高考数学一轮复习平面向量【导学案】学案23
高三数学一轮复习 2.3 平面向量学案

专题二:三角函数、三角变换、解三角形、平面向量第三讲平面向量【最新考纲透析】1.平面向量的实际背景及基本概念(1)了解向量的实际背景。
(2)理解平面向量的概念,理解两个向量相等的含义。
(3)理解向量的几何意义。
2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义。
(2)了解平面向量的数量积与向量投影的关系。
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
5.向量的应用(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
【核心要点突破】要点考向1:向量的有关概念及运算考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。
2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。
3.多以选择、填空题的形式出现,有关会渗透在解答题中。
考向链接:向量的有关概念及运算要注意以下几点:(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。
(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻(3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。
例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)=(,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +⋅= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.【思路点拨】根据所给定义逐个验证.【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙apn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B.【方法技巧】自定义型信息题1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型.2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性要点考向2:与平面向量数量积有关的问题考情聚焦:1.与平面向量数量积有关的问题(如向量共线、垂直及夹角等问题)是高考考查的重点。
天津市高考数学一轮复习 平面向量线性运算及综合应用问题导学案-人教版高三全册数学学案

平面向量线性运算及综合应用问题知识梳理教学重、难点作业完成情况典题探究例1若向量BA →=(2,3),CA →=(4,7),则BC →=( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)例2设a ,b 都是非零向量.下列四个条件中,使a |a |=b|b |成立的充分条件是( ).A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |例3设a ,b 是两个非零向量,下列选项正确的是( ).A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |例4已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.演练方阵A 档(巩固专练)1.若向量,a b 满足|||||1==+=a b a b ,则⋅a b 的值为 ( ) A .12- B .12C . 1-D . 1 2.已知ABCD 为平行四边形,若向量AB =a ,AC =b ,则向量BC 为( )A .-a bB .a +bC .-b aD .--a b3.在△ABC 中,,1AB AC AC ⊥=,点D 满足条件3BD BC =,则AC AD ⋅等于( )A .3B .1C .32D .124.已知平面向量=(1,2)=(2,)m -,a b , 且∥a b , 则m 的值为( )A .1-B .C .4-D .45.△ABC 外接圆的半径为1,圆心为O ,且2OA AB AC ++=0, ||||OA AB =,则CA CB⋅等于( )A .32B .3C .3D .236.已知向量()()k b a ,2,1,2-==,且(2)a a b ⊥-,则实数=k ( )A .14-B .6-C .6D .147.在平面直角坐标系xoy 中,已知A(1,0),B (0,1),点C 在第二象限内,56AOC π∠=,且|OC|=2,若OC OA OB λμ=+,则λ,μ的值是( )A .3,1B .1,3C .-1,3D .3-,18.向量=(3,4)=(,2)x ,a b , 若⋅a b =a ,则实数x 的值为( )A .1-B .12-C .13-D .19.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--10.对任意两个非零的平面向量α和β,定义⋅=⋅αβαβββ,若平面向量,a b 满足0≥>a b ,a 与b 的夹角(0,)3θπ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则a b =( )A .21B .2C . 23D .23B 档(提升精练)1.已知矩形ABCD 中,2AB,1AD ,E 、F 分别是BC 、CD 的中点,则()AE AF AC等于 .2.在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=AD=1,BC=2,E 是CD 的中点, 则CD BE ⋅= .3.已知1||=a ,2||=b ,向量a 与b 的夹角为60,则=+||b a .4.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.5.在边长为1的正方形ABCD 中,E 、F 分别为BC 、DC 的中点,则向量AE AF ⋅= . 6.在ABC ∆中,D 为BC 中点,若120BAC ∠=︒,1AB AC ⋅=-,则AD 的最小值是 .7.已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.8.在边长为的等边ABC ∆中,D 为BC 边上一动点,则AB AD ⋅的取值范围是 .9.在Rt ABC ∆中,90C ︒∠=,4,2AC BC ==,D 是BC的中点,那么()AB AC AD -•= ____________;若E 是AB 的中点,P 是ABC ∆(包括边界)内任一点.则AD EP ⋅的取值范围是___________.10.在直角三角形ABC 中,90ACB ∠=︒,2AC BC ==,点P 是斜边AB 上的一个三等分点,则CP CB CP CA ⋅+⋅= .C 档(跨越导练)1.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =( ).A .2B .3C .4D .52.如图,△ABC 中,∠C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →=( ).A .2B .3C .4D .63.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ).A . 5 B.10 C .2 5 D .104.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3;p 2:|a +b |>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π; p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝⎛⎦⎥⎤π3,π.其中的真命题是( ).A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 45.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ).A .2-1B .1 C. 2 D .26.