专题19 三角恒等变换-学会解题之高三数学万能解题模板【2021版】【解析版】
19高考数学题型方法全归纳 第三节 三角恒等变换

(2) sin( ) cos[( ) ] cos[ ( )]
2
2
cos cos( ) sin sin( )
2
2
cos sin sin cos
S : sin( ) sin cos cos sin
(3)
tan(
)
sin( cos(
)
sin cos cos cos
1 cos
; cos
1 cos ;
2
2
2
2
tan
2
sin 1 cos
1 cos sin a
.
辅助角公式
a sin b cos a2 b2 sin( ), tan b (ab 0), 角 的终边过点 (a,b) ,特殊 a
地,若 a sin b cos
a2 b2 或
a2
b2
.
解析(1)证法一:如图 4-32(a)所示,设角 , 的终边交单位圆于
P1(cos.sin ), P2 (cos( ),sin( )), ,由余弦定理得 P1P2 2 OP12 OP22 2OP1 OP2cos( ) [cos cos( )]2 [sin sin( )]2 2 2 cos( )
C.2
2
D. 2
变式 3
若 tan
1 tan
4 ,则 sin 2
(
).
A. 1
B. 1
C. 1
D. 1
5
4
3
2
二、建立已知角与未知角的联系(通过凑配角建立)
将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解
题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公
(完整word)三角函数恒等变换含答案及高考题,推荐文档

2,三角函数恒等变形的基本策略。
(1 )常值代换:特别是用"1”的代换,如 仁cos 2 0 +sin 2 0 =tanx • cotx=tan45 °等。
2 2 2 2 2 2(2)项的分拆与角的配凑。
如分拆项: sin x+2cos x=(sin x+cos x)+cos x=1+cos x ;配凑角:a = (a+3)_3,3 =—2 (3)降次与升次。
(4)引入辅助角。
2 (4)化弦(切)法。
asin 0 +bcos 0 = • a b sin( 0 + ),这里辅助角 所在象限由a 、b 的符号确定, 角的值由tan=—确定。
a1.已知 tanx=2,求 sinx , cosx 的值.解:因为tan xsin x ,又 sin x + cos x=1 ,cosxsinx 2 cosx联立得Ex Ex 1解这个方程组2亦.sinxsin x5J5, cosx cosx 5 2.55 .5~5tan( 120 )cos(210 )sin( 480 )2.求——的值.tan( 690 ) sin( 150 ) cos(330 )解:原式tan( 120 180 ) cos(180 30 )sin( 360 120 ) tan( 720 30o )sin( 150 )cos(36030 )tan 60 ( cos30 )( sin 120 ) tan30 ( sin 150 )cos302,解:法一:因为 sinx cosx 2, si nx cosx所以 sinx — cosx=2(sinx + cosx),得到sinx= — 3cosx ,又sin 2x + cos 2x=1,联立方程组,解得所以 sinx — cosx=2(sinx + cosx),sin x3 .10 sinx 3.10 10 1010,-.10, cosx 10 cosx 10所以 sin xcosx310法 因为卄 sin x cosx 3.若sin x cosx2,,求 sinxcosx 的值.sin x cosx sin x cosxf(x)取最小值为 2 所以(sinx — cosx)2=4(si nx+ cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,所以有 sin x cosx 4.求证: 证明:法二: 10tan x sin x=tan x — sin x . 法 :右边一 tan 2x — sinknan 2x — (tan 2x cos 2x)=tan 2x(1 — cos 2x)=tan 々 sin 2x , 冋题得证.左边 =tan 2x sin 2x=tan 2x(1 — cos 2x)=tan 2x — tan 2x c os 2x=tan 2x — sin 2x ,问题得证. x n 5.求函数y 2sin( )在区间[0, 2 ]上的值域.2 6解:(1)y=sin 2x — cosx + 2 = 1 — cos 2x — cosx + 2= — (cos 2x + cosx) + 3,利用二次函数的图象得到 y [1 d].,4(2)y = 2sinxcosx — (sinx + cosx)=(sinx + cosx)2— 1 — (sinx + cosx),令 t=sinx + cosx 、. 2 , sin(x J ,则4t [2, 2 ]则,y t 2 t 1,利用二次函数的图象得到y [ —,1.2].47.若函数y=Asin@x 妨(3>0, $>0)的图象的一个最高点为(2^. 2),它到其相邻的最低点之间的图 象与x 轴交于(6, 0),求这个函数的一个解析式.1 解:由最高点为(2,、、2),得到A ,2,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是 14个周期,这样求得T 4 , T=16,所以 n48又由血 於sin(上2),得到可以取-.y J2sin(-x -).848 48.已知函数 f(x)=cos 4x — 2sinxcosx — sin 4x .n(i )求f(x)的最小正周期;(n )若x [0,—],求f(x)的最大值、最小值.21 sin x数y的值域.3 cosx解:(I )因为 f(x)=cos 4x — 2sinxcosx — sin4x = (cos 2x — sin 2x)(cos 2x + sin 2x) — sin2x (cos 2 x sin 2 x) sin 2x cos2x解: 因为O W x < 2 n,所以 n xn-6 2nin 由正弦函数的图象,6 6si n (x £ [2 6 y €[ — 1, 2]. 6.求下列函数的值域. (1)y = sin 2x — cosx+2;得到 所以 討,(2)y = 2sin xcosx — (sinx + cosx).令 t=cosx ,则 t [ 1,1], y (t 2t) 3(t A 213(t1)213sin 2x 2s in(n2x) 、2s in (2x —)4 4所以最小正周期为n(n )若x [0,丄],则(2x )[,-],所以当x=0时,f(x)取最大值为'• 2 sin( ) 1;当x —时,2 4 4 4 4 8f(x)取最小值为 2说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过o 3 .已知函数 f (x) 4sin x 2sin 2x(1 )求f (x)的最小正周期、f (x)的最大值及此时x 的集合; (2)证明:函数f (x)的图像关于直线x 卫对称。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。
2021新高考数学二轮复习技巧大全 百天冲刺专题练习19 三角恒等变换(解析版)

1.例题
【例 1】计算:
(1)cos(-15°);
(2)cos 15°cos 105°+sin 15°sin 105°.
