产流程

青蒿素的工业生产流程 吉财2013122691 青蒿是我国的传统中药,民间用于消暑、退热、治感冒等,青蒿还具有抗疟、抗血吸虫、抗病毒与增强机体免疫等作用。在我国数百名科学工作者的协作中,从青蒿中提取了它的抗疟有效成分,一种新型倍半萜内酯,后命名为青蒿素,青蒿素为无色针状结晶,分子式为 C15H22O5,其结构式如图1 ,熔点为156-157℃,易溶于氯仿、丙酮、乙酸乙酯 和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎 不溶于水。因其具有特殊的过氧基团,对热不稳定, 易受湿、热和还原性物质的影响而分解[1] 。国内外 大量的理化试验、药理研究和临床应用表明青蒿素 是抗疟的有效成分,认为青蒿素的发现是抗疟研究 史上的重大突破,并成为世界卫生组织推荐的抗疟 药品,特别是对脑型疟疾和抗氯喹性疟疾有很好疗 效[2]。近年来青蒿素的抗疟活性在世界范围内被广泛关注,在疟疾流行地区青蒿素的需求量增加。此后又发展了一系列现已作为正式抗疟药物的青蒿素的衍生物,此时我国研制的青蒿素类抗疟药物以高效、安全、对抗药性疟疾有特效而风靡全球,1995年蒿甲醚被WTO列入国际药典,这是我国第一个被国际公认的独创新药。青蒿素的化学结构十分独特,自上市至今20多年,尚未发生抗药性的病例。 1 仪器、试剂与材料 50ml圆底烧瓶、回流冷凝管、721型分光光度计(上海分析仪器厂)、分析天平(上海精科天平厂)、微量移液管(上海求精玻璃仪器厂)、电热恒温水浴锅、恒温烘箱、干燥器、柱层析、硅胶薄层板(由青岛海洋化工厂生产,薄层层析板用硅胶G加0.3%CM C-Na制备而成。显色剂为2%香草醛--浓硫酸(1:1)混合液。喷雾后,电吹风加热显色)等。乙醚、乙醇、氢氧化钠、乙酸乙酯、异丙醇、石油醚均为分析纯。青蒿的原材料及其标准样由海裕药业提供。 2 方法与步骤 2.1提取 称取100g青蒿叶粉(过30目筛),加入8倍石油醚(800毫升,沸程60—90℃),水浴55℃搅拌回流提取5小时,第二次提取加入6倍石油醚(600毫升,沸程60—90℃),水浴55℃搅拌回流提取3小时,第三次提取加入4倍石油醚(400毫升,沸程60—90℃),水浴55℃搅拌回流提取2小时,得滤液一、二、三,分装,渣子回收尽石油醚重复使用。

青蒿素的性质及合成

青蒿素性质及合成方法 院系:化工学院 专业:应用化学 学号: 姓名: 指导老师: 2016/1/12 摘要:青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括:青蒿素的特性,青蒿素的合成,青蒿素的生物合成,青蒿素衍生物。 关键词:青蒿素;合成方法;青蒿素衍生物 Abstract:The recent research advances in artemisinin, the most effective weapons against malarial parasites have been reviewed. An overview is given on artemisinin research from the following aspects:sources of artemisinin,synthesisof artemisinin, biosynthesis of artemisinin, analogs of artemisinin and artemisinin production from plant tissue cultures。 Key words:artemisinin,synthesis,artemisinin derivatives 目录 1、前言……………………………………………………………… 2、青蒿素的基本性质………………………………………………

(1)分子结构………………………………………………………… (2)理化性质………………………………………………………… (3)药动力…………………………………………………………… (4)提取工艺………………………………………………………… 3、合成方法………………………………………………………… (1)全合成………………………………………………………… (2)半合成………………………………………………………… (3)生物合成……………………………………………………… 4、衍生物………………………………………………………… 5、抗癌功能………………………………………………………… 6.结论……………………………………………………………… 1前言: 青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用;具有影响人体白血病U937细胞的凋亡及分化的作用;还具有部分逆转MCF-7/ARD细胞耐药性作用;还具有抑制人胃癌裸鼠移植瘤的生长的作用;还具有一定的抗肿瘤作用等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床