已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-32,则λ=( ).A.12B.1±22C.1±102D.-3±222 7.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.8.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为____________;DE →·DC →的最大值为____________.9.已知向量a =(sin x ,-1),b =⎝⎛⎭⎪⎫cos x ,32.(1)当a ∥b 时,求cos 2x -3sin 2x 的值;(2)求f (x )=(a +b )·b 的最小正周期和单调递增区间.10.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.成长足迹课后检测学习(课程)顾问签字:负责人签字:教学主管签字:主管签字时间:平面向量线性运算及综合应用问题参考答案典题探究例1.答案: A解析:[抓住向量的起点与终点,用终点坐标减去起点坐标即可.由于=(2,3),=(4,7),那么=+=(2,3)+(-4,-7)=(-2,-4).]例2.答案:C解析:[对于A ,注意到当a =-b 时,a |a |≠b |b |;对于B ,注意到当a ∥b 时,a |a |与b|b |可能不相等;对于C ,当a =2b 时,a |a |=2b |2b |=b|b |;对于D ,当a ∥b ,且|a |=|b |时,可能有a =-b ,此时a |a |≠b |b |.综上所述,使a |a |=b |b |成立的充分条件是a =2b .]例3.答案:C解析:[对于A ,可得cos 〈a ,b 〉=-1,因此a ⊥b 不成立;对于B ,满足a ⊥b 时,|a +b |=|a |-|b |不成立;对于C ,可得cos 〈a ,b 〉=-1,因此成立,而D 显然不一定成立.]例4.解析 依题意,可知|2a -b |2=4|a |2-4a ·b +|b |2=4-4|a ||b |·cos 45°+|b |2=4-22|b |+|b |2=10,即|b |2-22|b |-6=0,∴|b |=22+322=32(负值舍去).答案 3 2演练方阵A 档(巩固专练)1.A 2.C 3.A 4.C 5.C【解析】由2OA AB AC ++=0得0OA AB OA AC OB OC +++=+=,所以OB OC CO =-=,即O 时BC 的中点,所以BC 为外接圆的直径,2BC =。
高考数学第一轮复习教案 专题8平面向量

专题八 平面向量一、考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 二、考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式. 三、命题热点高考对解析几何的考查主要包括以下内容:平面向量的概念和线性运算、平面向量的数量积、平面向量的应用。
虽然该部分内容在试卷中试题数量多、占有的分值较多,但是试题以考查基础为主,试题的难度一般是中等偏下。
在高考中重点考查:平面向量的数量积、平面向量的几何意义等。
四、知识回顾(一)本章知识网络结构(二)向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 AB ;字母表示:a ;坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 运算类型几何方法坐标方法运算性质向量的 加法1.平行四边形法则2.三角形法则1212(,)a b x x y y +=++a b b a +=+()()a b c a b c ++=++AC BC AB =+向量的 减法三角形法则1212(,)a b x x y y -=--()a b a b -=+-AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ=2.λ>0时, a a λ与同向;λ<0时, a a λ与异向;λ=0时, 0a λ=.(,)a x y λλλ=()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+//a b a b λ⇔=向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,1212a b x x y y •=+a b b a •=•()()()a b a b a b λλλ•=•=•()a b c a c b c +•=•+•2222||||=a a a x y =+即||||||a b a b •≤4.重要定理、公式(1)平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)两个向量平行的充要条件a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则OP =λ+111OP +λ+112OP (线段的定比分点的向量公式)⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′), 则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为: y -k=f (x -h)(6)正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式] ⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图:图1 图2 图3 图4图1中的I 为S △ABC 的内心, S △=PrAB Oa cI A BC D EF IAB C D EF r ar ar abc a a b c ACN E F图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BC AB AC BC AB B ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=DACB图5空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB+=+= b a OB OA BA-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线. 4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . 10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a ++==(a a =⇒⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB五、典型例题例1在下列各命题中为真命题的是( )①若a =(x 1,y 1)、b =(x 2,y 2),则a ·b =x 1y 1+x 2y 2 ②若A(x 1,y 1)、B(x 2,y 2),则|AB |=221221)()(y y x x -+-③若a =(x 1,y 1)、b =(x 2,y 2),则a ·b =0⇔x 1x 2+y 1y 2=0④若a =(x 1,y 1)、b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0 A 、①② B 、②③ C 、③④ D 、①④解:根据向量数量积的坐标表示;若a =(x 1,y 1), b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,对照命题(1)的结论可知,它是一个假命题、于是对照选择支的结论、可以排除(A)与(D),而在(B)与(C)中均含有(3)、故不必对(3)进行判定,它一定是正确的、对命题(2)而言,它就是两点间距离公式,故它是真命题,这样就以排除了(C),应选择(B)、说明:对于命题(3)而言,由于a ·b =0⇔a =0或b =0或a ⊥b ⇔x 1x 2+y 1y 2=0,故它是一个真命题、而对于命题(4)来讲,a ⊥b ⇒x 1x 2+y 1y 2=0、但反过来,当x 1x 2+y 1y 2=0时,可以是x 1=y 1=0,即a =0,而我们的教科书并没有对零向量是否与其它向量垂直作出规定,因此x 