【解析】(1)方法一 原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°= 3× 2+1× 2= 6+ 2.
2 222
4
方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°= 2× 3+ 2×1= 6+ 2. 2 2 22 4
满足 sin(α+β)= 5 ,则 cos β的值为________. 13
【答案】 -56或16 65 65
【解析】 由角α的终边过点 P 3 , 4 ,得 sin α=-4,cos α=-3.
5 5
5
5
由 sin(α+β)= 5 ,得 cos(α+β)=±12.
13
13
由β=(α+β)-α,得 cos β=cos(α+β)cos α+sin(α+β)sin α,
80°cos
80°=23sin1
·sin 20°
160°=2s3isnin2200°°=18.
【例 3】(1)1+tan 15°=________. 1-tan 15°
【解析】 3
原式= tan 45°+tan 15° =tan(45°+15°)=tan 60°= 3. 1-tan 45°tan 15°
(2)化简:tan 23°+tan 37°+ 3tan 23°tan 37°.
【解析】
方法一 tan 23°+tan 37°+ 3tan 23°tan 37°
=tan(23°+37°)(1-tan 23°tan 37°)+ 3tan 23°tan 37°
2021高三数学北师大版(理)课后限时集训:简单的三角恒等变换含解析

7.已知方程x2+3ax+3a+1=0(a>1)的两根分别为tanα,tanβ,且α,β∈ ,则α+β=________.
- π[依题意有
∴tan(α+β)= = =1.
又
∴tanα<0且tanβ<0,
∴- <α<0且- <β<0,
即-π<α+β<0,
结合tan(α+β)=1,
得α+β=- .]
A. B. 或-
C.- 或 D.-
D[由题意得tanα+tanβ=-3 <0,tanαtanβ=4>0,所以tan(α+β)= = ,且tanα<0,tanβ<0,又由α,β∈ 得α,β∈ ,所以α+β∈(-π,0),所以α+β=- .]
2.已知cos =- ,则sin 的值为( )
A. B.±
C.- D.
2021高三数学北师大版(理)课后限时集训:简单的三角恒等变换含解析
编 辑:__________________
时 间:__________________
建议用时:45分钟
一、选择题
1.已知sin =cos ,则tanα=( )
A.1B.-1
C. D.0
B[∵sin =cos ,
∴ cosα- sinα= cosα- sinα,
所以f = + sin
= + sin = + .
又因为sinα= ,且α∈ ,
所以cosα=- ,
所以f = +
= .
1.已知α∈ ,β∈ ,且cos = ,sin =- ,则cos(α+β)=________.
- [∵α∈ , -α∈ ,
cos = ,∴sin =- ,
∵sin =- ,∴sin = ,
(2)当x∈ 时,求函数f(x)的值域.
2021高考数学一轮复习课件_3.6简单的三角恒等变换

ππ 3.(2012·山东高考)若θ∈[ 4 , 2 ],sin
2θ=3 8 7,则
sin θ=( )
3
4
7
3
A.5
B.5
C. 4
D.4
ππ
π
【解析】 ∵θ∈[ 4 , 2 ],∴2θ∈[ 2 ,π].
∴cos 2θ=- 1-sin22θ=-18,
∴sin θ=
1-cos 2
2θ=34.
α
2 +cos
α2)(sin
α
2 -cos
α
2)
αα =cos2 2 -sin2 2 =cos α.
(1)(2012·重庆高考)sin
47°-sin 17°cos cos 17°
30°=(
)
A.-
3 2
B.-12
1 C.2
3 D. 2
(2)(2013·惠州模拟)已知cos(π4 -α)=1123,α∈(0,π4 ),则
αα·csoins
α α=2.
1.本题求解的关键在于:切化弦、通分(约分),然后 灵活运用倍角公式及其变形.
2.三角函数式的化简原则:一是统一角,二是统一函 数名.能求值的求值,必要时切化弦,更易通分、约分.
(1+sin 化简
α+cos α)(sin 2+2cos α
α
2 -cos
α
2 ) (π<α
2.用sin
α,cos
α表示tan
α 2
tan α2=1+sincosαα=1-sincosαα.
3.辅助角公式 asin α+bcos
α=___a_2_+__b_2__si_n_(_α__+__φ__)_
(其中tan
2021年高考数学·三角恒等变形的10大技巧

所以
1 tan
4sin2 2 cos2 2sin cos
,等式右边的式子分子分母同除 cos2
可得 4 sin2 2 cos2 2sin cos
4 tan2 2 2 tan
2
tan
1 tan
,
1 所以 tan
2
tan
1 tan
1 ,即 tan
1 tan
2 tan
1 tan15
③
1 tan15
其中,结果为 3 的式子的序号是_____.
【解析】①∵tan60°=tan(25°+35°)
tan25 tan35 1 tan25tan35
3
tan25°+tan35° 3 tan25°tan35° 3 1 tan25tan35 3 tan25°tan35° 3
x 2
4
sin 2
x
sin x [1
cos( x
2
)]
sin 2
x
sin x
f
(
x)
在区间
2 5
, 5 6
上是增函数,
0, 2 5
x
5 , 5
6
6
2
,0
3 5
当x
2
2k (k
Z ),
x
2
2k
(k
Z)
时,
f
(x)
取最大值,而
f
(x)
在[0, ] 上恰好取一次最大值
22
13
5
A. 7 25
B. 7 25
56
C.
