第十章 期权价格概述
第十章 期权-期权价格的取值范围

2015年期货从业资格考试内部资料期货市场教程第十章 期权知识点:期权价格的取值范围● 定义:期权价格即权利金,是期权买方为取得期权合约所赋予的权利而支付给卖方的费用。
● 详细描述:期权的权利金不可能为负。
看涨期权的权利金不应该高于标的物的市场价格。
如果权利金高于标的物的市场价格,投资者的损失将超过直接购买标的物的损失,这便失去了期权投资的意义,投资者不如直接从市场上购买标的物,损失更小且成本更低。
例题:1.对期权权利金的表述正确的有()。
A.期权的权利金是期权买方为取得期权合约所赋予的权利而支付给卖方的费用B.期权的权利金也称为期权费、期权价格C.看涨期权的权利金不应该高于标的物的市场价格D.期权的权利金可以为0、为正、为负正确答案:A,B,C解析:期权的权利金不可能为负。
由于买方付出权利金后便取得了未来买入或卖出标的物的权利,除权利金外不会有任何损失或潜在风险,所以期权的价值不会小于0.2.以下关于期货权利金的说法,正确的是()。
A.权利金可能小于0B.看涨期权的权利金应该高于标的物的市场价格C.权利金即期权价格D.看跌期权权利金不应高于标的物的市场价格正确答案:C解析:本题考查期货权利金的取值范围。
期权的权利金不可能为负值;看涨期权的权利金不应该高于标的物的市场价格3.以下关于期权权利金的说法,正确的是()。
A.权利金,也称为期权费、期权价格,是期权买方为取得期权合约所赋予的权利而支付给卖方的费用B.期权的权利金可能小于0C.看涨期权的权利金不应该高于标的物的市场价格D.期权的权利金由内涵价值和时间价值组成正确答案:A,C,D解析:期权的权利金不可能为负。
4.关于期权价格的说法,正确的是()A.看涨期权的价格不应该高于标的资产的市场价格B.看涨期权的价格不应该低于标的资产的市场价格C.看跌期权的价格不应该高于期权的执行价格D.看跌期权的价格不应该低于期权的执行价格正确答案:A,C解析:期权价格即权利金。
期权定价方法综述

期权定价方法综述期权定价方法综述期权是金融市场中一种重要的金融衍生品,它给予购买者在未来特定时间以特定价格购买或卖出某个标的资产的权利,而不具有强制性。
为了确定一个合理的期权价格,各种期权定价方法应运而生。
本文将对期权定价方法进行综述,并介绍其中几种经典的方法。
1. 期权定价的基本原理期权定价方法的起点是基于期权的内在价值、时间价值和风险溢价。
内在价值指的是期权当前的实际价值,即权利金与标的资产价格之间的差额;而时间价值是指未来时间期权可能产生的价值,因为期权有一定的时间延迟;风险溢价是指市场参与者对未来不确定性风险的补偿。
期权定价方法的目标是确定期权价格,使期权价值与其内在价值、时间价值和风险溢价相匹配。
2. 期权定价方法的分类2.1. 传统期权定价方法传统期权定价方法包括二项式模型、几何布朗运动模型和风险中性定价模型。
二项式模型基于离散时间和离散状态,适用于欧式期权定价。
几何布朗运动模型基于连续时间和连续状态,并假设标的资产价格服从几何布朗运动,适用于欧式和美式期权定价。
风险中性定价模型则基于市场风险中性的假设,将期权价格视为资产组合的风险中性价格,适用于欧式期权定价。
2.2. 数值模拟方法数值模拟方法包括蒙特卡洛模拟和蒙特卡洛树模拟。
蒙特卡洛模拟通过生成大量随机数模拟资产价格的演化,并计算期权价格的期望值,适用于各种类型的期权定价。
蒙特卡洛树模拟将二项式模型和蒙特卡洛模拟相结合,通过生成蒙特卡洛树模拟资产价格的演化,计算期权价格的期望值,适用于欧式和美式期权定价。
2.3. 波动率传播方法波动率传播方法包括BS模型、GARCH模型和SV模型。
BS模型基于标准布朗运动模型,假设标的资产价格服从几何布朗运动,并计算期权价格的解析解,适用于欧式期权定价。
GARCH模型和SV模型通过建立对资产价格波动率的模型,计算出期权价格的解析解,适用于欧式期权定价。
3. 期权定价方法的比较3.1. 传统期权定价方法相对简单,计算速度较快,适用于欧式期权定价,但对于复杂期权和美式期权可能不适用。
第十章 期权-看涨期权的损益

2015年期货从业资格考试内部资料期货市场教程第十章 期权知识点:看涨期权的损益● 定义:看涨期权的盈亏平衡价=执行价格+期权费● 详细描述:当标的物市场价格大于盈亏平衡价格时,看涨期权买方的盈利为市场价格-盈亏平衡价格,卖方亏损为该值当0<市场价格-执行价格<期权费时,买方的亏损为期权费-(市场价-执行价);卖方盈利为该值当市场价小于等于执行价格时,买方的亏损为期权费;卖方盈利为期权费例题:1.关于买进看涨期权的损益(不计交易费用),以下说法正确的是()。