1x 2+y 1y 2=0⇒/a ⊥b ),所以命题(4)是个假命题、 例2已知a =(-3,-1), b =(1,3),那么a ,b 的夹角θ=( )A 、30°B 、60°C 、120°D 、150°解:a ·b =(-3,-1)·(1,3)=-23|a |=22)1()3(-+-=2 |b |=22)3(1+=2 ∴b a 2232⨯-=23- 例3已知a =(2,1), b =(-1,3),若存在向量c 使得:a ·c =4, b ·c =-9,试求向量c 的坐标、 解:设c =(x ,y ),则由a ·c =4可得: 2x +y =4;又由b ·c =-9可得:-x +3y =-9 于是有:⎩⎨⎧=+-=+9342y x y x )2()1(由(1)+2(2)得7y =-14,∴y =-2,将它代入(1)可得:x =3∴c =(3,-2)、说明:已知两向量a ,b 可以求出它们的数量积a ·b ,但是反过来,若已知向量a 及数量积a ·b ,却不能确定b 、 例4求向量a =(1,2)在向量b =(2,-2)方向上的投影、解:设向量a 与b 的夹角θ、 有cosθ=ba b a •• =2222)2(221)2(221-++-⨯+⨯=-1010 ∴a 在b 方向上的投影=|a |cosθ=5×(-1010)=-22 例5已知△ABC 的顶点分别为A(2,1),B(3,2),C(-3,-1),BC 边上的高AD ,求AD 及点D 的坐标、解:设点D 的坐标为(x ,y ) ∵AD 是边BC 上的高, ∴AD ⊥BC ,∴AD ⊥BC 又∵C 、B 、D 三点共线, ∴BC ∥BD又AD =(x -2,y -1), BC =(-6,-3)BD =(x -3,y -2)∴⎩⎨⎧=-+--=----0)3(3)2(60)1(3)2(6x y y x解方程组,得x =59,y =57 ∴点D 的坐标为(59,57),AD 的坐标为(-51,52) 例6设向量a 、b 满足:|a |=|b |=1,且a +b =(1,0),求a ,b 、解:∵|a |=|b |=1,∴可设a =(cosα,sinα), b =(cosβ,sinβ)、 ∵a +b =(cosα+cosβ,sinα+sinβ)=(1,0),⎩⎨⎧=+=+)2(0βsin αsin )1(1βcos αcos 由(1)得:cosα=1-cosβ……(3) 由(2)得:sinα=-sinβ……(4) ∴cosα=1-cosβ=21∴sinα=±23,sinβ= 23 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=23,2123,21b a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=23,2123,21b a例7对于向量的集合A={v =(x ,y )|x 2+y 2≤1}中的任意两个向量1v 、2v 与两个非负实数α、β;求证:向量α1v +β2v 的大小不超过α+β、证明:设1v =(x 1,y 1),2v =(x 2,y 2) 根据已知条件有:x 21+y 21≤1,x 22+y 22≤1又因为|α1v +β2v |=221221)βα()βα(y y x x ++ =)(αβ2)(β)(α21212222221212y y x x y x y x +++++其中x 1x 2+y 1y 2≤2121y x +2222y x +≤1 所以|α1v +β2v |≤αβ2βα22++=|α+β|=α+β例8已知梯形ABCD 中,AB ∥CD ,∠CDA=∠DAB=90°,CD=DA=21AB 、 求证:AC ⊥BC证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系、如图,设AD=1 则A(0,0)、B(2,0)、C(1,1)、D(0,1)∴BC =(-1,1), AC =(1,1)BC ·AC =-1×1+1×1=0∴BC ⊥AC 、例9已知A(0,a ),B(0,b),(0<a <b),在x 轴的正半轴上求点C ,使∠ACB 最大,并求出最大值、解,设C(x ,0)(x >0) 则CA =(-x ,a ), CB =(-x ,b)则CA ·CB =x 2+a b 、 cos ∠ACB=CBCA CB CA ••=22222bx ax ab x +++令t=x 2+a b 故cos ∠ACB=11)(1)(1222+•-+--t b a tb a ab当t 1=ab 21即t=2a b 时,cos ∠ACB 最大值为ba ab +2、 当C 的坐标为(ab ,0)时,∠ACB 最大值为arccosba ab+2、例10如图,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明(1)PA=EF (2)PA ⊥EF证明:建立如图所示坐标系,设正方形边长为1, |OP |=λ,则A(0,1),P(22λ,22λ),E(1,22λ),F(22λ,0) ∴PA =(-22λ,1-22λ), EF =(22λ-1,- 22λ) (1)|PA |2=(-22λ)2+(1-22λ)2=λ2-2λ+1|EF |2=(22λ-1)2+(-22λ)2=λ2-2λ+1 ∴|PA |2=|EF |2,故PA=EF(2) PA ·EF =(-22λ)(22λ-1)+(1-22λ)(-22λ)=0 ∴PA ⊥EF ∴PA ⊥EF 、例11已知).1,2(),0,1(==b a① 求|3|b a+;②当k 为何实数时,k -a b 与b a3+平行, 平行时它们是同向还是反向?解:①b a3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a += 2237+=58.②k -ab= k(1,0)-(2,1)=(k -2,-1).设k -a b=λ(b a 3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λ31λ72k ⎪⎪⎩⎪⎪⎨⎧-=-=⇒31λ31k .故k= 31-时, 它们反向平行. 例12已知,1||,2||==b a a 与b 的夹角为3π,若向量b k a +2与b a +垂直, 求k.解:3πcos ||||b a b a =⋅=2×1×21=1.∵b k a+2与b a +垂直,∴(b k a+2))(b a +⋅= 0 ,∴20222=++⋅+b k b a k b a a ⇒ k = - 5.例13如果△ABC 的三边a 、b 、c 满足b 2 + c 2 = 5a 2,BE 、CF 分别为AC 边与AB 上的中线, 求证:BE ⊥CF.解:22222222211(),()221()41111[()()(4222BE BA BC CF CB CA BE CF BA BC AB AC BC CB CA BA BC AC AB AC BC BC CA C =+=+∴⋅=-⋅+⋅--⋅=-+-++---+22222222)]11(5)(5)0,88B BA AB AC BC b c a -=+-=+-=∴BE ⊥CF , 即 BE ⊥CF .例14是否存在4个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?解:如图所示,在正△ABC 中,O 为其内心,P 为圆周上一点, 满足PA ,PB ,PC ,PO 两两不共线,有 (PA +PB )·(PC +PO )=(PO +OA +PO +OB )·(PO +OC +PO ) =(2PO +OA +OB )·(2PO +OC ) =(2PO -OC )·(2PO +OC ) =4PO 2-OC 2 =4PO 2-OC 2=0有(PA +PB )与(PC +PO )垂直、同理证其他情况、从而PA ,PB ,PC ,PO 满足题意、故存在这样4个平面向量、 利用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题例15已知向量321,,OP OP OP 满足条件0321=++OP OP OP ,1321===OP OP OP ,求证:321P P P ∆是正三角形解:令O 为坐标原点,可设()()()333222111sin ,cos ,sin ,cos ,sin ,cos θθθθθθP P P 由321OP OP OP -=+,即()()()332211θsin θcos θsin ,θcos θsin ,θcos --=+⎩⎨⎧-=+-=+321321θsin θsin θsin θcos θcos θcos 两式平方和为()11θθcos 2121=+-+,()21θθcos 21-=-, 由此可知21θθ-的最小正角为0120,即1OP 与2OP 的夹角为0120, 同理可得1OP 与3OP 的夹角为0120,2OP 与3OP 的夹角为0120, 这说明321,,P P P 三点均匀分部在一个单位圆上, 所以321P P P ∆为等腰三角形.