65
D. 56 65
【解析】因为 tan
三角恒等变换及解三角形-2021届新高考数学知识点总结与题型归纳(解析版)

第12讲:三角恒等变换及解三角形考点1:三角恒等变形一、三角恒等变换1. 两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β(α,β,α+β≠kπ+π2,k ∈Z );变形式tan α±tan β=tan(α±β)(1∓tan αtan β)(α,β,α+β≠kπ+π2,k ∈Z ).2. 二倍角公式(1)sin 2α=2sin αcos α; 变形式sin αcos α=12sin 2α.(2)cos 2α=cos 2α−sin 2α=1−2sin 2α=2cos 2α−1; 变形式cos 2α=cos 2α+12;sin 2x =1−cos 2α2.(3)tan 2α=2tan α1−tan 2α. 3. 辅助角公式y =a sin α+b cos α=√a 2+b 2(√a 2+b 2α+√a 2+b 2α)=√a 2+b 2sin (α+φ),其中φ所在的象限由a 、b 的符号确定,φ角的值由tan φ=ba 确定. 4. 化简中常用1的技巧“1”的代换1=sin 2α+cos 2α;1=2cos 2α−cos 2α,1=cos 2α+sin 2α,1=tan π4.典例精讲【典例1】已知x,y∈R,满足x2+2xy+4y2=6,则z=x2+4y2的取值范围为()A.[4,12] B.[4,+∞)C.[0,6] D.[4,6]【分析】x2+2xy+4y2=6变形为(x+y)2+(√3y)2=6,设x+y=√6cosθ,√3y=sinθ,θ∈[0,2π).代入z=x2+4y2,利用同角三角函数基本关系式、倍角公式、两角和差的正弦公式化简整理即可得出.【解答】解:x2+2xy+4y2=6变形为(x+y)2+(√3y)2=6,设x+y=√6cosθ,√3y=√6sinθ,θ∈[0,2π).∴y=√2sinθ,x=√6cosθ−√2sinθ,∴z=x2+4y2=(√6cosθ−√2sinθ)+4(√2sinθ)=4sin2θ﹣4√3sinθcosθ+6,=2×(1﹣cos2θ)﹣2√3sin2θ+6=8﹣4sin(2θ+π6),∵sin(2θ+π6)∈[﹣1,1].∴z∈[4,12].故选:A.【点评】本题考查了同角三角函数基本关系式、倍角公式、两角和差的正弦公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【典例2】已知函数f(x)=sin(2x−π3),若方程f(x)=13在(0,π)的解为x1,x2(x1<x2),则sin(x1﹣x2)=()A.−2√23B.−√32C.−12D.−13【分析】由已知可得x2=5π6−x1,结合x1<x2求得x1的范围,再由sin(x1﹣x2)=sin(2x1−5π6)=﹣cos(2x1−π3)求解.【解答】解:∵0<x<π,∴2x−π3∈(−π3,5π3),又∵x 1,x 2是sin (2x −π3)=13的两根,可知x 1+x 22=5π12,∴x 2=5π6−x 1,∴sin (x 1﹣x 2)=sin (2x 1−5π6)=﹣cos (2x 1−π3), ∵x 1<x 2,x 2=5π6−x 1,∴0<x 1<5π12,则2x 1−π3∈(−π3,π2),故cos (2x 1−π3)=2√23, ∴sin (x 1﹣x 2)=−2√23. 故选:A .【点评】本题考查三角函数的恒等变换及化简求值,考查y =A sin (ωx +φ)型函数的图象和性质,是中档题.【典例3】已知s in2α=23,则tanα+1tanα=( ) A .√3 B .√2 C .3D .2【分析】由二倍角化简,sin2α=2sin αcos α,可得2sinαcosαsin 2α+cos 2α=23,弦化切,即可求解.【解答】解:由sin2α=2sin αcos α, 可得2sinαcosαsin 2α+cos 2α=23, ∴2tanαtan 2α+1=23,即tan 2α﹣3tan α+1=0. 可得tanα+1tanα=3. 故选:C .【点评】本题主要考察了同角三角函数关系式和二倍角公式的应用,属于基本知识的考查.【典例4】已知1sin cos 2αα+=,(0,)απ∈,则1tan (1tan αα+=- )AB. C.D.【分析】把已知等式两边平方,求得sin cos αα,进一步得到sin cos αα-的值,联立求得sin α,cos α,得到tan α,代入得答案.【解答】解:由1sin cos 2αα+=,(0,)απ∈,得112sin cos 4αα+=,32sin cos 4αα∴=-, 则sin 0α>,cos 0α<,sin cos αα∴-====联立1sin cos 2sin cos αααα⎧+=⎪⎪⎨⎪-⎪⎩sin α=,cos α=,tan α==.∴11tan 1tan αα-+==- 故选:B .【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是中档题. 【典例5】已知−π2<α<π2,2tan β=tan2α,tan (β﹣α)=﹣8,则sin α=( )A .−√53 B .−2√55 C .√53D .2√55【分析】2tan β=tan2α,∴2tan (β﹣α+α)=2tanα1−tan 2α,变形可得tan α=﹣2,可得sin α=−2√55.【解答】解:∵2tan β=tan2α,∴2tan (β﹣α+α)=2tanα1−tan 2α,∴2tan(β−α)+2tanα1−tan(β−α)tanα=2tanα1−tan 2α,∴−16+2tanα1+8tanα=2tanα1−tan 2α,化简得tan α=﹣2,∴α∈(−π2,0),∴sin α=−2√55. 故选:B .【点评】本题考查了两角和与差的三角函数,属中档题.【典例6】若α∈(π2,π),且3cos2α=2sin(π4−α),则cos2α的值为( )A .−4√29 B .4√29C .−79D .79【分析】利用二倍角的余弦函数公式化简已知等式可求cos α+sin α=√23①,两边平方,解得sin2α=−79,可求cos α﹣sin α=−√(cosα−sinα)2=−43,②由①+②可得cos α=√2−46,利用二倍角的余弦函数公式即可计算得解cos2α的值. 