第三章晶格振动和晶体的热学性质

合集下载

第三章 晶格振动与晶体的热学性质

第三章 晶格振动与晶体的热学性质
q , 1BZ a a
例:晶格对下面两种波 的“感受”完全一样
1 4a, q1 2a 4a 5 2 , q2 5 2a
21
3 波恩-冯卡门边界条件:
前面没有考虑边界效应,相当于无穷长链。有 限长链考虑边界。
驻波条件:假定两端不动,而中间原子振动。 周期性边界:两端原子也振动,但假定右端和 左端相连接,这相当于一个首尾连接的大圆环 本书取第二种边界条件。由于宏观固体很大, 边界效应不重要,采用两种边界条件都可以, 周期性边界在数学上更简便。
当λ 减小时,晶格的不连 续性变得更重要,原子开 始对波产生散射,散射的 结果是减小波速而阻碍波 的传播
k
这是本章的重点主要结论
6
§3.1 简正模和格波
一、微振动理论
例:单谐振子
1 2 1 2 1 2 1 2 2 kx q q , q mx H mx 2 2 2 2
40
晶格中任意振动,可以分解为这些格波的 线性叠加
两种模分别形成两个带,带间有带隙
41
§3.4 三维晶格的振动 格波量子-声子
一、三维晶格的振动
三维情况可以以一维情况类似推得出一些 结论,而不需严格求解 系统: N=N1× N2× N3 个元胞,每个元胞 中有n个原子 有N个独立波矢:
h1 h2 h3 Ni Ni q b1 b2 b3 , hi N1 N2 N3 2 2
晶格动力学和晶体的热性质
重点
第三章
格波:有什么特点(与机械波比较) 声学支、光学支:意义是什么 布里渊区:为什么有这个概念
难点
在第一章,假定原子在格点位置上静止不 动。称其为平衡位置。 实际上原子绕平衡位置附近振动。晶格振 动对固体的热学、声学和光学性质有重要 影响。包括金属的超导电性也与晶格振动 相关。 本章主要讨论晶格振动的描述——格波

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

固体物理-第3章-晶体振动与晶体热学性质-3.1

固体物理-第3章-晶体振动与晶体热学性质-3.1

第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
格波的意义
格波方程
un Aei(tnaq)
i(t 2 x )
对比连续介质波 Ae
A ei (t qx )
波数 q 2
—— 格波和连续介质波具有完全类似的形式
晶体中所有原子共同参与的一种频率相同的振动,不同 原子间有振动位相差,这种振动以波的形式在整个晶体 中传播,称为格波。
m
d 2un dt 2
(un1 un1 2un )
设方程解
un Aei(t naq)
naq — 第n个原子振动位相因子
un1 Aeitn1aq
un1 Aeitn1aq
得到 m2 (eiaq eiaq 2)
2 4 sin2 ( aq )
m
2
~ q —— 一维简单晶格中格波的色散关系,即振动频谱
—— N个原胞,有2N个独立的方程
方程解的形式
Aei[t(2na)q] 2n
and
Be 2n1
i [t ( 2 n 1) aq ]
两种原子振动的振 幅A和B一般不同
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
第2n+1个M原子 M &&2n1 (22n1 2n2 2n ) 第2n个m原子 m&&2n (22n 2n1 2n1)
要求 eiNaq 1 Naq 2h
q 2 h —— h为整数
Na
波矢的取值范围 q
a
a
N h N
2
2
h — N个整数值 q 取N个不同分立值
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
N h N

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

固体物理(第三章 晶格振动与晶体的热学性质)

固体物理(第三章 晶格振动与晶体的热学性质)

µi 之间,通过如下形式的正交变
mi µ i = ∑ aij Q j
j =1
3N
= ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
m1 µ1 = a11Q1 + a12Q2 + L + a13 N Q3 N
§3-1 简谐近似和简正坐标 8 / 17
& i2 µ
mi µ i = ∑ aij Q j = ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
15 / 17 11/11
§3-1 简谐近似和简正坐标
由上所述,只要能找到体系的简正坐标,或者说振动模, 问题就解决了。
§3-1 简谐近似和简正坐标
16 / 17
§3-1 简谐近似和简正坐标
17 / 17
Qi = A sin(ωi t + δ )
§3-1 简谐近似和简正坐标 10 / 17
任意简正坐标的解为:
Qi = A sin(ωi t + δ )
ωi
是振动的圆频率,ωi
= 2πν i
表明:一个简正振动是表示整个晶体所有原子都参与的振 动。而且它们的振动频率相同。一个简正振动并不是表示某一 个原子的振动。 由简正坐标所代表的体系中所有原子一起参与的共同振动 常常称为一个振动模。
能量本征值
ε i = (ni + )hωi
ϕ n (Qi ) =
i
1 2
本征态函数
ωi
ξ=
Qi h H ni (ξ ) 表示厄密多项式
14 / 17
ω
ξ2 exp H ni (ξ ) − 2 h