例16求等腰直角三角形中两直角边上的中线所成的钝角的度数①②解:如图,分别以等腰直角三角形的两直角边为x 轴、y 轴建立直角坐标系,设()()a B a A 2,0,0,2,则()()a C a D ,0,0,, 从而可求:()()a a BD a a AC 2,,,2-=-=,()()aa a a a a BDAC BD AC 552,,2θcos ⋅-⋅-=⋅==545422-=-a a . ⎪⎭⎫⎝⎛-=∴54arccos θ.利用向量的坐标运算,解决有关线段的长度问题例17已知ABC ∆,AD 为中线,求证()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图2直角坐标系, 设()()0,,,c C b a A ,⎪⎭⎫⎝⎛0,2c D ,()22222402b a ac c b a c AD ++-=-+⎪⎭⎫ ⎝⎛-=, 221⎪⎭⎝-⎪⎭⎫+BC AC AB . =()442122222222c ac b a c b a c b a +-+=⎥⎦⎤⎢⎣⎡-+-++, =AD 221⎪⎭ ⎝-⎪⎭⎫+BC AC AB ,()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD .利用向量的坐标运算,用已知向量表示未知向量例18已知点O 是,,内的一点,090BOC 150AOB =∠=∠∆ABC,,,OA c OC b OB a ===设,312===c b a 试用.,c b a 表示和解:以O 为原点,OC ,OB 所在的直线为x 轴和y 轴建立如图3所示的坐标系.由OA=2,0120=∠AOx ,所以()(),31-A ,120sin 2,120cos 200,即A ,易求()()3,0C 1-0B ,,,设 ()()()12121212OA ,-130-13,0-3-13.13--3OB OC λλλλλλλλ=+=+⎧==⎧⎪⎪⎨⎨==⎪⎪⎩⎩即,,,,133a b c =--.例19如图,001,OB 120OC OA 30,OC 5OA OB OA ===与的夹角为,与的夹角为, 用OA OB ,表示.OC 解:以O 为坐标原点,以OA 所在的直线为x 轴,建立如图所示的直角坐标系,则()0,1A ,(),,即,所以由⎪⎪⎭⎫⎝⎛=∠25235C ,30sin 5,5cos30C 30COA 000 ⎪⎪⎭⎫⎝⎛-23,21B 同理可求 ()121253513OC ,10-,2222OA OB λλλλ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即,, .335λ3310λλ2325λ21-λ23521221⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==, OB OA OC 3353310+=∴. 利用向量的数量积解决两直线垂直问题例20如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD . (1)求证:C 1C ⊥BD . (2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.(1)证明:设CD =a , CD =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得 当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD . 例21如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .解:(1)如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅⋅>=<∴CB BC CB BA CB BA(3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==B A M C∴,,00)2(21121)1(1111M C B A M C B A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .利用向量的数量积解决有关距离的问题,距离问题包括点到点的距离,点的线的距离,点到面的距离,线到线的距离,线到面的距离,面到面的距离. 例22求平面内两点),(),,(2211y x B y x A 间的距离公式解:设点),(),,(2211y x B y x A ,),(1212y y x x AB --=∴212212)()(||y y x x AB -+-=∴ ,而||||AB AB =∴点A 与点B 之间的距离为:212212)()(||y y x x AB -+-=利用向量的数量积解决线与线的夹角及面与面的夹角问题. 例23证明:βαβαβαsin sin cos cos )cos(+=-证明:在单位圆O 上任取两点B A ,,以Ox 为始边,以OB OA ,为终边的角分别为αβ,,则A 点坐标为),sin ,(cos ββB 点坐标为)sin ,(cos αα;则向量=OA ),sin ,(cos ββ=OB )sin ,(cos αα,它们的夹角为βα-,,1||||==OB OA βαβαsin sin cos cos +=⋅OB OA ,由向量夹角公式得:==-||||)βαcos(OB OA OB OA βαβαsin sin cos cos +,从而得证.注:用同样的方法可证明=+)cos(βαβαβαsin sin cos cos - 利用向量的数量积解决有关不等式、最值问题.例24证明柯西不等式2212122222121)()()(y y x x y x y x +≥+⋅+证明:令),(),,(2211y x b y x a ==(1) 当0 =a 或0 =b 时,02121=+=⋅y y x x b a,结论显然成立; (2) 当0 ≠a 且0 ≠b 时,令θ为b a ,的夹角,则],0[πθ∈θcos ||||2121b a y y x x b a=+=⋅. 又 1|cos |≤θ||||||b a b a≤⋅∴(当且仅当b a //时等号成立)222221212121||y x y x y y x x +⋅+≤+∴∴2212122222121)()()(y y x x y x y x +≥+⋅+.(当且仅当2211y x y x =时等号成立) 平面向量的坐标运算1、已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn=________.解析 m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ), a -2b =(2,3)-(-2,4)=(4,-1).由于m a +n b 与a -2b 共线,则有2m -n 4=3m +2n-1,∴n -2m =12m +8n ,∴m n =-12.答案 -12六、近几年高考试题分析 (2009·湖南文)如图,两块斜边长相等的直角三角板拼在一起, 若,AC y AB x AD +=则x =___________________________, y =__________.解析 ,AC y AB x AD += 又,BD AB AD +=.)1(,AC y AB x BD AC y AB x BD AB +-=∴+=+∴又,AB AC ⊥.)1(2AB x AB BD -=⋅∴设,1||=AB 则由题意知.2||||==BC DE又∵∠BED =60°,,26||=∴BD 显然BD 与AB 的夹角为45°. ∴由2)1(AB x AB BD -=⋅得62×1×cos 45°=(x -1)×12. ∴x =32+1.同理,在AC y AB x BD +-=)1(两边与数量积可得 y =32. 答案 1+32 32(2011湖南文科)14、在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=。