青蒿素的研究进展

青蒿素的研究现状 1 前言 青蒿素是一种倍半萜内脂类化合物[1],分子式为C15H22O5,有抗疟、抗孕、抗纤维化、抗血吸虫、抗弓形虫、抗心律失常和抑制肿瘤细胞毒性等作用[2]。目前,青蒿素用于疟疾防治的价值已被人类认识和接受,世界卫生组织已把青蒿素的复方制剂列为国际上防治疟疾的首选药物。青蒿素因其在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,传统提取方法一般采用有机溶剂法,后来又出现了超临界CO2萃取技术、超声提取技术、大孔吸附树脂提取技术、微波辅助萃取技术、快速溶剂萃取技术以及联用技术。 青蒿分布地域狭窄, 青蒿素含量低(0.01%~0.5%). 化学合成青蒿素产率不理想, 成本高. 随着全球疟疾发病率(3.8 亿人/年)和死亡率(4600 万人/年)逐年升高[3], 青蒿素类抗疟药需求量迅猛增长, 导致青蒿素原料药供不应求, 市场价格飙升[4]。近10 年来,为了从根本上解决青蒿素的供需矛盾, 国内外争相开展了青蒿素合成生物学及代谢工程研究, 一方面尝试在微生物体内重建青蒿素生物合成途径[5], 另一方面对青蒿中原有的青蒿素生物合成途径进行遗传改良[6]。我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。

2青蒿素的发现及历史 青蒿入药, 最早见之于马王堆三号汉墓出土( 公元前168 年左右) 的帛书《五十二病方》,其后在《神农本草经》, 《大观本草》及《本草纲目》等均有收录。从历代本草及方书医籍的记载, 青蒿入药治疗疟疾是经过长期的临床实践经验所肯定的。在现代临床上用于对恶性疟疾、发热、血吸虫病、腔黏膜扁平苔藓、红斑狼疮、心律失常的治疗[7],并且对类风湿性关节炎的免疫有显著疗效[8]。 1971 年以来, 中医研究院青蒿素研究小组通过整理有关防治疾病的古代文献和民间单验方, 结合实践经验, 发现中药青蒿乙醚提取的中性部分具有显著的抗疟作用。在此基础上, 于1972 年从青蒿中分离出活性物质——青蒿素,在青蒿素药理实验的基础上, 人们又进行了大量的药理和临床疗效研究。1973 年9 月, 青蒿素首次用于临床, 到目前为止, 已有十几种衍生物的抗疟效果比青蒿素活性高出多倍。自我国开展有关青蒿素的研究后, 世界各国相继开展此方面的重复性研究, 获得的结果显示了抗疟的特效性。

全国高考热点透视之——青蒿素必考【含答案】

2016年全国高考热点透视之——青蒿素必考 【含答案】 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2016年全国高考热点透视之——青蒿素 Daniel高考研究院命题 青蒿素与双氢青蒿素 注意选择题为不定项选择 1.2015年,中国科学家屠呦呦因发现治疗疟疾的药物青蒿素获得了诺贝尔奖。青蒿素的结构如图所示,下列有关青蒿素的说法中正确的是 A.分子式为C15H22O4 B.具有较强的还原性 C.可用蒸馏水提取植物中的青蒿素 D.碱性条件下能发生水解反应 2.85岁中国女药学家屠呦呦因创制新型抗疟药青蒿素和双氢青蒿素而获得2015年诺贝尔生理学医学奖。颁奖理由是“因为发现青蒿素——一种用于治疗疟疾的药物,挽救了全球特别是发展中国家数百万人的生命。” 下列关于青蒿素和双氢青蒿素(结构如图)说法错误 ..的是 A.青蒿素和双氢青蒿素互为同分异构体 B.青蒿素和双氢青蒿素均能发生取代反应 C.青蒿素的分子式为C15H22O5 D.青蒿素在一定条件下能与NaOH溶液反应 2