【解答】解:∵α∈(π2,π),且3cos2α=2sin(π4−α), ∴3(cos 2α﹣sin 2α)=√2(cos α﹣sin α),∴3(cos α﹣sin α)(cos α+sin α)=√2(cos α﹣sin α), ∴cos α+sin α=√23①,或cos α﹣sin α=0,(舍去),∴两边平方,可得:1+sin2α=29,解得:sin2α=−79,∴cos α﹣sin α=−√(cosα−sinα)2=−√1−sin2α=−√1−(−79)=−43,②∴由①+②可得:cos α=√2−46,可得:cos2α=2cos 2α﹣1=2×(√2−46)2﹣1=−4√29. 故选:A .【点评】本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.【典例7】已知sin()4πα+=(0,)απ∈,则cos(2)6πα+= .【分析】根据条件得到sin cos αα+=,sin cos αα-==,进而求得sin α,cos α,再利用两角和差公式运算即可【解答】解:sin()cos )4πααα+=+=,则有sin cos αα+=, 两边平方可得:11sin 23α+=,则2sin 23α=-,即有2sin cos 0αα<又因为(0,)απ∈,所以sin 0α>,cos 0α<,则sin cos αα-=,(法一)将sin cos αα-与sin cos αα+联立后解得sin α=,cos α=,则22cos 22cos 121αα=-=⨯-=,所以12cos(2)(()623πα+=-⨯-=.(法二)因为22cos 2cos sin (sin cos )(sin cos )ααααααα=-=-+-==所以12cos(2)(()623πα+=-⨯-=.【点评】本题考查两角和差的三角函数的求值,涉及方程思想,属于中档题 【典例8】已知α,β是函数1()sin cos 3f x x x =+-在[0,2)π上的两个零点,则cos()(αβ-= )A .1-B .89-C. D .0【分析】利用函数与方程之间的关系,结合三角函数的诱导公式,同角的三角函数的关系以及两角和差的三角公式分别进行转化求解即可.【解答】解:解法一:依题意,()()0f f αβ==,故1sin cos 3αα+=,由221sin cos 31sin cos αααα⎧+=⎪⎨⎪+=⎩, 得29sin 3sin 40αα--=,29cos 3cos 40αα--=且sin cos αα≠, 所以sin α,cos α是方程29340(*)x x --=的两个异根.同理可证,sin β,cos β为方程(*)的两个异根.可以得到sin sin αβ≠,理由如下:假设sin sin αβ=,则cos cos αβ=,又α,[0β∈,2)π,则αβ=,这与已知相悖,故sin sin αβ≠.从而sin α,sin β为方程(*)的两个异根,故4sin sin 9αβ=-.同理可求4cos cos 9αβ=-,所以8cos()cos cos sin sin 9αβαααβ-=+=-.解法二:令()0f x =,得1sin cos 3x x +=.令()sin cos g x x x =+,即())4g x x π=+,则α,β即为()g x 与直线13y =在[0,2)π上交点的横坐标, 由图象可知,524αβπ+=,故52πβα=-,又1)43πα+=,所以258cos()cos(2)cos[2()3]cos2()12sin ()24449ππππαβααπαα-=-=+-=-+=-++=-.解法三:依题意,不妨设02βαπ<<,则点(cos ,sin )A αα,(cos ,sin )B ββ为直线103x y +-=与单位圆的两个交点,如图所示.取AB 中点为H ,则OH AB ⊥,记AOH θ∠=.则22αβπθ-=-, 所以,2cos()cos(22)cos 22cos 1αβπθθθ-=-==-.另一方面,1|00|OH +-=,1OA =,故cos θ=,从而28cos()219αβ-=⨯-=-.故选:B .【点评】本题主要考查三角函数值的计算,利用函数与方程的关系,以及利用三角函数辅助角公式,同角关系以及两角和差的三角公式进行转化计算是解决本题的关键.难度中等.考点2:解三角形一、三角形当中的角与角之间的关系1. A+B+C=π2. sin A=sin(B+C)=sin B cos C+cos B sin C3. cos A=−cos(B+C)=−(cos B cos C−sin B sin C)4. tan A=−tan(B+C)=−tan B+tan C1−tan B tan C二、正弦定理1. 正弦定理:asin A =bsin B=csin C=2R;(R为三角形外接圆半径)2. 正弦定理变形式:(1)sin A=a2R ;sin B=b2R:sin C=c2R(2)a:b:c=sin A:sin B:sin C3. 正弦定理的应用(1)已知两角和任意一边,求另一角和其它的两条边(2)已知两边和其中一边的对角,求另一边和其中的对角三、余弦定理1. 余弦定理:a2=b2+c2−2bc cos A;b2=c2+a2−2ac cos B;c2=a2+b2−2ab cos C;2. 余弦定理变形式:cos A=b2+c2−a22bc;cos B=a2+c2−b22ac;cos C=a2+b2−c22ab.3. 余弦定理的应用(1)已知三边,求各角(2)已知两边和它们的夹角,求第三个边和其它的两个角(3)已知两边和其中一边的对角,求其它的角和边.四、面积公式1. SΔ=12aℎa=12bℎb=12cℎc(ℎa、ℎb、ℎc分别表示a、b、c上的高);2. SΔ=12ab sin C=12bc sin A=12ac sin B;3. SΔ=12ab sin C=abc4R;4. SΔ=12r(a+b+c)(r为三角形内切圆半径).典例精讲【典例1】在△ABC中,角A,B,C所对应的边分别为a,b,c.已知b=3√5,c=6√2,tan(A+π4)=2,则a=()A.15 B.3√5C.3 D.6√2【分析】先根据已知可得cos A的值,再根据余弦定理可得a.【解答】解:由tan(A+π4)=tanA+11−tanA=2,解得tan A=13,∴cos A=3√1010,由余弦定理可得a2=b2+c2﹣2bc cos A=45+72﹣36√10×3√1010=9,∴a=3.故选:C.【点评】本题考查了余弦定理,属中档题.【典例2】如图,在△ABC中,点D在边BC上,且BD=2DC,∠DAC=30°,AD=2,△ABC 的面积为3√3,则线段AB的长度为()A.3 B.2√2C.2√3D.3√2【分析】由已知可求△ADC的面积为√3,利用三角形的面积公式可求AC=2√3,根据余弦定理在△ACD中可求CD=2,由已知可求∠C=30°,BD=4,在△ABC中,根据余弦定理即可解得AB的值.