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用

§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
第06讲 平面向量中的范围与最值问题(高阶拓展、竞赛适用)(学生版)备2025年高考数学一轮复习学案

第06讲 平面向量中的范围与最值问题(高阶拓展、竞赛适用)(2类核心考点精讲精练)平面向量中的范围与最值范围问题是向量问题中的命题热点和重难点,综合性强,体现了高考在知识点交汇处命题的思想,常以选择填空题的形式出现,难度稍大,方法灵活。
基本题型是根据已知条件求某个变量的范围、最值,"比如向量的模、数量积、向量夹角、系数的范围的等,在复习过程中要注重对基本方法的训练,把握好类型题的一般解法。
由于数量积和系数的范围在前两节已学习,本讲主要围绕向量的模和夹角的范围与最值展开学习。
本讲内容难度较大,需要综合学习。
1. 模长的范围及最值与向量的模有关的问题, 一般都会用到 22||a a =r r,结合平面向量及最值范围等基本知识可求解。
2. 夹角的范围及最值结合平面向量的模长、夹角公式及最值范围等基本知识可求解。
..v1.(2024·全国·模拟预测)已知,,a b c r r r为单位向量,且357a b -=r r ,则22a c b c -+-r r r r 的最小值为( )A .2B .C .4D .62.(23-24高二上·四川·阶段练习)已知平面向量,a b rr 满足112a b a b ==×=r r r r ,22||c b c =×r r r ,则22c c a b-+-r r r r 的最小值是.3.(2024·吉林长春·模拟预测)已知向量a r ,b r 为单位向量,且12a b ×=-r r ,向量c r 与3a b +r r共线,则||b c +r r 的最小值为 .4.(2024·上海长宁·二模)已知平面向量,,a b c r rr 满足:2a b ==r r ,若()()0c a c b -×-=r r r r ,则a b -r r 的最小值为 .5.(23-24高三上·重庆沙坪坝·阶段练习),1=r b ,0a b ×=rr ,4c a c a ++-=r r r r ,2430d b d -×+=r r r ,则c d -rr 的最大值为( )A 1+B .4C 2+D .3136.(21-22高一下·浙江·阶段练习)已知||||||1a b c ===r r r,12a b ×=r r ,,,3a c b c p áñ+áñ=r r r r .若,R m n Î,则||||||ma nb ma c nb c -+-+-r r r r rr 的最小值为( )A .0BC .1D1.(2024·广东江门·二模)设向量(1,),(2,)OA x OB x ==uuu r uuu r ,则cos ,OA OB áñuuu r uuu r的最小值为 .2.(2022·上海奉贤·一模)设平面上的向量,,,a b x y r r r r满足关系(),2a y x b mx y m =-=-³r r r r r r ,又设a r 与b r 的模均为1且互相垂直,则x r 与y r的夹角取值范围为.3.(22-23高三上·江西·阶段练习)已知平面向量a OA =r uuu r ,b OB =r uuu r ,c OC =r uuu r,满足241OC AC OA ×=-uuu r uuu uuu r r ,241OB CB OC ×=-uuu r uuu uuu r r ,则向量4a b -r r 与2c b -r r所成夹角的最大值是( )A .π6B .π3C .2π3D .5π61.(2024·全国·模拟预测)已知非零向量a r 与b r的夹角为锐角,c r 为b r 在a r 方向上的投影向量,且||||2c a ==r r ,则a b c ++r r r 与b r的夹角的最大值是 .2.(21-22高三上·浙江温州·期末)已知平面向量,a b r r 满足1a a b =+=r r r ,12a b ×=-r r ,向量p u r 满足()2p a b l l =-+u r r r ,当p u r 与p a -u r r的夹角余弦值取得最小值时,实数l 的值为 .3.(2021·浙江宁波·模拟预测)已知,a b r ur 是空间单位向量,0a b ×=r r ,若空间向量c r 满足:1,c a c b ×=×r r r r ,则a b c ++=r r r,对于任意,x y R Î,向量c r与向量xa yb +r r 所成角的最小值为.一、单选题1.(2023·江西九江·一模)已知m u r、n r 为单位向量,则向量2m n +u r r 与n r 夹角的最大值为( )A .π6B .π3C .2π3D .5π62.(2023·北京·模拟预测)平面向量a r ,b r 满足3a b =r r ,且4a b -=r r ,则a r 与a b -r r夹角的正弦值的最大值为( )A .14B .13C .12D .233.(2023·安徽安庆·二模)已知非零向量a r ,b r的夹角为q ,2a b +=r r ,且43a b ³r r ,则夹角q 的最小值为( )A .π6B .π4C .π3D .π24.(2024·安徽六安·模拟预测)已知平面向量a r ,b r ,c r满足1a =r 32a b ×=-r r ,,30a c b c --°=r r r r ,则c r的最大值等于( )A .BC .D .5.(2024·全国·模拟预测)已知a r ,b r 为非零向量,且||||(0)a b r r ==>r r ,π,3a b áñ=r r ,若||a tb +r r 的最小值为22r t +的值为( ).A .52B .94C .4D .1746.(2021·全国·模拟预测)已知向量a r ,b r 满足3a b +=r r ,0a b ×=r r ,若(1)()c a b l l l =+-ÎR r r r ,且c a c b ×=×r r r r,则c r 的最大值为( )A .3B .2C .12D .327.(2021·浙江·模拟预测)已知非零平面向量a r ,b r ,c r 满足2a =r ,1b c -=r r ,若a r 与b r 的夹角为π3,则a c-r r 的最小值为( )A 1B C 1D8.(2021·全国·模拟预测)设||=1a ®,||b ®=a b ®®^,若向量c ®满足2c a b a b ®®®®®--=-,则||c ®的最大值是( )A .5B .6C .7D .8二、填空题9.(2023·安徽宣城·二模)已知向量,a b r r 满足22a b ==r r ,对任意的0,a b l l >-r r 的最小值为a r 与b r 的夹角为.10.(2023·河北·模拟预测)已知平面向量,a b r r 满足1a b -=r r 且a b ^r r ,当向量a b -r r 与向量3a b -r r 的夹角最大时,向量b r的模为 .11.(2023·上海闵行·二模)已知单位向量,a b r r ,若对任意实数x ,xa b -³r r 恒成立,则向量,a b r r 的夹角的最小值为 .12.(2024·河北沧州·模拟预测)已知单位向量a r ,向量b r 与a r不共线,且5π,6a b b -=r r r ,则b r 的最大值为 .13.(2023·上海杨浦·二模)已知非零平面向量a r 、b r 、c r满足5a =r ,2b c =r r ,且()()0b a c a -×-=r r r r ,则b r 的最小值是14.(22-23高一下·福建福州·期中)已知平面向量a r ,b r ,且满足||||2×===r rr r a b a b ,若e r 为平面单位向量,则×+×r r r ra eb e 的最大值15.(2023·贵州铜仁·模拟预测)已知向量a r ,b r ,c r 满足0a b c ++=r r r r ,()()0a b a c -×-=r r r r ,3b c -=r r ,则a b c ++r r r的最大值是.16.(2024·全国·模拟预测)已知非零且不垂直的平面向量a r ,b r 满足6a b +=r r ,若a r 在b r方向上的投影与br 在a r 方向上的投影之和等于()2a b ×r r ,则a r ,b r 夹角的余弦值的最小值为 .17.