3.青蒿琥酯是治疗疟疾的首选药,可由青蒿素两步合成得到。下列有关说法正确的是 A.青蒿素分子式为 C15H22O5 B.青蒿素不能与NaOH溶液反应 C.反应②原子利用率为100% D.青蒿琥酯能与氢氧化钠溶液反应可生成青蒿琥酯钠 4.中国女药学家屠呦呦因发现青蒿素对疟疾的治疗作用而成为2015年诺贝尔生理医学奖获得者之一。下列说法不正确 ...的是A.从青蒿中提取青蒿素的方法是以萃取原理为基础,萃取是一种化学变化 B.青蒿素的分子式为C15H22O5,它属于有机物 C.人工合成青蒿素经过了长期的实验研究,实验是化学研究的重要手段 D.现代化学分析测试中,可用元素分析仪确定青蒿素中的C、H、O元素 5.某种药物青蒿素结构如右图所示,则下列说法正确的是 3

生物技术制药青蒿素

生物技术制药PPT讲稿 第二张PPT: 2011年23日国际医学大奖——美国拉斯克奖临床研究奖授予中国中医科学院终身研究员屠呦呦,以表彰她“发现了青蒿素——一种治疗疟疾的药物,在全球特别是发展中国家挽救了数百万人的生命”。 疟疾是经按蚊叮咬或输入带疟原虫者的血液而感染疟原虫所引起的虫媒传染病。寄生于人体的疟原虫共有四种,即间日疟原虫,三日疟原虫,恶性疟原虫和卵形疟原虫。在我国主要是间日疟原虫和恶性疟原虫。 青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物。也是中国发现的第一个被国际公认的天然药物。青蒿素类药物毒性低、抗虐性强,被WTO批准为世界范围内治疗脑型疟疾和恶性疟疾的首选药物。 黄花蒿(Artemisia annua Linn)又叫黄蒿,是菊科蒿属的一年生草本植物,广泛分布在国内各省。为中国传统中草药。其有效成分—青蒿素在抗疟方面与传统的奎宁类抗疟药物具有不同的作用机理。“青蒿一握,水一升渍,绞取汁尽服之”。《肘后备急方》 第三张PPT 80年代以来,青蒿素的化学合成、生物合成及组织培养相继成功,但由于受率低、成本高而难以投入工业化生产,目前青蒿素来源主要是从青蒿中直接提取得到;或提取青蒿中含量较高的青蒿酸,然后半合成得到。然而青蒿素含量随产地不同差异极大。除中国重庆东部、福建、广西、海南部分地区外,世界绝大多数地区生产的青蒿中的青蒿素含量都很低,无利用价值。据国家有关部门调查,在全球范围内,只有中国重庆酉阳地区武睦山脉生长的青蒿素才具有工业提炼价值。 第五张PPT: MV A、MEP途径合成萜类MV A甲戊二羟酸FPP法尼基焦磷酸 紫穗槐-4-11-二烯合酶(ADS)该酶是将倍半萜通用前体FPP 引导至青蒿素生物合成下游途径的关键酶。 在青蒿或非青蒿植物中, 存在着多个能氧化紫穗槐-4, 11-二烯的酶2006年,美国和加拿大的两个实验室室先后从青蒿腺毛中克隆得到了紫穗槐-4, 11-二烯氧化酶基因CYP71A V1,在氨基酸序列上存在差异, 发现这两个蛋白都能将紫穗槐-4, 11-二烯连续催化形成青蒿醇、青蒿醛和青蒿酸, 是多功能酶。 CYP71A V1是一种P450氧化酶, 其不能单独发挥作用, 必须由电子配偶体的配合。 2006年, Keasling实验室在克隆得到CYP71A V1后, 从青蒿中将CYP71A V1的电子配偶体——细胞色素P450还原酶基因(CPR)也克隆了出来。 Dbr2在腺毛中表达最高, 特异性地作用于青蒿醛, 生成11R-二氢青蒿醛, 对青蒿酸、青蒿醇、artemisitene和arteannuin B均无活性。 09年科学家从青蒿中分离得到1个醛脱氢酶基因, 命名为Aldh1。该基因CDS长为1 497 bp, 编码498氨基酸, 分子质量是53.8 kD。ALDH1的N末端无信号肽, 也没有细胞器定位序列。ALDH1在腺毛中表达最高, 在花芽中表达适中, 在叶子中表达较低, 而在根中检测不到活性, 这种表达方式与CYP71A V1的很相似, 也与青蒿素在植物中的分布很相似。 第六张PPT 2003年,美国Keasling小组将青蒿ADS基因经密码子优化后导入大肠杆菌中表达,首次在细菌体内合成出青蒿素的第一个关键前体——紫穗槐-4,11-二烯