【解答】解:∵BD=2DC,∠DAC=30°,AD=2,△ABC的面积为3√3,∴△ADC的面积为√3,可得:12AD⋅AC⋅sin∠DAC=12×2×AC×12=√3,∴解得:AC=2√3,∵△ACD中,CD2=12+4﹣2×2√3×2×cos30°=4,∴解得CD=2,∵∠DAC=30°,AD=2,BD=2DC,∴∠C=30°,BD=4,∴在△ABC中,AB2=(2√3)2+62﹣2×2√3×6×cos30°=12,解得:AB=2√3.故选:C.【点评】本题主要考查了三角形的面积公式,余弦定理在解三角形中的综合应用,注重考查了运算能力和转化的思想方法,本题的难点在于将△ABC的面积转化为△ADC的面积,这样才能把已知条件转移到同一个三角形中,再根据正弦定理,余弦定理得出相应的边长,属于中档题.【典例3】在△ABC中,角A,B,C所对的边分别为a,b,c若sin2A﹣sin2B﹣sin2C=﹣sin B sin C,c b =12+√3,则tan B=()A.2 B.12C.2+2√33D.3(√3−1)4【分析】由条件利用正弦定理可得b2+c2﹣a2=﹣bc,再由余弦定理可得cos A=−12,可得A =60°,利用正弦函数,三角函数恒等变换的应用化简已知等式从而求得tan B的值.【解答】解:在△ABC中,由sin2A﹣sin2B﹣sin2C=﹣sin B sin C,利用正弦定理可得:a2﹣b2﹣c2=﹣bc,再由余弦定理可得:cos A=b 2+c2−a22bc=bc2bc=12,∴A=60°,∵cb =12+√3,由正弦定理可得:sin C=sin B(12+√3),可得:sin(2π3−B)=sin B(12+√3),√32cos B+12sin B=12sin B+√3sin B,∴可得:tan B=12.故选:B.【点评】本题主要考查正弦定理和余弦定理的应用,根据三角函数的值求角.【典例4】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=√3−1 .【分析】先在△ADB中用正弦定理求得BD,再在△DBC中用正弦定理求得sin∠DCB,然后根据∠DCB=θ+π2可求得.【解答】解:∵∠DAC=15°,∠DBC=45°,∴∠ADB=30°,在△ADB中,由正弦定理得:ABsin∠ADB =BDsin∠DAB,∴BD=ABsin∠ADBsin∠DAB═25(√6−√2),在△DBC中,CD=25,∠DBC=45°,BD=25(√6−√2),由正弦定理BDsin∠DCB =CDsin∠DBC,∴sin∠DCB=BDsin45°CD=√3−1,∴sin(θ+π2)=√3−1,∴cosθ=√3−1.故答案为:√3−1.【点评】本题考查了正弦定理以及诱导公式,属中档题.【典例5】如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D 处的北偏西15︒、北偏东45︒方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60︒方向,则A,B两处岛屿间的距离为()A .B .C .20(1海里D .40海里【分析】分别在ACD ∆和BCD ∆中利用正弦定理计算AD ,BD ,再在ABD ∆中利用余弦定理计算AB . 【解答】解:连接AB ,由题意可知40CD =,105ADC ∠=︒,45BDC ∠=︒,90BCD ∠=︒,30ACD ∠=︒,45CAD ∴∠=︒,60ADB ∠=︒,在ACD ∆中,由正弦定理得40sin30sin 45AD =︒︒,AD ∴=, 在Rt BCD ∆中,45BDC ∠=︒,90BCD ∠=︒,BD ∴==在ABD ∆中,由余弦定理得AB = 故选:A .【点评】本题考查了解三角形的应用,合理选择三角形,利用正余弦定理计算是关键,属于中档题.【典例6】已知ABC ∆的三边分别为a ,b ,c ,若满足22228a b c ++=,则ABC ∆面积的最大值为( )A B C D .【分析】由三角形面积公式,同角三角函数基本关系式,余弦定理可求222221(83)416c S a b -=-,进而利用基本不等式,从而可求222458()5165S c --,从而利用二次函数的性质可求最值. 【解答】解:由三角形面积公式可得:1sin 2S ab C =, 可得:222222222211(1cos )[1()]442a b c S a b C a b ab+-=-=-,22228a b c ++=,22282a b c ∴+=-,可得:222822a b c ab +=-,解得:24ab c -,当且仅当a b =时等号成立,22222221[1()]42a b c S a b ab+-∴=-2222183[1()]42c a b ab -=- 22221(83)416c a b -=-22221(83)(4)416c c ---42516c c =-+22458()5165c =--,当且仅当a b =时等号成立,∴当285c =时,42516c c -+取得最大值45,S . 故选:B .【点评】本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理,基本不等式,二次函数的最值的综合应用,考查了运算能力和转化思想,难度中等.【典例7】ABC ∆的内角A 、B 、C 的对边分别为a、b 、c,已知sin sin sin sin a b B c C a A c B =+=+,则ABC ∆的周长的最大值是()A.B.3+C.D.4【分析】由已知利用余弦定理可求A ,利用3a =和sin A 的值,根据正弦定理表示出b 和c ,代入三角形的周长a b c ++中,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦函数的值域即可得到周长的最大值.【解答】解:sin sin sin sin a b B c C a A c B +=+,∴由正弦定理可得:222bc a bc +-=,2221cos 222b c a bc A bc bc +-∴===,(0,)A π∈,3A π∴=, ∴由a2sin sin sin a b cA B C===,2sin b B ∴=,2sin c C =,则2sin 2sin a b c B C +++22sin 2sin()3B B π+-3sin B B =+)6B π++,可知周长的最大值为故选:A.【点评】此题考查学生灵活运用正弦、余弦定理化简求值,灵活运用两角和与差的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.综合练习一.选择题(共5小题)1.