(21-22高三上·浙江嘉兴·期末)已知非零平面向量a r ,b r ,c r满足4a b -=r r ,且()()1a c b c -×-=-r r r r ,若a r 与b r 的夹角为q ,且ππ,32q éùÎêúëû,则c r 的模取值范围是.18.(23-24高三上·天津宁河·期末)在平行四边形ABCD 中,60ABC Ð=°,E 是CD 的中点,2AF FE =uuu r uuu r ,若设,BA a BC b ==uuu r r uuu r r ,则BF uuu r可用a r ,b r 表示为;若ADE V ,则BF uuu r 的最小值为 .19.(2020·浙江温州·三模)已知向量a r ,b r满足||3a =r ,1b r ||=,若存在不同的实数()1212,0l l l l ¹,使得3i i i c a b l l =+u r r r ,且()()0(1,2),i i i c a c b -×-==u r r u r r则12c c -u r u u r 的取值范围是20.(2021·浙江金华·模拟预测)已知平面向量,,a b c r r r 满足74a b ×=r r ,3a b -=vv ,()()2a c b c -×-=-r r r r ,则c 的取值范围是 ;已知向量,a b r r 是单位向量,若0a b =r r g ,且2c a c b -+-=r r r r ,则2c a +r r 的取值范围是.。
高三数学一轮复习教案――平面向量(附高考分类汇编)

高三数学一轮复习精品教案――平面向量一、本章知识结构:二、重点知识回顾1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示;②用字母a 、b等表示;③平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得axi yj =+ ,),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i (1,0)=,j (0,1)=,0(0,0)= 。
a =;若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=,A B =3.零向量、单位向量:①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c.共线向量与平行向量关系:平行向量就是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
向量加法的三角形法则和平行四边形法则。
②向量的减法向量a 加上的b 相反向量,叫做a 与b 的差。
即:a -b = a+ (-b );差向量的意义: OA = a, OB =b, 则BA =a- b③平面向量的坐标运算:若11(,)a x y = ,22(,)b x y = ,则a b +),(2121y y x x ++=,a b -),(2121y y x x --=,(,)a x y λλλ= 。
④向量加法的交换律:a +b =b +a ;向量加法的结合律:(a +b ) +c =a + (b +c )7.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa|=|λ||a|;(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa =0;(3)运算定律 λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa +λb8. 向量共线定理 向量b 与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数λ,使b =λa。
高三数学一轮复习备考教学设计:平面向量的应用

《平面向量》一轮复习(文科)教学设计一.考纲要求平面向量是高中数学的新增内容是高考命题的基本素材和主要背景之一,也是近几年高考的热点。
向量有着极其丰富的实际背景,是近代数学中重要和基本的概念之一。
向量是沟通代数、几何与三角函数的一种工具,它同时具有代数的运算性和几何的直观性,是数形结合的典范。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,能与中学数学教学内容的许多主干知识综合,形成知识交汇。
(一)、2016考试说明及解读(二)近三年全国卷部分考题展示:平面向量与解三角形交汇的题目3个选择题和7个填空题,其中有3道题是平面向量与解三角形的交汇(四)考情分析1.考查题型主要是以选择、填空为主,分值为10分左右,基本属容易题,也可以为中档的解答题.2.考查内容主要是平面向量的共线与垂直的充要条件,平面向量的线性运算和数量积运算,平面向量的应用等.(五)高考预测1.预计本章在今后的高考中,还将以向量的线性运算、向量的夹角、模、数量积为命题热点,将更加注重向量与其他知识的交汇,以考查基础知识、基本技能为主.2.题型主要以选择、填空为主,因此训练题的难度多数应该控制在中档即可,要适当增加以向量为载体考查平面几何,三角函数,解析几何,数列,不等式等问题的综合训练.3.对于能力型高考题的准备,向量具有基础知识的特点,是一种工具性和方法性知识,更要立足基本知识,基本方法,基本技能。
二.复习目标1、通过平面向量的线性运算和数量积运算,强化对平面向量基本概念的理解及提高向量运算求解能力。
2、通过向量与其它知识交汇的题型,体会向量的工具性作用。
特别是要关注向量与三角函数、解三角形、解析几何的结合。
3、关注数学思想方法在本章中的渗透:思想方法:数形结合的思想、类比的思想、分类讨论的思想、化归的思想、函数与方程的思想等。
解题方法:基向量法、坐标法、待定系数法、几何作图法、函数法等。
三.专题知识体系构建的方法与总体构思(复习计划)(一)进度安排本专题共有四讲内容:第一讲平面向量的概念及其线性运算第二讲平面向量基本定理及坐标表示第三讲平面向量的数量积第四讲平面向量应用举例前三讲每讲3课时,第四讲4课时,包括作业评讲,测试及评讲,共需两周时间。
2023年高考数学一轮复习(新高考地区专用)5-3 平面向量的应用(精讲)(解析版)

5.3 平面向量的应用(精讲)(基础版)考点一 证线段垂直【例1-1】(2022·山西运城)在平面四边形ABCD 中,()2,3AC =-,()6,4BD =,则该四边形的面积为( )A .52B .252C .13D .26【答案】C【解析】∵12120AC BD ⋅=-+=,∵AC ∵BD ,所以四边形ABCD 面积为:114936161322AC BD ⋅=⨯+⨯+=.故选:C. 【例1-2】(2022·广东)如图,在正方形ABCD 中,P 为对角线AC 上任意一点(异于A 、C 两点),PE AB ⊥,PF BC ⊥,垂足分别为E 、F ,连接DP 、EF ,求证:DP EF ⊥.【答案】见解析【解析】设正方形ABCD 的边长为1,()01AE a a =<<,则EP AE a ==,1PF EB a ==-,2AP a =.,()()DP EF DA AP EP PF DA EP DA PF AP EP AP PF∴⋅=+⋅+=⋅+⋅+⋅+⋅考点呈现例题剖析()()1cos18011cos902cos4521cos45a a a a a a =⨯⨯+⨯-⨯+⨯⨯+⨯-⨯()210a a a a =-++-=,DP EF ∴⊥,即DP EF ⊥.【一隅三反】1.(2022·四川省峨眉)若平面四边形ABCD 满足:0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是( ) A .平行四边形 B .菱形 C .矩形 D .正方形【答案】B 【解析】0AB CD +=,AB DC ∴=,所以四边形ABCD 为平行四边形,()0AB AD AC -⋅=, 0DB AC ∴⋅=,所以BD 垂直AC ,所以四边形ABCD 为菱形.故选:B2.(2022·福建·漳州三中)若O 为ABC 所在平面内一点,且满足|||2|OB OC OB OC OA -=+-,则ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】B【解析】ABC 中,|||2||||()()|OB OC OB OC OA CB OB OA OC OA -=+-⇔=-+- 22||||()()AB AC AB AC AB AC AB AC ⇔-=+⇔-=+22222240AB AB AC AC AB AB AC AC AB AC ⇔-⋅+=+⋅+⇔⋅=因AB 与AC 均为非零向量,则AB AC ⊥,即90BAC ∠=,ABC 是直角三角形.