近红外基础知识
近红外光谱分析技术

近红外光谱定量分析的流程与步骤
近红外光谱仪器的主要类型
• 滤光片型 • 色散型 • 傅立叶变换型 • 声光可调滤光型 • 其中傅立叶变换型近红外光谱仪与其它类型仪器相比, 具有信噪比高、分辨率高、波长准确且重复性好、稳 定性好等优点,往往作为研究性仪器的首选。
近红外光谱技术的应用
• • • • • • 农业与食品行业 石油化工工业 制药工业 烟草与纺织行业 生物医学领域 ……
分析谱区的选定
• 近红外光谱定量分析数学模型所包含的谱区(光谱的 数据点)一般应根据样品的特点而选定;增加谱区的 范围就可以增加对光谱信息采集的范围,即提高信息 量;但因为每个光谱的数据点也包含了测量误差,因 此数学模型所利用的数据点越多,则包含的测量误差 也越大,为了减少近红外光谱中某些信息量小、失真 大的部分谱区,以避免这些谱区的测量误差影响数学 模型的稳定性,需要选择建立数学模型所用的谱区。 通常可以对谱图进行方差处理,光谱变化最明显的区 域即是光谱信息最丰富的区域,也就是最为有效的光 谱范围
样品中各待测成分化学值的测定
• 采用经典化学分析方法对各待测组分含量进行测定, 这些值测定的精确度是近红外光谱运用数学模型进行 定量分析精确度的关键。
剔除异常值
• 由上述 ① 、② 环节测定的校正样品集中样品的光谱 与化学值,有可能由于种随机的原因而有较严重的失 真,这些样品的测定值称为异常值。这些失真的样品, 若包含在校正校品集中,就会影响所建数学模型的可 靠性,因此在建立模型时应当剔除这些异常值。
样品近红外谱图的扫描
• 为了克服近红外光谱测定的不稳定性的困难,必须严 格控制包括制样、装样、测试条件、仪器参数等测量 参数在内的测量条件;利用该校正校品集建立的数学 模型,也只能适用于按这个的测量条件所测量光谱的 样品。
近红外光谱知识科普

近红外光谱知识科普全文共四篇示例,供读者参考第一篇示例:近红外光谱是一种应用广泛的光谱学技术,它可以用来研究物质的结构和性质,同时也在很多领域发挥着重要作用。
本文将介绍近红外光谱的基本原理、应用领域以及未来发展方向,希望能够帮助读者更好地了解这一技术。
近红外光谱是一种利用近红外光(波长范围一般在700-2500纳米)与物质相互作用来获取信息的技术。
近红外光谱仪通常由光源、样品室、光学系统和检测器等部分组成。
在近红外光谱分析中,样品受到近红外光的照射后,会发生吸收、散射或反射,这些现象会导致光的强度或波长发生变化,通过检测这些变化可以获取样品的光谱信息。
近红外光谱在很多领域都有着广泛的应用。
在食品工业中,近红外光谱可以用来检测食品的成分、营养价值和品质,帮助生产商保证产品的质量。
在药物研发领域,近红外光谱可以用来分析药物的成分和结构,指导新药的设计和研发过程。
在环境监测和地质勘探领域,近红外光谱可以用来检测空气、水、土壤中的有害物质,帮助保护环境。
此外,近红外光谱还被广泛应用于农业、化工、医学等领域。
近红外光谱技术的发展一直在不断推进。
随着光谱仪器的不断改进和智能化技术的应用,近红外光谱分析的速度和精度得到了显著提高。
未来,近红外光谱技术有望在医疗诊断、生物医药领域得到更广泛的应用,为人类健康和生活质量的提升做出更大的贡献。
总结起来,近红外光谱是一种强大的光谱学技术,具有广泛的应用前景和发展潜力。
通过继续开展研究和技术创新,近红外光谱技术将在未来发挥更加重要的作用,为人类社会的发展带来更多的益处。
希望本文可以帮助读者更好地了解近红外光谱技术,促进其在不同领域的应用和发展。