固体物理晶格振动

固体物理晶格振动

3. 量子描述
1 3N 2 H = pi i2Qi2 2 i =1
根据经典力学写出的哈密顿量, 可以直接用来作为量子力学分 析的出发点, 只要把 pi 和 Qi 看作量子力学中的正则共轭算符
3N 1 2 2 2 2 i Qi (Q1 , Q2 ,, Q3 N ) 2 Qi i =1 2 = E (Q1 , Q2 ,, Q3 N )



方程的一般解: un = Aj e
j
i j t naq j

=
1 Nm
Q q, t einaq
q
Q(q, t ) = Nm A j e
i j t
线性变换系数正交条件:
1 N
e
n
ina q q
= q , q
系统的总机械能化为(详细推导过程见后面附录部分)
处理小振动问题时往往选用 位移矢量u (t) 的 3N 个分量 n 与平衡位置的偏离为宗量 写成ui (i=1,2,…,3N)
N 个原子体系的势能函数可以在平衡位置附近展开成泰勒级 数
V 1 3 N 2V V = V0 ui 2 i , j =1 ui u j i =1 ui 0
q=
2π s Na
晶格振动波矢只能取分立的值, 即是量子化的. 为了保证un的单值性, 限制q在一个周期内取值
< q
N N , 0, 1, 2, , 1), ( 2), ( 3), 1, 2 2
N N <s 2 2
2π q= s Na 波矢q也只能取 N 个不同的值, 即
1 2 晶体链的动能: T = mun 2 n 1 2 晶体链的势能: U = un un 1 2 n 1 1 2 2 系统的总机械能: H = mun un un1 2 n 2 n