青蒿素的研究进展

青蒿素研究进展 摘要青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括:青蒿素的发现及历史,青蒿素的来源,青蒿素的全合成,青蒿素的生物合成,青蒿素衍生物以及植物组织培养生产青蒿素。 关键词青蒿素青蒿素衍生物合成 Abstract The recent research advances in artemisinin, the most effective weapons againstmalarial parasites have been reviewed. An overview is given on artemisinin research from the following aspects:the history of artemisinin development, sources of artemisinin, total synthesisof artemisinin, biosynthesis of artemisinin, analogs of artemisinin and artemisinin production from plant tissue cultures. Key words artemisinin; artemisinin derivatives; synthesis 青蒿素(Artemisinin)是继氯喹、乙氨嘧啶、伯喹和磺胺后最热的抗疟特效药,尤其对脑型疟疾和抗氯喹疟疾具有速

效和低毒的特点,已成为世界卫生组织推荐的药品[1]。青蒿素的抗疟机理与其它抗疟药不同,它的主要作用是通过干扰疟原虫的表膜-线粒体功能[2,3],而非干扰叶酸代谢,从而导致虫体结构全部瓦解。目前药用青蒿素是从中药青蒿即菊科植物黄花蒿的叶和花蕾(Artemisia annua L.)中分离获得的。由于青蒿的采购、收获,直至工厂加工提取,环节较多,费时费力,且不同采集地和不同采集期青蒿品质有很大的差别,同时,大量采集自然资源,必然会破坏环境和生态平衡,导致资源枯竭。因此,为增加青蒿素的资源,世界各国都在加紧开展青蒿素及其衍生物的开发研究,长期稳定地和大量地供应青蒿素成为各国科学家面临的严峻考验。 由于青蒿素是抗恶性疟疾的特效药,目前的售价为225美元/g。近年的统计资料表明世界每年有近300万人死于疟疾,尤其是非洲的发病率极高,对青蒿素的需求量较大,世界 每年的需求量为150吨,而产量仅有15吨左右,形成明显的供不应求局面,我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。 1.青蒿素的发现及历史 青蒿入药,最早见之于马王堆三号汉墓出土(公元前168年左右)的帛书《五十二病方》,其后在《神农本草经》,《大观本草》及《本草纲目》等均有收录。从历代本草及方书医

2016年全国高考热点透视之——青蒿素必考【含答案】

2016年全国高考热点透视之——青蒿素 Daniel高考研究院命题 青蒿素与双氢青蒿素 注意选择题为不定项选择 1.2015年,中国科学家屠呦呦因发现治疗疟疾的药物青蒿素获得了诺贝尔奖。青蒿素的结构如图所示,下列有关青蒿素的说法中正确的是 A.分子式为C15H22O4B.具有较强的还原性 C.可用蒸馏水提取植物中的青蒿素D.碱性条件下能发生水解反应 2.85岁中国女药学家屠呦呦因创制新型抗疟药青蒿素和双氢青蒿素而获得2015年诺贝尔生理学医学奖。颁奖理由是“因为发现青蒿素——一种用于治疗疟疾的药物,挽救了全球特别是发展中国家数百万人的生命。”下列关于青蒿素和双氢青蒿素(结构如图)说法错误 ..的是 A.青蒿素和双氢青蒿素互为同分异构体 B.青蒿素和双氢青蒿素均能发生取代反应 C.青蒿素的分子式为C15H22O5 D.青蒿素在一定条件下能与NaOH溶液反应