已知函数()sin 2cos f x x x =+,若直线x θ=是曲线()y f x =的一条对称轴,则cos2θ=35. 【分析】引入辅助角ϕ,根据对称性的性质可得,sin()1θϕ+=±,从而12k θϕππ+=+,k z ∈,结合诱导公式及二倍角公式即可求解.【解答】解:()sin 2cos )(sin f x x x x ϕϕ=+=+=,cos ϕ=的一条对称轴方程是x θ=, sin()1θϕ∴+=±,12k θϕππ∴+=+,k z ∈.12k θϕππ∴=-++,k z ∈.222k θϕππ∴=-++,k z ∈,23cos22cos 15ϕϕ=-=-,3cos2cos25θϕ∴=-=.故答案为:35.【点评】本题考查正弦函数的性质,突出考查其对称性,考查分析、运算能力,属于中档题.2.若关于x 的方程(sin x +cos x )2+cos2x =m 在区间[0,π)上有两个根x 1,x 2,且|x 1﹣x 2|≥π4,则实数m 的取值范围是( )A.[0,2)B.[0,2] C.[1,√2+1] D.[1,√2+1)【分析】直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质求出结果.【解答】解:关于x的方程(sin x+cos x)2+cos2x=m在区间[0,π)上有两个根x1,x2,方程即sin2x+cos2x=m﹣1,即 sin(2x+π4)=√2,∴sin(2x+π4)=√2在区间[0,π)上有两个根x1,x2,且|x1﹣x2|≥π4.∵x∈[0,π),∴2x+π4∈[π4,9π4),∴−√22≤2≤√22,求得 0≤m≤2,故选:B.【点评】本题主要考查三角恒等变换,正弦函数的图象和性质,属于中档题.3.《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形的一个锐角为α,且小正方形与大正方形面积之比为9:25,则sin2α的值为()A.49B.59C.916D.1625【分析】由题意利用直角三角形中的边角关系可得 5sinα﹣5cosα=3,两边平方并利用二倍角的正弦公式,求得sin2α的值.【解答】解:∵小正方形与大正方形面积之比为9:25,设小正方形的边长为3,则大正方形边长为5,由题意可得,小直角三角形的三边分别为5cosα,5sinα,5,∵4个小直角三角形全等,故有5cosα+3=5sinα,即 5sinα﹣5cosα=3,平方可得sin2α=1625,故选:D .【点评】本题主要考查直角三角形中的边角关系,二倍角的正弦公式的应用,属于中档题. 4.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示ABC ∆的面积,若cos cos sin c B b C a A +=,222)S b a c =+-,则(B ∠= )A .90︒B .60︒C .45︒D .30︒【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin 1A =,结合A 的范围可求090A =,由余弦定理、三角形面积公式可求tan C ,结合范围00090C <<,可求C 的值,根据三角形面积公式可求B 的值.【解答】解:由正弦定理及cos cos sin c B b C a A +=, 得2sin cos sin cos sin C B B C A +=,可得:2sin()sin C B A +=, 可得:sin 1A =, 因为000180A <<, 所以090A =;由余弦定理、三角形面积公式及222)S b a c =+-,得1sin 2cos 2ab C ab C =, 整理得tan C = 又00090C <<, 所以060C =, 故030B =. 故选:D .【点评】本题主要考查正、余弦定理、两角和的正弦函数公式、三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.5.在△ABC中,角A,B,C所对的边分别为a,b,c,a=3,c=2√3,b sin A=acos(B+π6),则b=()A.1 B.√2C.√3D.√5【分析】由正弦定理得b sin A=a sin B,与b sin A=a cos(B+π6),由此能求出B.由余弦定理即可解得b的值.【解答】解:在△ABC中,由正弦定理得:asinA =bsinB,得b sin A=a sin B,又b sin A=a cos(B+π6).∴a sin B=a cos(B+π6),即sin B=cos(B+π6)=cos B cosπ6−sin B sinπ6=√32cos B−12sin B,∴tan B=√33,又B∈(0,π),∴B=π6.∵在△ABC中,a=3,c=2√3,由余弦定理得b=√a2+c2−2accosB=√2=√3.故选:C.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.二.填空题(共4小题)6.已知sin2(α+π6)+cos2(α−π3)=32,若α∈(0,π),则α=π6或π2【分析】根据α−π2=α+π6−π2以及诱导公式变形可得.【解答】解:由sin 2(α+π6)+cos 2(α−π3)=32得sin 2(α+π6)+cos 2(α+π6−π2)=32,得sin 2(α+π6)+sin 2(α+π6)=32.得sin 2(α+π6)=34,得sin (α+π6)=±√32,∵α∈(0,π),∴α+π6∈(π6,7π6),∴α+π6=π3或α+π6=2π3,α=π6或α=π2.故答案为:π6或π2.【点评】本题考查了两角和与差的三角函数,属中档题.7.在△ABC 中,若tan A +tan B +tan A tan B =1,则cos 2A +cos 2B 的范围为 (32,√22+1]【分析】将已知条件切化弦可得A +B =π4,B =π4−A ,再把cos 2A +cos 2B 化成1+√22sin (2A +π4)后,利用三角函数的性质可得.【解答】解:由tan A +tan B +tan A tan B =1得sinAcosA+sinB cosB+sinAsinB cosAcosB=1,得sin (A +B )=cos (A +B ),得tan (A +B )=1, ∵0<A +B <π,∴A +B =π4,∴B =π4−A ,0<A <π4, ∴cos 2A +cos 2B =cos 2A +cos 2(π4−A )=1+cos2A2+1+cos(π2−2A)2=1+12(cos2A +sin2A )=1+√22sin (2A +π4) ∵0<A <π4,∴2A +π4∈(π4,3π4),∴sin (2A +π4)∈(√22,1], cos 2A +cos 2B 的范围为(32,√22+1].