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。

只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。

由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。

对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。

和光子的情形相似,这些谐振子的能量量子称为声子。

这样晶格振动的总体就可以看成声子系综。

若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。

当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。

晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。

ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。

这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。

若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。

23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、一维双原子链的振动 (揭示复式格子振动的基本特点)
模型:一维无限长双原子链,原子质量为m和M,且m<M。 原胞长仍为a,两原子之间的距离为a / 2 ,恢复力系数为。
总长为 L = Na , N为原胞总数。
质量为M的原子编号为:··· n-1,1、 n,1、n+1,1、··· 质量为m的原子编号为:··· n-1,2、 n,2、n+1,2、···
本章主要内容:
➢ 先讨论简谐晶体的经典运动,建立原子的运动方程, 得到 晶格振动的能量和频率并讨论其色散关系。
➢ 对简谐晶体进行量子力学处理,将多体问题化为单体 问题,并建立声子的概念(晶格振动波的能量量子)
➢ 晶格振动谱的实验测定原理和方法。 ➢ 对晶体的热学性质,即比热、热膨胀和热导率等进行讨论
(3)周期性边界条件、第一布里渊区中的模数
a
波恩-卡门边界条件 a
(周期性边界条件)
q的取值采用波恩-卡门边界条件(周期性边界条件)来定:
u1 u N 1
N为晶格中的原子个数(晶胞数 )
即:
Ae Ae i(qat)
i[q( N 1)at ]
un Aei(qnat)
u1 u N 1
Ae Ae i(qat)
m 2
具有周期对称性,周期为2 / a ,即
在晶格中具有物理意义的波矢仅存在于 / a q / a 的区间
举例说明 un Aei(qnat)
第一布里渊区
(1) (2)
对格点振动有贡献的是原 子,两原子之间的振动在 物理上没有意义。
/ a q / a 第一布里渊区(倒格子空间)
倒格子空间-波矢空间
由于周期性,考虑 0q / a 的区间
当 q 2 / 0
2
m
sin
qa 2
m
sin
qa 2
ma / 2q
与 之间是线性关系
速度 v ma / 2
(弹性波的特点)
声学支格波(声学波): 长声学波为弹性波;频率较低
q 0, 0
(2)q空间的周期对称性
色散关系
2 sin qa
当δ很小时,作二级近似
恢复力 ------简谐近似
----胡克定律 ( 为倔强系数)
研究一维单原子链的振动
模型:设一维单原子链中,原子间距(晶格常量)为a, 总长为 L = Na , N为原子总数(晶胞数 ) ,原子质量为m。
第n个粒子的受力情况:
运动方程:
假设晶格足够长,可忽略边界。以行波作试探解,即
设 un,1、un,2是相应于原子M、m在沿链方向对其平衡位置的偏离
方程和解
和单原子链类似,若只考虑最近邻原子的相互作用,则有:
Mun,1 2un,1 un,2 un1,2 mun,2 2un,2 un1,1 un,1
类似于前面的讨论,可取解的形式为: 代入运动方程得:
(2 m 2 ) A (2 cos qa )B 0
1)色散曲线
第三章 晶格振动和晶体的热学性质
晶格振动:组成晶体的原子并非固定于格点位置,而是以 格点为平衡位置作热振动
晶格振动的强弱依赖于温度,对晶体热学性质起重要作用 (热容、热膨胀和热传导等)。另外,对晶体的光学性质 和电学性质等也有重要影响。
点阵动力学的建立
1907年,Albert Einstein发表了题为“Planck辐射理论与比热 的理论”,第一次提出比热的理论。更重要的,第一次提出经典 力学的点阵振动和量子力学的谐振子能级可以对应。 1912年,Peter Joseph William Debye认识到,Einstein提出 的比热公式在极低温下与实验不符合,是因为没有考虑到晶体 中的原子振动频率不是单一的。后来德拜通过谐振理论求得近 似的原子振动的频率分布,得到与实验更加符合的比热公式。 1912年,Max Born和Theodore von Karman发表了题为“论空间 点阵的振动的论文”。提出晶体中原子振动应该是以点阵波的形 式存在,是点阵动力学的奠基之作。 1920-1950年,点阵动力学被应用到晶体的热力学性质、热传导、 电导、介电、光学和X射线衍射等诸多方面。比较完整地总结在 Max Born和黄昆的书“晶体点阵的动力理论”中。 1950年以后,发展了测量点阵动力学性质的实验:中子衍射。
§3.1 一维晶格的振动
一、一维单原子链的振动
(简单格子,揭示晶格振动的基本特点)
研究固体中原子振动时的两个假设: ❖每个原子的中心的平衡位置在对应Bravais点阵的格点上. ❖原子离开平衡位置的位移与原子间距比是小量,可用谐振近似 . 二原子间的相互作用能
两原子之间的相互作用能为U(r),r为两原子间的距离; 把U(r)在平衡位置r0附近作泰勒展开:
i[q( N 1)at ]
eiqNa 1
得: qNa 2l l =0,±1,±2……等整数
q 2 l
Na
在第一布里渊区,q取值为
/a q /a
对应于 N / 2l N / 2 ( l 只能取N个值----模数 )
结论:在第一布里渊区内的q值唯一地描述了所有的晶格 振动模式,这些值的数目等于晶格的自由度数N。
2 cos qa
2
2
2 M 2
0
Mm 4
2
(M
m) 2
4
2
sin 2
1 2
qa
0
Mm 4
2 (M
m) 2
4
2
sin 2
1 2
qa
0
M mM
1
1
4mM (m M )2
sin 2
1 2
1
qa
2
—最简单的一维双原子链的色散关系
2
(2 cos qa ) A (2 M 2 )B 0
2
(2 m 2 ) A (2 cos qa )B 0
2
(2 cos qa ) A (2 M 2 )B 0
2 上式看成是以A、B为未知数的线性齐次方程.
以A、B为未知数的线性齐次方程有非零解的条件为系数 行列式为零:
2 m 2 2 cos qa
un Aei(qnat)
代入运动方程得:
利用
,和
得:
即: 2
m
sin qa 2
m
sin
qa 2
其中
m 2
m
一维Bravais格子的色散关系
(频率与波矢之间的关系)
色散概念来自于光学,不同频率的光在同一介质中的传播速 度不同,于是产生色散,频率与波矢之间的关系叫色散关系
讨论:
(1)长波极限
相关文档
最新文档