A.当标的物市场价格小于执行价格时,看涨期权买方不行使期权,其最大损失为权利金B.买进看涨期权的损益平衡点为:执行价格+权利金C.买进看涨期权,行权的收益=标的物价格-执行价格-权利金D.买进看涨期权的一方最大损失是有限的,就是权利金正确答案:A,B,C,D解析:考察买进期权损益的知识。
2.某投资者在5月份买入1份执行价格为10000点的7月份恒指看涨期权,权利金为300点,同时又买入1份执行价格为10000点的7月份恒指看跌期权,权利金为200点。
则期权到期时,()。
A.若恒指为10300点,该投资者损失200点B.若恒指为10500点,该投资者处于盈亏平衡点C.若恒指为10200点,该投资者处于盈亏平衡点D.若恒指为10000点,该投资者损失500点正确答案:A,B,D解析:(1)权利金总支出=300+200=500(点);(2)选项A:5月份期权执行,7月份期权不执行,期权执行收益=10300-10000=300(点)总损失=500-300=200(点);选项B:5月份期权执行,7月份期权不执行,期权执行收益=10500-10000=500(点)总盈亏=0,处于盈亏平衡点;选项C:5月份期权执行,7月份期权不执行,期权执行收益=10200-10000=200(点)总亏损=500-200=300(点);选项D:两个期权执行与否都没有影响,投资者损失全部权利金,即亏损500点。
10 期权

• 5.合约数量 • 期货交易中,期货合约只有交割月份的差异,数量固定而有限。 期权交易中,期权合约不但有月份差异,还有执行价格、看涨 期权与看跌期权的差异。不但如此,随着期货价格的波动,还 要挂出新的执行价格的期权合约,因此期权合约的数量较多 • 6.价格确定方式 • 期货合约中的价格适中交易中确定,期权的施权价是事先在合 约中确定。 • 7.标准化 • 期货只有场内交易,都是标准化的,期权则不定。
• 2.执行价格:是指期权合约被执行时,交易双方实际买卖基础 资产的价格。 • 一般来说,当交易所准备上市某种期权合约时,将首先根据该 合约标的资产的最近收盘价,依据某一特定的形式来确定一个 中心执行价格,然后再根据特定的幅度设定该中心价格的上下 各若干级距(Intervals)的执行价格。 • 因此在期权合约规格中,交易所通常只规定执行价格的级距。 • 例如,在股票期权交易中,当股票价格低于$25时,执行价格的 变动级距为$2.5;当股票价格高于$25但低于$200时,执行价格 的变动级距为$5;当股票价格高于$200时,执行价格的变动级 距为$10。
第十章
期权
第一节 期权概述
• 一、期权 期权(option)亦称选择权,其持有人有权在未来一段 时间内(或未来某一特定日期),以一定的价格向对方购 买(或出售)一定数量的特定标的物,但是没有必须履约 的义务。期权的卖方授予期权的买方或称为期权的持有者 这项权利,期权的买方为取得这项权利必须向期权的卖方 支付一定的费用。
• 8.套期保值的作用与效果不同 • 期货在消除风险的同时也消除了盈利,期权则消除风险的 同时,还能盈利。期权的好处在于风险限制特定,但却需要投 资者付出权利金成本,只有在标的物价格的变动弥补权利金后 才能获利。
• 八、期权的作用
期权定价理论介绍

期权定价理论介绍(1)期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。
金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。
今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。
因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。
而期权定价理论被认为是经济学中唯一一个先于实践的理论。
当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。
后来默顿对此进行了改进。
布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。
期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。
在此之前,许多学者都研究过这一问题。