故答案为:(32,√22+1].【点评】本题考查了两角和与差的三角函数,属中档题. 8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =√3,√3+b c=sinC+sinAsinC+sinA−sinB ,则b +2c 的最大值等于 2√7 .【分析】先根据正弦定理化为边的关系,再根据余弦定理得A ,最后根据正弦定理以及三角形内角关系化基本三角函数,根据正弦函数性质得最大值. 【解答】解:原等式可化为a+b c=c+a c+a−b,整理,得:a 2=b 2+c 2﹣bc ,故:cos A =b 2+c 2−a 22bc=12,由A ∈(0,π),可得A =π3. 因为bsinB =csinC =asinA =2,可得:b +2c =2sin B +4sin C =2sin B +4sin (2π3−B )=4sin B +2√3cos B =2√7sin (B +θ), 其中θ为锐角,tan θ=√32. 由于:B ∈(0,2π3),故当B +θ=π2时,b +2c 取得最大值为2√7. 故答案为:2√7.【点评】本题考查正弦定理、余弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.9.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,a =√2,a cos B +b sin A =c ,则△ABC 的面积的最大值为√2+12.【分析】运用正弦定理和诱导公式、两角和的正弦公式,同角的商数关系,计算即可得到A 的值,由余弦定理,结合基本不等式,即可得到bc 的最大值,利用三角形的面积公式即可计算得解.【解答】解:∵a cos B+b sin A=c,∴由正弦定理得:sin C=sin A cos B+sin B sin A①又∵A+B+C=π,∴sin C=sin(A+B)=sin A cos B+cos A sin B②∴由①②得sin A=cos A,即:tan A=1,又∵A∈(0,π),∴A=π4;∵a=√2,∴由余弦定理可得:2=b2+c2﹣2bc cos A=b2+c2−√2bc≥2bc−√2bc=(2−√2)bc,可得:bc≤2−√2,当且仅当b=c时等号成立,∴△ABC的面积为S=12bc sin A=√24bc≤√24×2−√2=√2+12,当且仅当b=c时,等号成立,即面积最大值为√2+12.故答案为:√2+12.【点评】本题考查正弦定理、余弦定理和面积公式的运用,同时考查三角函数的恒等变换公式的运用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题19 三角恒等变换【高考地位】三角函数学习中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换,是常用的解题工具. 但由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.方法一 运用转化与化归思想例1 已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin 233x cos x ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭的值为__________. 【答案】49【解析】第一步,利用各种角之间的数值关系,将它们互相表示,改变原角的形式:ππππππ-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛+-=-3232,3235x x x x 第二步,运用有关公式进行变形,主要是角的拆变:5cos 22cos 23333sin x x sin x x ππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫---=-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2cos212sin 3333sin x x sin x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-+++=-++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 第三步,得出结论: 5sin 233x cos x ππ⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭ 1241399=-+-=,故答案为49.【点评】本题主要考查了三角函数的恒等变换,属于基础试题,本题的解答中注意角的整体性和配凑. 【变式演练1】【吉林省梅河口市第五中学2020届高三第五次模拟】已知,02πθ⎛⎫∈-⎪⎝⎭,且cos2sin 0θθ+=,则sin 4πθ⎛⎫+= ⎪⎝⎭( )A .22- B .4C .4D .24+ 【答案】B 【解析】 【分析】首先利用二倍角公式求出sin θ,再根据同角三角函数的基本关系求出cos θ,最后利用两角和的正弦公式计算可得; 【详解】解:因为cos2sin 0θθ+=,所以212sin sin 0θθ-+=,解得sin 1θ=或1sin 2θ=-,因为,02πθ⎛⎫∈- ⎪⎝⎭,所以1sin 2θ=-,cos 2θ==所以1sin sin cos cos sin 4442πππθθθ⎛⎫+=+=-= ⎪⎝⎭ 故选:B 【点睛】本题考查同角三角函数的基本关系的应用,两角和的正弦公式及二倍角公式的应用,属于基础题. 【变式演练2】【2020届吉林省高三第二次模拟】设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724- B .524-C .524D .724【答案】D 【解析】【分析】利用倍角公式求得tan2α的值,利用诱导公式求得cos β的值,利用同角三角函数关系式求得sin β的值,进而求得tan β的值,最后利用正切差角公式求得结果. 【详解】1tan 2α=,22tan 4tan21tan 3ααα==-,()4cos cos 5πββ+=-=-,()(0,βπ∈,4cos 5β∴=,3sin 5β=,3tan 4β=,()43tan2tan 734tan 2431tan2tan 24134αβαβαβ---===++⨯, 故选:D. 【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.