故选:B3.(2022·上海)在Rt ABC 中,90,BAC AB AC ︒∠==,,E F 分别为边,AB BC 上的点,且,2AE EB BF FC ==.求证:CE AF ⊥.【答案】证明见解析.【解析】因为12CE CA AE AC AB =+=-+,()1133AF AB BF AB BC AB AC AB =+=+=+-=2133AB AC +.由0AB AC ⋅=且AB AC =,得121233CE AF AC AB AB AC ⎛⎫⎛⎫⋅=-+⋅+= ⎪ ⎪⎝⎭⎝⎭221110332AB AC AB AC --⋅=,所以CE AF ⊥.考点二 夹角问题【例2】(2022·全国·模拟预测)已知H 为ABC 的垂心,若1235AH AB AC =+,则sin BAC ∠=( )A BC D 【答案】C【解析】依题意,2235BH BA AH AB AC =+=-+,同理1335CH CA AH AB AC =+=-.由H 为△ABC 的垂心,得0BH AC ⋅=,即22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭,可知222cos 53AC AC AB BAC =∠,即3cos 5AC BAC AB∠=.同理有0CH AB ⋅=, 即13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭,可知213cos 35AB AC AB BAC =∠,即5cos 9AB BAC AC ∠=,解得21cos 3BAC ∠=,2231cos 2sin 113∠∠=-=-=BAC BAC ,又()0,πBAC ∠∈,所以sin BAC ∠=.故选:C .【一隅三反】1.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D【解析】建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M ,得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ D.2.(2022·河南·南阳中学)直角三角形ABC 中,斜边BC 长为a ,A 是线段PE 的中点,PE 长为2a ,当⋅B C P E 最大时,PE 与BC 的夹角是( )A .0B .30C .60D .90【答案】A【解析】如图所示,设PE 与BC 的夹角为[]()0,θθπ∈,AB AC ⊥,所以0AB AC ⋅=, 因为A 是线段PE 的中点,PE 长为2a ,所以=AP AE ,==AP AE a , 又因为,==--BP AP AB CE AE AC ,所以()()⋅-⋅-=⋅-⋅-⋅+=⋅BP CE AP AB AE AC AP AE AP AC AB AE AB AC22a AP AC AB AE a AE AC AB AE =--⋅-⋅=-+⋅-⋅()22=-+⋅-=-+⋅a AE AC AB a AE BC222211cos cos 22a PE BC a PE BC a a θθ=-+⋅=-+⋅=-+, 因为0,θπ⎡⎤∈⎣⎦,所以[]cos 1,1θ∈-,所以当cos 1θ=时⋅B C P E 最大,此时0θ=,⋅B C P E 最大的值为0.故选:A.3.(2022·福建省同安第一中学)在OAB 中,2OA OB ==,AB =P 位于直线OA 上,当PA PB →→⋅取得最小值时,PBA ∠的正弦值为( )A B C D 【答案】C【解析】建立如图所示平面直角坐标系:则(3,0),(3,0),(0,1)A B O-,设(,)P x y,因为动点P位于直线OA上,直线OA的方程为:1y=+,所以22(,),)3PA PB x y x y x y→→⋅=-⋅-=-+222244931)2(334x x x x x=-++=-=-,当x=PA PB→→⋅取得最小值94-,此时3()4P,3(),(4BP BA→→==-,所以15cosBP BAPBABP BA→→→→⋅∠====⋅又因为(0,)PBAπ∠∈,所以sin14PBA∠=,故选:C.考点三线段长度【例3-1】(2022·福建·福州三中)在平行四边形ABCD中,(2,1,2,AB AD AC===,则BD=()A.1B C.2D.3【答案】B【解析】由题意得|7AC=∣,由平行四边形的两条对角线的平方和等于四边的平方和,得:()()222222222,22110,BD AC AB AD BD BD+=+∴+=+=∴=B【例3-2】(2022·云南)已知ABC120C∠=︒,2cosc b B=,则AC边的中线的长为()A B.3C D.4【答案】C【解析】根据正弦定理由2cos sin2sin cos sin sin2c b B C B B C B=⇒=⇒=,因为,(0,180)B C∈︒,所以2C B=,或2180C B+=︒,当2C B=时,60B∠=︒,不符合三角形内角和定理,当2180C B+=︒时,30B∠=︒,因此30A∠=︒,因此a b=,因为ABC所以有122a a a⋅==,负值舍去,即2a b==,由余弦定理可知:AB ==设AC 边的中点为D ,所以有1()2BD BC BA =+,因此222111()24222BD BC BA BC BA BC BA =+=++⋅=故选:C 【一隅三反】1.(2022·云南师大附中)ABC 中,60A ∠=︒,∠A 的平分线AD 交边BC 于D ,已知3AB =,且1233AD AC AB =+,则AD 的长为( )AB .3C .D .【答案】C【解析】如图,过D 作//DE AC 交AB 于E ,作//DF AB 交AC 于F ,则AD AE AF =+,又1233AD AC AB =+, 所以23AE AB =,13AF AC =,所以13BD AF BC AC ==,即12BD DC =, 又AD 是BAC ∠的平分线,所以12AB BD AC CD ==,而3AB =,所以6AC =, cos 36cos609AB AC AB AC BAC ⋅=∠=⨯⨯︒=,222212144()33999AD AC AB AC AC AB AB=+=+⋅+2214469312999=⨯+⨯+⨯=,所以23AD =C . 2.(2022·全国·高三专题练习)在ABC 中,2AB AC ==,点M 满足20BM CM +=,若23BC AM ⋅=,则BC 的值为( ) A .1 B .32C .2D .3【答案】C【解析】取BC 中点O ,连接AO ,20BM CM +=,即2BM MC =,∴M 为BC 边上靠近C 的三等分点,()BC AM BC AO OM BC AO BC OM ⋅=⋅+=⋅+⋅,AB AC =,AO BC ∴⊥,0BC AO ∴⋅=,又16OM BC =,21263BC AM BC OM BC ∴⋅=⋅==,2BC ∴=.故选:C .3.(2022·重庆南开中学)如图所示在四边形ABCD 中,ABD △是边长为4的等边三角形,213AC =,(2)CA tCB t CD =+-,(1)t >,则OD =( )A .52B .C .3D 【答案】C【解析】取AC 的中点为M ,因为(2)CA tCB t CD =+-,故2CA CD tDB -=即22CM CD tDB -=,故2DM tDB =,所以,,D M B 三点共线,故M 与O 重合,所以AO =故21316+24cos3OD OD π=-⨯⨯,解得1OD =或3OD =,因为1t >且2DO tDB =,故OD OB >,故3OD =,故选:C.4.(2023·全国·高三专题练习)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且60C =︒,3a =,1534ABC S =△,则AB 边上的中线长为( ) A .49 B .7C .494 D .72【答案】D【解析】因为ABCS11sin 322ab C b ==⨯⨯=5b =,根据余弦定理可得2222cos 19c a b ab C =+-=,故c =AB 中点为M ,故()12CM CA CB =+,故22172cos 22CM CA CB CA CB C =++==. 即AB 边上的中线长为72.故选:D .