最早的是法国数学家路易·巴舍利耶(LowisBachelier )于1900年提出的模型。
随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。
但他们都没能完全解出具体的方程。
本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。
一、预备知识(一)连续复利我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。
因而,熟悉连续复利的计算是十分必要的。
假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为n r A )1(+。
如果每年计m 次利息,则终值为:mn mr A )1(+。
当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。
在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rn Ae 。
证券投资学第10章

2)执行价格(exercise price, 或者strike price)。 )执行价格
这个价格是执行期权合约时,可以以此价格购买标的物的价格。 对于以IBM公司股票为标的物的看涨期权,如果执行价格为150 美元,则在执行这种期权时,按每份股票150美元购买。
T
在到期日前的任何时间
内在价值(intrinsic value) 时间价值(time value)
t <T
期权的内在价值
[S t − PVt (K )]
权利的体现
+
期权的时间价值
C t − [S t − PVt (K )]
+
即使在到期日以前的任何时间,欧式期权均有 价值,因为它提供了将来执行权利的可能性。
衍生资产定价: 第十章 衍生资产定价: 期权定价理论及其应用
期权的定义和特点 影响期权价格的因素 期权的组合策略 期权的定价
期权的应用
激励方式 一些证券具有期权的特征:可回购债、可转债 Hedging, (speculative) investing, and asset allocation are among the top reasons for option trading. In essence, options and other derivatives provide a tailored service of risk by slicing, reshaping, and re packaging the existing risks in the underlying security. The risks are still the same, but investors can choose to take on different aspects of the existing risks in the underlying asset.
第十章 期权-期权的基本要素

2015年期货从业资格考试内部资料期货市场教程第十章 期权知识点:期权的基本要素● 定义:期权要素包括执行价格、期权费、标的物、行权方向和行权时间、有效期和到期日、保证金等。
● 详细描述:1.标的资产期权合约的标的物可以是现货商品,也可以是期货合约;可以是实物资产,也可以是金融资产。
2.有效期和到期日有效期有效期是交易者自持有期权合约至期权到期日的期限。
到期日是买方可以行使权利的最后期限,为期权合约月份的某一天。
3.执行价格执行价格也称为行权价格、履约价格、敲定价格,是期权买万行使权利时,买卖双方交割标的物所依据的价格。
4.期权费期权费即期权价格,也称为权利金、保险费,是指期权买方为取得期权合约所赋予的权利而支付给卖方的费用。
5.行权方向和行权时间6.保证金(Margin)保证金,是期权交易者向结算机构支付的履约保证资金。
交易所或结算公司会按照标的资产价值的一定比例向卖方收取保证金。
买方无需缴纳保证金。
例题:1.保证金是期权交易者向交易所支付的履约保证资金,买方无需缴纳保证金。
A.正确B.错误正确答案:B解析:保证金是期权交易者向结算机构支付而并非向交易所支付。
2.以下属于期权要素的有()A.保险费B.保证金C.执行价格D.到期日正确答案:A,B,C,D解析:很多人容易把保险费漏掉,期权费又称为权利金、保险费,亲们,别上当哦。