方法二 运用函数方程思想例2 已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin42cos3sin x x x -= ( ) A.79 B. 79- C. D.【答案】B【解析】第一步,将把某个三角函数式看作未知数,利用已知条件或公式列出关于未知数的方程:由()sin4sin 3x sin3xcosx cos3xsinx x x =+=+可得:sin42cos3sin sin3xcosx cos3xsinx x x x -=-142sin 2422cos 2sin 2-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-==ππx第二步,得出结论: 所以原式97-=,故选:B 【点评】三角函数也是函数中的一种,其变换的实质仍是函数的变换.因此,有时在三角恒等变换中,可 以把某个三角函数式看作未知数,利用条件或公式列出关于未知数的方程求解.【变式演练3】【陕西省西安市八校2020届高三联考】已知sinα、cosα是方程5x 2﹣2=0的两个实根,且α∈(0,π),则cos (α+4π)=( )A .10B .﹣10C D 【答案】D 【解析】 【分析】根据韦达定理可得sin cos 5αα+=,2sin cos 5αα⋅=-,结合(0,)απ∈,可得cos sin 0αα-<,根据两角和的余弦公式可得cos()(cos sin )42πααα+=-=此可得结果. 【详解】因为sinα、cosα是方程5x 2﹣2=0的两个实根,所以sin cos αα+=2sin cos 5αα⋅=-,因为(0,)απ∈,且sin cos 0αα⋅<,所以sin 0α>且cos 0α<, 所以cos sin 0αα-<,所以cos()cos cossin sin444πππααα+=-(cos sin )2αα=-===2=-=. 故选:D.【点睛】本题考查了韦达定理,两角和的余弦公式,属于基础题.【变式演练4】【2020届河南省商丘周口市部分学校联考高三5月质量检测】已知tan θ是方程2610x x -+=的一根,则2cos 4πθ⎛⎫+= ⎪⎝⎭( )A .34B .12C .13D .15【答案】C 【解析】 【分析】将tan θ代入方程,利用同角三角函数的基本关系式进行化简,求得sin 2θ的值,利用降次公式、诱导公式求得所求表达式的值. 【详解】由题意,2tan 6tan 10θθ-+=,则22sin 6sin 10cos cos θθθθ-+=,得22sin 6sin cos cos 0θθθθ-+=,得1sin cos 6θθ=,所以1sin 22sin cos 3θθθ==,所以21cos 21sin 22cos =422πθπθθ⎛⎫++ ⎪-⎛⎫⎝⎭+= ⎪⎝⎭111323-==. 故选:C.【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式、降次公式、诱导公式,属于基础题.方法三 运用换元思想例3 若求的取值范围. 【答案】[22-. 【解析】第一步,运用换元法将未知向已知转化:令t =+βαcos cos ,则()()21cos cos sin sin 222+=+++t βαβα 第二步,利用特定的关系,把某个式子用新元表示,实行变量替换: 即()21cos 22+=-+t βα,所以()23cos 2-=-t βα 所以22322≤-≤-t ,即214214≤≤-t 第三步,得出结论: 所以214cos cos 214≤+≤-βα 【点评】本题属于“理解”层次,解题的关键是将要求的式子看作一个整体,通过 代数、三角变换等手段求出取值范围.【变式演练5】【江苏省2020届高三下学期6月高考押题】已知sin cos αα+=则24sin cos αα+的值为____________. 【答案】1825【解析】 【分析】先平方求出sin 2α,再利用二倍角公式求出4cos α,即可求解. 【详解】,22sin sin =+βαβαcos cos +βαcos cos +sin cos 5αα+=()24sin cos 1sin 25ααα∴+=+=即1sin 25α=- 2123412sin 2122525cos αα=-=-⨯=123182452525sin cos αα+=-+=故答案为:1825 【点睛】此题考查二倍角公式,关键熟记二倍角的各种变形,属于简单题目.【高考再现】1.【2020年高考全国Ⅲ卷理数9】已知2tan tan 74θθπ⎛⎫-+= ⎪⎝⎭,则tan θ= ( )A .2-B .1-C .1D .2 【答案】D【思路导引】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271t t t +-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选D .【专家解读】本题考查了三角函数知值求值问题的解法,考查两角和的正切公式,考查数学运算、数学建模等学科素养.解题关键是灵活运用三角函数有关公式进行计算. 2.【2017全国III 文,4】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C . 29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- .所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.3.【2018年全国I 卷】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A . 15 B . √55 C .2√55D . 1【答案】B 【解析】 【分析】首先根据两点都在角的终边上,得到b =2a ,利用cos2α=23,利用倍角公式以及余弦函数的定义式,求得a 2=15,从而得到|a |=√55,再结合b =2a ,从而得到|a −b |=|a −2a |=√55,从而确定选项. 【详解】由O,A,B 三点共线,从而得到b =2a , 因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23,解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 4.【2018年全国卷Ⅲ】若sinα=13,则cos2α= A . 89 B . 79 C . −79 D . −89 【答案】B 【解析】分析:由公式cos2α=1−2sin 2α可得。