【仅供参考】。
第二篇示例:近红外光谱(Near-Infrared Spectroscopy, NIR)是一种在近红外波段(波长约700-2500纳米)范围内进行光谱分析的技术方法。
近红外光谱技术广泛应用于农业、医药、食品工业、环境监测等领域,具有快速、准确、非破坏性、无需样品预处理等优点。
红外光谱分析及FTIR基础知识

红外光谱分析及FTIR基础知识第⼀章红外光谱的基本原理l—1 光的性质光是⼀种电磁波,它在电场和磁场⼆个正交⾯内波动前进.⼆个波峰或波⾕之间的距离为波长,以“ λ”表⽰。
电磁波包括波长短⾄0.1纳⽶的x射线到长达106厘⽶的⽆线电波.其中波长为0.75微⽶到200微⽶,即从可见光区外延到微波区的⼀段电磁波称红外光.红外光通常以微⽶为单位(µm).1微⽶等于10-4厘⽶(1µm=10-4cm),因此,红外光波长以厘⽶为单位时,其倒数就是1厘⽶内的波数(ν),所以波数的单位ν是厘⽶-1(cm-1).红外光既可以波长(λ),也可以波数(cm-1)表⽰,⼆者关系如(1-1)式所⽰:ν(cm-1)=104/λ(µm) (1-1)由于光的能量与频率有关,因此红外光也可以频率为单位.频率(f)是每秒内振动的次数.频率、波长和波数的关系是,f=c/λ=ν*c (1—2)式中:c为光速,是常数(3×1010厘⽶秒); λ是波长(微⽶);f是频率(秒-1);ν是波数(厘⽶-1).由于波数是频率被⼀个定值(光速)除的商值,因此红外光谱中常将波数称为频率.光既有波的性质,⼜有微粒的性质.可将⼀束光看作⾼速波动的粒⼦流,最⼩单位为光⼦.根据爱因斯坦—普朗克关系式,⼀定波长或频率的单⾊光束中每个光⼦具有能量E,E=hf=hcν=hc/λ (1—3)式中:h为普朗克常量,等于6.63×10-34焦⽿·秒.按(1.3)式可以算出波长2µm(5000厘⽶-1)的红外光⼦能量为6.63×10-34 (焦⽿·秒)x3x1010/2x10-4厘⽶=9.95x10-20焦⽿.同理波长l0微⽶(1000厘⽶-1)的红外光⼦的能量仅1.99×10-20焦⽿.可见波长短,能量⼤.波长长,能量⼩.1-2 分⼦光谱的种类有机分⼦同其他物质⼀样始终处于不停的运动之中。
红外遥控基础知识

0
0
0
0
0
0
0
0
0
0
0
1 Delay
Custom=00H
Data=01H
24
第4节
1
1 Change
0
0
0
0
0
0
0
0
0
0
0
1 Delay
Custom=00H
Data=01H
1
1 Change
1
0
0
0
0
0
0
0
0
0
0
1 Delay
25
Custom=00H
Data=01H
第4节
例6:
26
第4节
例7:
第2节
图4 示波仪上所观察到的波形 9
第2节
红外遥控器信号发射与接收:
图5 根据波形格式发出红外光线
10
第2节
图6 红外线信号接收
11
第3节
常见波形调制格式: 时间调制、相位调制、电平调制、无调制、 特殊调制等。
12
第3节
时间调制:
由高低电平的不同时间长度来表示逻辑的调制 方式。如:6121等。
图10 无调制逻辑表示
16
第3节
特殊调制:
其逻辑定义和时间调制相比除了0和1外,还有 2、3甚至更多。很少使用。
图11 特殊调制逻辑表示
17
第4节
使用用具(示波仪、编码分析仪、测码仪)。: 检测注意事项
18
第4节
根据波形图手工解码:
由于电脑及测码仪译码的局限性,难免有些时候 需要手工译码,所以认识和了解波形说明进行手工译 码是非常有必要的。使用用具(示波仪、编码分析仪、 测码仪)。下面用几个较特殊的例子加以说明:
近红外光谱基本原理

近红外光谱基本原理
近红外光谱是一种非常有用的分析技术,它利用近红外区域的光谱特征来识别和分析物质。
这种技术基于近红外区域波长范围内的光与样品相互作用的原理。
在近红外光谱中,样品通常处于固体、液体或气体的形态。
当近红外光照射到样品上时,样品中的分子会吸收或反射部分光线,产生特定的光谱图。
这个光谱图能够提供关于样品组成和结构的信息。
近红外光谱的基本原理是根据物质中的伸缩、弯曲和振动等分子振动模式来解释。
不同的化学物质具有不同的分子振动模式,因此它们会对近红外光产生不同的响应。
通过比较样品光谱与已知物质的光谱数据库,可以确定样品的成分。
近红外分析技术的优势在于它非常灵敏、快速和非破坏性。
由于近红外光具有较高的穿透能力,所以可以对样品进行非接触式的分析。
此外,近红外光谱还可以同时检测多个成分,大大提高了分析效率。
总的来说,近红外光谱是一种广泛应用于化学、生物、医药和食品等领域的分析技术。
它的基本原理是利用近红外光与样品相互作用的特性,通过分析样品的光谱图来确定样品的成分和结构。
这种技术具有灵敏、快速、非破坏性等优点,因此在实际应用中具有广泛的应用前景。
近红外光谱

36
三、近红外光谱定量及定性分析
3.1近红外光谱的定量分析
3.2近红外光谱的定性分析
37
3.1近红外光谱的定量分析
近红外光谱的定量分析就利用化学分析 数据和近红外光谱数据建立模型,确定 模型参数,然后以这个模型去定量预测 某些信息(如浓度)的方法。
38
定量分析过程具体步骤如下:
1.选择足够多的且有代表性的样品组成校 正集; 2.通过现行标准方法测定校正模型样品 的组成或性质; 3.测定校正模型样品的近红外光谱;
24
1.3近红外光谱分析技术的特点
1)分析速度快,测量过程大多可在1min 内完成。因此在日常分析中,包括了样 品准备等工作时间,在5min以内即可得 到数据。近红外光谱分析技术的另一个 特点是通过样品的一张光谱,可以测得 各种性质或组成。 2)适用的样品范围广,通过相应的测样器 件可以直接测量液体、固体、半固体和 胶状体等不同物态的样品光谱。
近红外光谱记录的是分子中单个化学键 的基频振动的倍频和合频信息,它常常 受含氢基团X-H(X-C、N、O)的倍频 和合频的重叠主导,所以在近红外光谱 范围内,测量的主要是含氢基团X-H振动 的倍频和合频吸收。
9
不同基团(如甲基、亚甲基、苯环等)或 同一基团在不同化学环境中的近红外吸 收波长与强度都有明显差别,NIR 光谱 具有丰富的结构和组成信息,非常适合 用于碳氢有机物质的组成与性质测量。 但在NIR区域,吸收强度弱,灵敏度相对 较低,吸收带较宽且重叠严重。因此, 依靠传统的建立工作曲线方法进行定量 分析是十分困难的,化学计量学的发展 为这一问题的解决奠定了数学基础。
17
虽然建立模型所使用的样本数目很有限, 但通过化学计量学处理得到的模型应具有 较强的普适性。对于建立模型所使用的校 正方法,视样品光谱与待分析的性质关系 不同而异,常用的有多元线性回归、主成 分回归、偏最小二乘法、人工神经网络和 拓扑方法等
红外谱图基础知识

第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。
这种方法指出了吸收峰的归属,带有图谱解析的作用。
近红外基础知识

近红外的合频振动的吸收系数比中红外基频振动吸收弱 15个数量级.