3.期货期权合约中心必须载明的内容包括()等A.最后交易日B.权利金C.合约月份D.执行价格正确答案:B,D解析:最后交易日、合约月份是期货的要素。
期权的基本要素:执行价格、期权费、标的物、行权方向、行权时间、有效期和到期日、保证金等。
4.在期货期权合约中,除()之外,其他要素均已标准化了。
A.合约到期日B.权利金C.合约月份D.执行价格正确答案:B解析:与期货交易相同,在期权交易中,期权权利金即期权成交价格是期权合约中惟一能在交易所内讨价还价的要素,,其他合约要素均已标准化。
郑振龙《金融工程》第2版课后习题(期权的回报与价格分析)【圣才出品】

郑振龙《金融工程》第2版课后习题第十章期权的回报与价格分析1.某投资者买进一份欧式看涨期权,同时卖出一份标的资产、期限和协议价格都相同的欧式看跌期权,请描述该投资者的盈亏状况,并揭示相关衍生产品之间的关系。
答:不考虑期权费,该投资者最终的回报为:max(S T-X,0)+min(S T-X,0)=S T-X可见,这相当于协议价格为X的远期合约多头。
类似的,欧式看涨期权空头和欧式看跌期权多头可以组成远期合约空头。
该习题就说明了如下问题:远期合约多头可以拆分成欧式看涨期权多头和欧式看跌期权空头;远期合约空头可以拆分成欧式看涨期权空头和欧式看跌期权多头。
当X等于远期价格时,远期合约的价值为0。
此时看涨期权和看跌期权的价值相等。
2.假设现在是5月份,A股票价格为18元,期权价格为2元。
甲卖出1份A股票的欧式看涨期权,9月份到期,协议价格为20元。
如果期权到期时A股票价格为25元,请问甲在整个过程中的现金流状况如何?答:甲会在5月份收入200元(2×100)的期权费,9月份因行权而付出500元(=(25-20)×100)。
3.设某一无红利支付股票的现货价格为30元,连续复利无风险年利率为6%,求该股票的协议价格为27元、有效期为3个月的看涨期权价格的下限。
答:无收益看涨期权的价格的下限为:C≥max[S-Xe-r(T-t),0]。
因而本题看涨期权价格的下限=max[30-27e-0.06×0.25,0]=3.40(元)。
4.某一协议价格为25元、有效期为6个月的欧式看涨期权价格为2元,标的股票价格为24元,该股票预计在2个月和5个月后各支付0.50元股息,所有期限的无风险连续复利年利率均为8%,请问该股票的协议价格为25元、有效期为6个月的欧式看跌期权价格等于多少?答:根据有收益欧式看涨期权与欧式看跌期权平价关系:,可得:看跌期权价格p=c+Xe-rT+D-S0=2+25e-0.08×0.5+0.5e-0.08×2/12+0.5e-0.08×5/12-24=3.00(元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 期权价格概述【学习目标】本章是期权部分的重点内容之一。
本章首先从内在价值和时间价值两个方面对期权价格进行了深入解析,分析了影响期权价值的主要因素,确定期权价格的基本边界,探讨了美式期权是否需要提前执行的问题,从而画出了期权价格曲线的基本形状,最后,我们运用无套利分析的基本方法,推出了看涨期权和看跌期权之间的平价关系。
学习完本章,读者应能够运用期权价格曲线,深入掌握期权价格中的内在价值和时间价值的有关内容,掌握期权价值的主要影响因素和期权价格的基本边界,掌握看涨期权和看跌期权之间的平价关系,同时理解美式期权的提前执行问题。
如第八章所述,期权交易实质上就是一种权利的交易。
在这种交易中,期权购买者为了获得期权合约所赋予的权利,就必须向期权出售者支付一定的费用。
这一费用就是期权费(期权价格),即期权合约本身的价格。
在期权交易中,期权价格(价值1)的决定是一个重要而复杂的核心问题。
自1973年以来,许多专家和学者纷纷提出各自的期权定价模型,以说明期权价格的决定和变动。
在这些模型中,最著名的模型主要有如下两个:一个是布莱克-舒尔斯模型(The Black-Scholes Model ),另一个则是二项式模型(The Binominal Model )。
在第十一章,我们将对这两个模型作一简要的介绍和评价。
在此之前,为了更好地说明这两个模型的内涵,我们有必要先对各种期权定价模型的理论基础——期权价格的构成、影响期权价格的主要因素以及期权价格的边界等问题进行深入的分析。
第一节 期权价格解析尽管在现实的期权交易中,期权价格会受到多种因素的复杂影响,但从理论上说,期权价格都是由两个部分组成的:一是内在价值,二是时间价值。
即期权价格=期权内在价值+期权时间价值。