3.青蒿琥酯是治疗疟疾的首选药,可由青蒿素两步合成得到。下列有关说法正确的是 A.青蒿素分子式为C15H22O5 B.青蒿素不能与NaOH溶液反应 C.反应②原子利用率为100% D.青蒿琥酯能与氢氧化钠溶液反应可生成青蒿琥酯钠 4.中国女药学家屠呦呦因发现青蒿素对疟疾的治疗作用而成为2015年诺贝尔生理医学奖获得者之一。下列说法不正确 ...的是 A.从青蒿中提取青蒿素的方法是以萃取原理为基础,萃取是一种化学变化 B.青蒿素的分子式为C15H22O5,它属于有机物 C.人工合成青蒿素经过了长期的实验研究,实验是化学研究的重要手段 D.现代化学分析测试中,可用元素分析仪确定青蒿素中的C、H、O元素 5.某种药物青蒿素结构如右图所示,则下列说法正确的是 A.青蒿素易溶于水 B.青蒿素的晶体为原子晶体 C.青蒿素能与NaOH溶液反应 D.青蒿素不能与NaOH溶液反应 6.2011年我国女科学家屠呦呦因“发现青蒿素——一种用于治疗疟疾的药物,挽救了全球特别是发展中国家的数百万人的生命”而获得有诺贝尔奖“风向标”之誉的拉斯克临床医学奖。青蒿素结构式如图所示。已知一个碳原子上连有4个不同的原子或基团,该碳原子称“手性碳原子”。下列有关青蒿素的说法不正确的是

青蒿素生物合成的研究进展(1)

讲座与综述 一---……●……….-_--_……一青蒿素生物合成的研究进展 卢文婕 (广州中医药大学热带医学研究所,广东广州510405) 硎”_≯钞牟詹II:爹隧学诼 关键词青蒿素前体;生物合成;青蒿酸中图分类号:R284 文献标识码:A 文章编号:1671-0258(2009)02-0069-02 青蒿素(artemisinin)是我国自主开发的强效、低毒、无抗性抗疟特效药,尤其是治疗脑型疟疾和抗氯喹恶性疟疾的特效药。青蒿中的青蒿素含量在0.4%一1.0%之间,从天然青蒿中提取青蒿素难以满足市场需求,而青蒿素化学合成的工艺复杂、成本高、毒性大、产率低,至今未能实现工业化生产。目前,青蒿素的生物合成研究正方兴未艾[-|.利用青蒿素前体进行生物合成青蒿素的技术极有可能成为大规模生产青蒿素的重要手段。本文对青蒿素前体、青蒿素生 物合成路径、青蒿素生物合成的研究概况等方面做 一综述。 1青蒿素前体的研究 与青蒿素生物合成有关的中间体有十几种,其中最重要的是青蒿酸、青蒿素B、青蒿烯、二氢青蒿 素等。 1.1青蒿酸 青蒿酸在黄花蒿中含量高,具有适宜的化学构 象,是合成青蒿素及其衍生物的手性合成单体及前 体。1983年许杏祥等[2]最先研究了从青蒿酸前体到青蒿素的半合成,并于1986年报道了以R一(+)一2香草醛为原料.经14步合成青蒿素的合成途径。1983年SehmidG等[3]应用烯醇醚5在低温下光氧化反应中引进过氧基,完成了青蒿素的全合成。1988年。汪猷等[4]以青蒿酸为前体,用黄花蒿匀浆体系进行了青蒿素及青蒿素B的生物合成。实验过程中在匀浆中加入放射标记的青蒿酸,结果在青蒿素和青蒿素B中检测到放射性标记,故认为在由(2一-4C)一3’5一二羟基一3一甲基戊酸一8一内酯[(2_14C)一MVA]合成青蒿素和青蒿素B的过程中,青蒿酸是一种重要的中间产物。有研究报道,利用14C标记的青蒿酸和甲羟戊酸(Mevalonate,MVA)进行了青蒿素体内和体外的生物合成研究。得到了相似结论【5-6]。Jung M 等【7]的研究表明.青蒿酸在青蒿中的含量几乎为青蒿素的10倍,而且显示出同样的抗疟活性,由此进 [作者简介]卢文婕,女,在读硕士。从事中药生物工程研究 [收稿日期]2008—12—10 2009盆F-第10卷第2期 一步证实了青蒿酸是青蒿素合成过程的一种重要中 间体。1990年黄敬坚等【8]应用幼苗水插法和顶株扦 插法,在黄花蒿体内以(2-1^C)一MVA为前体,成功地合成了青蒿酸。1991年夏志强等【9j报道青蒿酸甲酯经溴化产生溴化物,再经氘解生成(15—2H)一青蒿酸甲酯,再经水解生成(15—2H)一青蒿酸,之后他们 又用同样方法合成了(15—3H)一青蒿酸。1994年 WeatherPJ等[m]在青蒿毛状根中检测到青蒿酸、青 蒿素B以及青蒿烯,故而认为青蒿酸、青蒿素B和 青蒿烯为青蒿素合成过程的中间体。2003年AbdinMz等…]亦证明了青蒿酸是青蒿素合成的中间体。 1.2青蒿素B 1987年AkihilaA等[6]报道了(3H.?4C一22)标记3RS—MVA到青蒿素和青蒿素B的转化。VergauweA等[12]认为利用基因工程手段得到的黄花蒿转基因植株.可通过刺激合成途径中某个关键酶的过量表达和抑制消耗青蒿素合成前体的其他代谢途径中的 关键酶来达到青蒿素稳定高产的目的。1996年BrownGDe¨]从青蒿的地上生长部分中分离出了新 颖的开环杜松烷和二羟基杜松交酯.用1H和BCC—NMR光谱学鉴定了其结构。并提出了由青蒿素B和 青蒿酸通过二羟基杜松交酯和4.5开环杜松烷的醇 烯互变体生物合成青蒿素的机理。青蒿素和青蒿素B均来源于青蒿酸,这与JungM和汪猷等得到的结 论一致。 1.3青蒿烯 1 994年Weather P J等[io]在发根农杆菌ATCC 15 834诱导的黄花蒿发根培养产物中检测到了青蒿烯。同年Brown G D[13J在研究由青蒿酸转化为青蒿素的 过程中,从青蒿中获得杜松烯,并推测经杜松烯合成脱氢青蒿素并最终合成青蒿素的生物合成途径。1.4二氢青蒿素 近年来,出现了以二氢青蒿素为前体原料的两种设计合成路线的方法,一种是将二氢青蒿素与三 氟乙酸酐反应制得三氟乙酰基二氢青蒿素,不经分