Absorbance
Water Spectrum
5
4
3
2
MIR
NIR
1
0 9000
8000
7000
6000
5000
4000
3000
2000
Wavenumber cm-1
第十五页,共71页。
第五页,共71页。
红外光谱振动的基本原理
hn
低能量
高能量
第六页,共71页。
红外光振动模式的能级图
谐波振动Harmonic Oscillation
非谐波振动Anharmonic Oscillation
3rd Overtone 三級倍頻 2nd Overtone 二級倍頻 1st Overtone 一級倍頻 Fundamental 振動基頻
103
102
101
1
10-1
10-2
10-3
近红 外
可见
中红外 红外
远红外
电子自旋振动
核磁振 动
微波
Radio, TV 无线电波
Region
Interaction
原子核转变
内层电子的 跃迁
外层电子的跃迁
分子振动
分子转动
电磁转动
Wavelength (m)
10-10
10-9
10-8
10-7
10-6
10-5
2、近红外的谱峰重叠严重,
难以肉眼识别分析。
中红外谱峰分别好。很容 易肉眼识别分析。 3、近红外吸收弱。 中红外吸收强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 计算平均光谱和阈值
3. 建立和检验模型
测定未知样品
Sample Identified as Material X
1. 测定未知样品光谱
2. 调用模型
3. 鉴定未知样品
阈值的计算公式:
光谱距离的 标准偏差
阈值=最大匹配值+X*SDev
阈 值
最大匹配值
选择性是用来考虑模型好坏的一个重要指标:
D S T1 T2
麻烦或不可能
• 应用
• 测试每一批或生产周期样品的一直性
• 原则
• 同样成分、一样的近红外光谱
• 算法
• 测定样品光谱与参考光谱的偏差值是否超出某一水平
一致性测试
• 参考样品
• 计算参考光谱的平均光谱和每一个波长点(i)标准偏差 (s)
• 样品
• 计算样品光谱每个波长点(i)的相对偏差(Q)
Qi = (Ai,sample - Ai, average) / si, average
•
红外波长表示的度量单位
近红外区一般用波长(纳米 nm)或(波数cm-1)来表示 纳米与波数的换算关系:nm= 107/cm-1 或 cm-1 = 107/ nm 因为:1cm=107nm 1,250nm处,用波数表示: 107/ 1,250=8,000cm -1 中红外区一般用波长(微米 μm)或(波数cm -1 )来表示 微米与波数的换算关系:nm= 104/cm -1 或 cm-1 = 104/ nm
Hit Quality < Threshold for one library material and Hit Quality > Threshold for all other library materials.
NIR Overview >
一致性测试
• 目的
• QA/QC 的样品进行定量或定性分析模型的建立太昂贵、
• 一直性指标CI 被定义为最大的相对偏差 Qi
CI = max(Qi)
• 结果绘图
一致性测试 Preprocessed spectra
• Reference spectra
• Average spectrum • Standard deviation spectra (+/- 3s)
一致性测试 Preprocessed spectra including test spectra
d
Beer定律:
: 消光系数 c: 浓度 d: 光程
A = -log Itrans/I0 = -log T = cd
定量分析的理论依据
I0
光源
I散射
检测器
;k;c
: 消光系数 c: 浓度 k: 散射系数
比尔定律: A = -log Iscatt/I0 = -log R = const . c
Threshold 0.04674
0.00888 0.02077 0.01406 0.00491
Substance Acetyl salicylic acid Salicylic acid Salicylamide Collidon 25 Collidon 30
The sample is positively identified only when:
0.0
0.2
0.4
0.6
0.8
3nCH)
2n(CH)
n(CH)
10000
8000
6000
4000
2000
Wavenumber / cm-1
Overtones of the n(CH) vibration of CHCl3
band position [nm] band position [cm-1] extinction coefficient [cm2 mol-1]
中红外光谱的信号特征
1、中红外光的产生:中红外光源一般用硅碳棒
2、中红外光的检测:中红外光的检测材料是半导体材料,如
MCT、DTGS等 3、光学材料:可以使用“怕水”的材料如:KBr、NaCl,耐水 材料CaF、ZnSe、Si等。