一、期权的内在价值期权的内在价值(Intrinsic Value )是指期权合约本身所具有的价值,也就是期权多方行使期权时可以获得的收益的现值。
我们曾经在第八章中谈及这一概念2。
例如,如果股票XYZ 的市场价格为每股60美元,而以该股票为标的资产的看涨期权协议价格为每股50美元,那么这一看涨期权的购买方只要执行此期权即可获得 1 000美元()60501001000⎡⎤-⨯=⎣⎦美元(股票期权通常为美式期权且一张期权合约的交易单位为100股股票)。
这1 000美元的收益就是看涨期权的内在价值。
1 价格和价值本来是两个不同的概念,它们之间是市场价格和理论价值的区别。
但是在对期权费的研究中,一般将这两者混用。
所谓的期权价格(Options Price )实际上就是期权价值(Options Value ),即期权的合理公平价值。
2 详见第八章第一节。
从例子中我们可以很明显地看到,一个期权合约有无内在价值以及内在价值的大小,取决于该期权执行价格与其标的资产市场价格之间的关系,即与期权是实值、虚值还是平价有很大的关系。
具体来看,理解期权的内在价值,需要注意两个方面的问题:其一,欧式期权和美式期权内在价值存在一定的差异。
由于欧式期权只能在到期日执行,所以在到期以前的任一时刻,欧式期权的内在价值应该是到期时该期权内在价值的现值。
因此,对于欧式看涨期权来说,其内在价值为(S T-X)的现值。
其中,如果标的资产在期权存续期内没有现金收益,S T的现值就是当前的市价(S),而对于支付现金收益的资产来说,S T的现值则为S-D,其中D表示在期权有效期内标的资产现金收益的现值。
因此,无收益资产欧式看涨期权的内在价值等于S-Xe-r(T-t), 而有收益资产欧式看涨期权的内在价值等于S-D-Xe-r(T-t)。
同样道理,无收益资产欧式看跌期权的内在价值都为X e-r(T-t)-S,有收益资产欧式看跌期权的内在价值都为X e-r(T-t)+D-S。
美式期权与欧式期权的最大区别在于其可以提前执行,因此,美式期权的内在价值就应该等于其即时执行的收益,而无需对X进行贴现。
但是,我们在后文将证明,美式看涨期权当中,如果标的资产是没有现金收益的,在期权到期前提前行使无收益美式看涨期权是不明智的。
因此无收益资产美式看涨期权价格等于欧式看涨期权价格,其内在价值也就等于S-Xe-r(T-t)。
另外,有收益资产美式看涨期权虽然有提前执行的可能,但可能性较小,因此一般都认为其内在价值也等于S-D-Xe-r(T-t),即也等于相应的欧式看涨期权内在价值。
对于美式看跌期权来说,由于提前执行有可能是合理的,因此其内在价值与欧式看跌期权不同。
其中,无收益资产美式期权的内在价值等于X-S,有收益资产美式期权的内在价值等于X+D-S。
因此,欧式期权和美式期权内在价值的主要差异就在于贴现与否,但现实生活中常常不考虑贴现问题,而将它们视为相同,都采用美式期权即时执行的内在价值。
其二,期权的内在价值应大等于0。
将期权的内在价值与实值、虚值和平价等相联系,从理论上说,实值期权内在价值为正,虚值期权内在价值为负,而平价期权内在价值为零。
但从实际来看,期权多头方是不会执行虚值期权(即标的资产市价低于协议价格的看涨期权和标的资产市价高于协议价格的看跌期权)的,因此内在价值至少等于零。
图10.1给出了期权内在价值的曲线。
显然平价点随着欧式、美式期权和有无收益而变化。
从图中我们可以进一步看出,在执行价格一定的时候,标的资产的市场价格就决定了期权内在价值的大小,例如对于看涨(看跌)期权来说,平价点及其左(右)侧的期权内在价值都为零,而平价点右(左)侧的期权内在价值则为正数,价格越高(低),内在价值越大。
相反地,如果市场价格一定,期权的执行价格就决定了内在价值的大小。
当执行价格提高(降低)时,图10.1(a)和(b)中的两条内在价值线都要向右(左)移动,也就意味着在同一市场价格水平上,看涨期权的内在价值减少(增大),而看跌期权的内在价值则相应地增大(减少)。
(b )看跌期权内在价值曲线图10.1期权内在价值曲线内在价值曲线实值 平价点 虚值 45°看跌期权价格S二、期权的时间价值内在价值是决定期权价格的主要因素,但并非唯一的因素。
在现实市场中,各种期权通常是以高于内在价值的价格交易的,平价期权和虚值期权在这一点上尤其明显:虽然这两类期权的内在价值为零,但在到期以前,它们总是以高于零的价格在买卖的。
这是因为在期权价格中,还包含着一个重要的部分:期权的时间价值。