青蒿素的合成途径研究

青蒿素的合成途径研究 院系:化工学院 专业:09级制药工程2班 学好:2009650807 姓名:曾慧敏 目录 1、概述 (3)

2、基本性质 (3) 3、提取工艺 (4) 4、合成途径 (4) (1)半合成 (4) (2)全合成 (6) (3)生物合成 (7) (4)衍生物 (7) 5、研究现状 (8) 6、市场需求 (10) 概述 青蒿素类抗疟药,是我国用举国之力研制成功的全球唯一的治疗疟疾特效

药,被称为“中国的第五大发明”。世界卫生组织曾专门向该药的研制人员致敬;中国领导人访问非洲时,经常特意把它带过去。2006年11月4日,国家主席胡锦涛在中非合作论坛北京峰会上承诺:今后3年内,中国向非洲提供3亿元人民币无偿援款防治疟疾,用于提供青蒿素类药品及设立30个抗疟中心。防治疟疾的青蒿素类药品,已成为中国发展外交、提升国家形象的重要推手。 有资料显示,江苏高邮县一直有使用青蒿治疟疾的做法。双氢青蒿素发明人李英回忆称,1958年高邮就有用青蒿汆汤治疗疟疾的记录,在1969年,当地农村医生和群众还利用当地青蒿开展疟疾的群防群治,取得了“良好的效果” 中国于1969年开始抗疟药研究。历经380多次鼠疟筛选,1971年10月取得中药青蒿素筛选的成功。1972年从中药青蒿中分离得到抗疟有效单体,命名为青蒿素,对鼠疟、猴疟的原虫抑制率达到100%。1973年经临床研究取得与实验室一致的结果、抗疟新药青蒿素由此诞生。1981年10月在北京召开的由世界卫生组织主办的“青蒿素”国际会议上,中国《青蒿素的化学研究》的发言,引起与会代表极大的兴趣,并认为“这一新的发现更重要的意义是在于将为进一步设计合成新药指出方向”。1986年,青蒿素获得新一类新药证书,双氢青蒿素也获一类新药证书。这些成果分别获得国家发明奖和全国十大科技成就奖。2011年9月,中国女药学家屠呦呦因创制新型抗疟药青蒿素和双氢青蒿素的贡献,获得被誉为诺贝尔奖“风向标”的拉斯克奖。这是中国生物医学界迄今为止获得的世界级最高级大奖。 基本性质 通用名称:青蒿素 英文名称:Artemisinin 分子式:C15H22O5;分子量:282.33 理化性质:无色针状晶体,味苦,在丙酮、、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,在水中几乎不溶;熔点:156-157℃。 药动学:青蒿素青篙素是从中药青篙中提取的有过氧基团的倍半萜内酯药物。其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体,内质网,此外对核内染色质也有一定的影响。提示青篙素的作用方式主要是干扰表膜-线粒体的功能。可能是青篙素作用