红外光谱振动的基本原理
hn
低能量
高能量
红外光振动模式的能级图
谐波振动Harmonic Oscillation 非谐波振动Anharmonic Oscillation
Plot of scores of factor 2 vs. 1
Factor 2
Factor 1
树形图 诊断 柱形图
鉴别分析(Identity)的基本原理
0.9
建立模型
0.8 0.9
Absorbance Units 0.5 0.6
Absorbance Units
4
3
2
MIR NIR
9000 8000 7000 6000 5000 4000 3000 2000
1
0
Wavenumber cm-1
近紅外光与物质的相互作用
吸收
全反射
transmittance
透射
specula absorption reflectance
漫(反)射
Diffuse reflectance
L o n g p a t h l e n g t h
S h o r t p a t h l e n g t h
不同颗粒度大小样品的近红外光谱
烟丝
烟粉末
近红外吸收光谱的特点
近红外吸收光谱的特点:
随着基频振动合频和倍频的增加,吸 收峰重叠的越严重,吸收越来越弱。 多组分复杂样品的近红外光谱不是各 组分单独光谱的叠加。 消光系数弱,穿透样品的能力强(最深 可达5cm) 需要“化学计量学”技术从复杂的光谱 中提取信息(Y=a+bx1+ cx2+dx3…)。
n 2n 3n 4n 5n
3290 1693 1154 882 724
3040 5907 8666 11338 13831
25000 1620 48 1,7 0,15
近红外与中红外的区别
1、近红外是基频振动的合频
与倍频振动信息。
中红外是基频振动的信息。 2、近红外的谱峰重叠严重, 难以肉眼识别分析。 中红外谱峰分别好。很容 易肉眼识别分析。 3、近红外吸收弱。 中红外吸收强。 聚丙烯的近红外/中红外光谱 4、近红外制样简单。 中红外制样麻烦。
一致性测试 CI spectra
• Reference spectra
• Test spectra
• Standard deviation spectrum
一致性测试 Examples: monitoring of mixing process
一致性测试 Examples: tablets placebo vs verum
理 论 背 景
什么是近红外/中红外光?
近红外: 12,800 cm-1 (780 nm) 中红外: 4,000 cm -1 (2,500 nm)
108 107 106 105 104 103
4,000 cm -1 (2,500 nm) 400 cm -1 (25,000 nm)
102 101 1 10-1 10-2 10-3
• Reference spectra
• Test spectra
• Average spectrum
• Standard deviation spectra (+/- 3s)
一致性测试 Validation results max. CI
一致性测试
Validation results Sum1
3756 cm-1
Sym-stretching 3657 cm-1
O
Bending
1595 cm-1
近红外与中红外光谱的差异
CHCl3 在MIR & NIR的吸收光谱
MIR & NIR (d = 25 µm) NIR (d = 1 mm)
1.6
Absorbance Units
1.0
1.2
1.4
combination band
一致性测试
• 优点 • 基于少量参考样品基础的简单方法
无需定量校准和定性库的建立
• 用少量合格批次的产品能够进行简单、快速建立或更新
模型
• 快速的 QA/QC、简单的 Yes/No结果 • 对于不同类型样品的变化非常敏感 (如 成分、颗粒大小
等)
定量分析的理论依据
I0
光源
Itrans
检测器
; c
固体中药样品的近红外吸收光谱
什么是定性分析? 定性分析是确认分析对象是什么,或者是某种物质 (Yes),还是不是某种物质(No)。
近红外的定性分析方法主要包括:
聚类分析(Cluster Analysis) 鉴别分析(Identity)
一致性测试(Conformity Test)
因子分析
Factor analysis
近红外的发现和应用发展里程
1800年近红外电磁波被发现,光谱的复杂性使其“沉睡”了一个 半世纪 • 20世纪70年代国外的农业分析学家综合计算机技术、光谱分 析技术、仪器技术和现代数学方法,首先把近红外分析技术 应用于农产品和食品的品质分析 • 进入90年代,近红外分析技术逐步受到分析化学家的重视, 应用逐步扩展到石油化工、医药、生物化学、烟草、纺织品等 领域。 • 近红外现已发展成为一种独立的分析技术活跃在光谱分析领 域 • 发达国家已经将近红外做为质量控制、品质分析和在线分析 的主要手段,部分方法已经成为USP、EP、PASG、EMEA、 AOAC、AACC、ICC的标准。
因为:1cm=104 μ m