与我们平时所理解的时间价值(即无风险利率,货币持有者暂时放弃货币所获得的回报)不同,期权的时间价值(Time Value)是指在期权有效期内标的资产价格波动为期权持有者带来收益的可能性所隐含的价值。
换句话说,期权的时间价值实质上是期权在其到期之前获利潜力的价值。
我们知道,期权的买方通过支付期权费,获得了相应的权利,即(近于)无限的收益可能和有限的损失。
这意味着标的资产价格发生同样的上升和下降,所带来的期权价值的变化是不对称的,这一不对称性,使得期权总价值超过了其内在价值,就是期权时间价值的根本来源。
与内在价值不同,期权的时间价值通常不易直接计算,因此,它一般是运用期权的总价值减去内在价值求得的。
例如,某债券的市场价格目前为105美元,而以该债券为标的资产、执行价格为100美元的看涨期权则以6.5美元成交。
那么,该看涨期权的内在价值为5美元(105美元-100美元),而它的时间价值则为1.5美元(6.5美元-5美元)。
影响期权时间价值大小的主要因素有:1.到期时间由于期权时间价值代表到期之前期权带来收益的可能性。
因此,距离到期的时间越长,期权时间价值一般来说越大。
对于美式期权来说,这一点显然是肯定的;而欧式期权由于只能在到期日执行,所以这一关系不一定成立,但总的来说其时间价值也是随着时间的延长而增大的。
这意味着在一般情况下,期权的边际时间价值都是正的。
但是,我们应注意到,随着时间的延长,期权时间价值的增幅是递减的。
这就是期权的边际时间价值递减规律。
换句话说,对于到期日确定的期权来说,在其它条件不变时,随着时间的流逝,其时间价值的减小是递增的。
这意味着,当时间流逝同样长度,期限长的期权的时间价值减小幅度将小于期限短的期权时间价值的减小幅度。
这一点对组建和分析期权差期组合和对角组合是很重要的。
2. 标的资产价格的波动率标的资产价格的波动率是指证券资产收益率单位时间内的标准差,因此,标的资产价格的波动率是用来衡量标的资产未来价格变动不确定性的指标。
由于期权多头的最大亏损额仅限于期权价格,而最大盈利额则取决于执行期权时标的资产市场价格与协议价格的差额,因此波动率越大,无论是看涨期权还是看跌期权,期权的时间价值都应越大。
3. 内在价值此外,期权的时间价值还受期权内在价值的影响。
以无收益资产看涨期权为例,当S=X e-r(T-t)时,期权的时间价值最大。
当S-X e-r(T-t)的绝对值增大时,期权的时间价值是递减的,如图10.2所示。
我们举个例子来说明期权内在价值与时间价值之间的关系。
假设A股票(无红利)的市价为9.05元,A股票有两种看涨期权,其协议价格分别为X1=10元,X2=8元,它们的有效期都是1年,1年期无风险利率为10%(连续复利)。
这两种期权的内在价值分别为0和1.81元。
那么这两种期权的时间价值谁高呢?假设这两种期权的时间价值相等,都等于2元,则第一种期权的价格为2元,第二种期权的价格为3.81元。
那么让读者从中挑一种期权,你们愿意挑哪一种呢?为了比较这两种期权,我们假定1年后出现如下三种情况:情况一:S T=14元。
则期权持有者可从期权1中获利(14-10-2e0.1)=1.79元,可从期权2中获利(14-8-3.81e0.1)=1.79元。
期权1获利金额等于期权2。
情况二:S T=10元。
则期权1亏2e0.1=2.21元,期权2也亏3.81e0.1-2=2.21元。
期权1亏损等于期权2。
情况三:S T=8元。
则期权1亏2e0.1=2.21元,而期权2亏3.81 e0.1=4.21元。
期权1亏损少于期权2。
由此可见,无论未来A股票价格是涨是跌还是平,期权1均优于或等于期权2。
显然,期权1的时间价值不应等于而应高于期权2。
我们再来比较如下两种期权。
X1=10元,X3=12元。
其它条件与上例相同。
显然,期权1的内在价值为0,期权3的内在价值虽然也等于0,但S-X e-r(T-t)却等于-1.81元。
通过同样的分析,我们也可以得出期权1 的时间价值应高于期权3的结论。
综合这三种期权,我们就可以得出无收益资产看涨期权的时间价值在S=X e-r(T-t)点最大的结论。
通过同样的分析,我们还可以得出如下结论:有收益资产看涨期权的时间价值在S=D+ Xe-r(T-t)点最大,而无收益资产欧式看跌期权的时间价值在S= Xe-r(T-t)点最大,有收益资产欧式看跌期权的时间价值在S= Xe-r(T-t)-D点最大, 无收益资产美式看跌期权的时间价值在S= X 点最大,有收益资产美式看跌期权的时间价值在S= X-D点最大。