青蒿素提取工艺

青蒿素提取工艺 一、基本释义 青蒿素英文别名Arteannuin、Artemisinine、Qinghaosu;熔点156-157℃ ( 水煎后分解);MDL号MFCD00081057;青蒿素分子式为C15H22O5,分子量282.33,组分含量:C 63.81%,H 7.85%,O 28.33%。 青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物。其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体,内质网,此外对核内染色质也有一定的影响。提示青蒿素的作用方式主要是干扰表膜-线粒体的功能。可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡。体外培养的恶性疟原虫对氚标记的异亮氨酸的摄入情况也显示其起始作用方式可能是抑制原虫蛋白合成。 二、提取工艺 从青蒿中提取青蒿素的方法是以萃取原理为基础,主要有乙醚浸提法和溶剂汽油浸提法。挥发油主要采用水蒸汽蒸馏提取,减压蒸馏分离,其工艺为:投料-加水-蒸馏-冷却-油水分离-精油;非挥发性成分主要采用有机溶剂提取,柱层析及重结晶分离,基本工艺为:干燥-破碎-浸泡、萃取(反复进行)-浓缩提取液-粗品-精制。 1、化学合成 半合成路线:从青蒿酸为原料出发,经过五步反应得到青蒿素,总得率约为35~50%。 第一步:青蒿酸在重氮甲烷/碘甲烷/酸催化下与甲醇反应,再在氯

化镍存在的条件下,被硼氢化钠选择性还原得到二氢青蒿酸甲酯; 第二步:二氢青蒿酸甲酯在四氢呋喃或乙醚溶液中用氢化铝锂还原成青蒿醇; 第三步:青蒿醇在甲醇/二氯甲烷/氯仿/四氯化碳溶液中被臭氧氧化后得到过氧化物,抽干后再在二甲苯中用对甲苯磺酸处理得到环状烯醚; 第四步:环状烯醚溶解于溶剂中,在光敏剂玫瑰红/亚甲基蓝/竹红菌素等存在下进行光氧化合生成二氧四环中间体,再用酸处理得到脱羧青蒿素; 第五步:脱羧青蒿素在四氧化钌氧化体系或铬酸类氧化剂的作用下氧化得到青蒿素。 全合成路线:可由多种路线对青蒿素进行全合成。如Schmil等1983年报道了一条应用关键化合物烯醇醚在低温下的光氧化反应引进过氧基的全合成路线,反应以(-)-2-异薄荷醇为原料,保留原料中的六元环,环上三条侧链烷基化,形成中间体,最后环合成含过氧桥的倍半萜内酯。许杏祥等于1986年报道了青蒿素的化学合成途径,其合成以R-(+)-2香草醛为原料,经十四步合成青蒿素。 生物合成 青蒿素等倍半萜类的生物合成在细胞质中进行,途径属于植物类异戊二烯代谢途径,可分为三大步:由乙酸形成FPP,合成倍半萜,再内酯化形成青蒿素。:FPP→4,11-二烯倍半萜→青蒿酸→二氢青蒿酸→二氧青蒿酸过氧化物→青蒿素。在青蒿芽、青蒿毛状根和青蒿发根农杆菌等培养体系中进行的青蒿素合成技术极有可能被应用于工业生产。

相关文档
最新文档