考点四 几何中的最值【例4】(2022·海南·模拟预测)在直角梯形ABCD 中,AB CD ,AD AB ⊥,且6AB =,3AD =.若线段CD 上存在唯一的点E 满足4AE BE ⋅=,则线段CD 的长的取值范围是( ) A .[1,2) B .[1,5)C .[1,)+∞D .[5,)+∞【答案】B【解析】 如图所示,以A 为坐标原点,AB 和AD 分别为x 轴和y 轴正方向建立直角坐标系.则(0,0),(6,0)A B , 设DE 的长为x ,则(,3)E x ,则(,3)AE x =,(6,3)BE x =-,所以(6)94AE BE x x ⋅=-+=,解得1x =或5x =,由题意知:DC x ≥ ,且点E 存在于CD 上且唯一,知CD 的长的取值范围是[1,5),故选:B. 【一隅三反】1.(2022·安徽安庆)设点P 是ABC 的中线AM 上一个动点,()PA PB PC ⋅+的最小值是92-,则中线AM 的长是___________. 【答案】3【解析】设PM x =,,AM m =则.PA m x =-因为M 为BC 边中点,所以1()2PM PB PC =+,即2PB PC PM +=.于是222()22()222()22m m PA PB PC PA PM x m x x mx x ⋅+=⋅=--=-=--. 当2m x =,即点P 是中线AM 的中点时,()PA PB PC ⋅+取得最小值2,2m -即29,22m -=-因此 3.m =故答案为:32.(2022·江苏·无锡市教育科学研究院)点P 是边长为2的正三角形ABC 的三条边上任意一点,则||PA PB PC ++的最小值为___________.【解析】不妨假设P 在AB 上且(1,0),(1,0)A B C -,如下图示,所以,P 在3(1)y x =+且10x -≤≤,设(,3(1))P x x +,则(,)PA x =-,(1,1))PB x x =--+,(1,1))PC x x =-+,所以(3,PA PB PC x ++=---,故||9PA PB PC x ++=,当12x =-时,||PA PB PC ++3.(2022·上海市晋元高级中学)“燕山雪花大如席”,北京冬奥会开幕式将传统诗歌文化和现代奥林匹克运动联系在一起,天衣无缝,让人们再次领略了中国悠久的历史积淀和优秀传统文化恒久不息的魅力.顺次连接图中各顶点可近似得到正六边ABCDEF .若正六边形的边长为1,点P 是其内部一点(包含边界),则AP AC ⋅的取值范围为___________.【答案】[0,3]【解析】过点C 作CM AB ⊥于,M 所以,AC AM MC =+且33==,=22AM MC AP AQ QP AM MC λμ=++,,其中1123λμ-≤≤≤≤,0,()()()()22=3=34=A A AM MCAM MC MAM M M P AC C C λμλλμμλμ++++++⋅当P 点与C 点重合时,AP 在AC 方向上的投影最大,此时1,1λμ==,·AP AC 取得最大值为3;当P 点与F 点重合时,此时1,13λμ=-=,即AP AC ⊥,故0AP AC =,取得的最小值为∴·AP AC 的取值范围是[0,3].故答案为:[0,3].4.(2022·四川省内江市第六中学)如图,在等腰ABC 中,已知1AB AC ==,120A ∠=︒,E 、F 分别是边AB 、AC 的点,且AE AB λ=,AF AC μ=,其中(),0,1λμ∈且21λμ+=,若线段EF 、BC 的中点分别为M 、N ,则MN 的最小值是________.【解析】在等腰ABC 中,∵||||1AB AC ==,120o A ∠=, ∴1||||cos 2AB AC AB AC A ⋅==-; ∵E 、F 分别是边AB 、AC 的点,∴11()()22AM AE AF AC AB μλ=+=+,1()2AN AB AC =+,∵1[(1)(1)]2MN AN AM AB AC λμ=-=-+-,∴222222211[(1)2(1)(1)(1)]44MN AB AB AC AC λμλμλμλλμμ+---+=-+--⋅+-=,∵21λμ+=,∴12λμ=-, ∴()()()22222237()121212174177444MN μμμμμμμμμ-+-+-----+-+===, 其中λ,(0,1)μ∈,即1(0,)2μ∈,∴当27μ=时,2MN 取得最小值328,∴||MN . 考点五 三角形的四心【例5】(2022·甘肃·兰州一中)(多选)点O 在ABC 所在的平面内,则以下说法正确的有( ) A .若0OA OB OC ++=,则点O 为ABC 的重心 B .若222OA OB OC ==,则点O 为ABC 的垂心C .若()()()0OA OB AB OB OC BC OC OA CA +⋅=+⋅=+⋅=,则点O 为ABC 的外心 D .若OA OB OB OC OC OA ⋅=⋅=⋅,则点O 为ABC 的内心 【答案】AC【解析】对于A ,设边BC 、AC 、AB 的中点分别为D 、E 、F 2OB OC OD +=,则20OA OD +=,所以2OA OD =-所以A 、O 、D 三点共线,即点O 在中线AD 上,同理点O 在中线,BE CF 上,则O 是ABC 的重心.故A 正确对于B ,若222OA OB OC ==,则222OA OB OC ==,所以OA OB OC == 所以O 为ABC 的外心,故B 错误对于C ,设边AB 、BC 、CA 的中点分别为点D 、E 、F , 则()20OA OB AB OD AB +⋅=⋅=,所以OD 为线段AB 的中垂线,同理OE 、OF 分别为线段BC 、CA 的中垂线,所以O 是ABC 的外心,故C 正确 对于D ,由已知,()0OA OB OB OC OB OA OC OB CA ⋅-⋅=⋅-=⋅=,即OB 垂直CA ,也即点O 在边AC 的高上;同理,点O 也在边AB BC 、的高上, 所以则O 是ABC 的垂心,故D 错误.故选:AC 【一隅三反】1.(2022·全国·)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半,”这就是著名的欧拉线定理.设ABC 中,点O 、H 、G 分别是外心、垂心和重心,下列四个选项中结论正确的是( )A .2GH OG =B .0GA GB GC ++= C .OH OA OB OC =++D .OA OB OC ==【答案】ABC 【解析】如图:根据欧拉线定理可知,点O 、H 、G 共线,且2GH OG =.对于A ,∵2GH OG =,∵2GH OG =,故A 正确;对于B ,G 是重心,则延长AG 与BC 的交点D 为BC 中点,且AG =2GD ,则2GA GB GC GA GD ++=+0=,故B 正确;对于C ,33()OH OG AG AO ==-23()3AD AO =-23AD AO =-2()3AO OD AO =+-2OD AO=-OB OC OA =++,故C 正确;对于D ,OA OB OC ==显然不正确.故选:ABC.2.(2022·广东·广州市第二中学)(多选)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知∵ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+【答案】BCD【解析】由G 是三角形ABC 的重心可得23AG AM =211()322AB AC =+1133AB AC =+,所以1()()3AG BC AB AC AC AB ⋅=+⋅-221(||)3AC AB =-=4-,故A 项错误;过三角形ABC 的外心O 分别作AB 、AC 的垂线,垂足为D 、E ,如图(1),易知D 、E 分别是AB 、AC 的中点,则()AO BC AO AC AB ⋅=⋅-AO AC AO AB =⋅-⋅cos cos AO AC OAE AO AB OAD =∠-∠AE AC AD AB =-2211||622AC AB =-=-,故B 项正确;因为G 是三角形ABC 的重心,所以有0GA GB GC ++=,故OA OB OC ++()()()OG GA OG GB OG GC =+++++3OG GA GB GC =+++3OG =,由欧拉线定理可得3OH OG =,故C 项正确; 如图(2),由3OH OG =可得2133MG MO MH =+,即2133GM OM HM =+,则有26AB AC AM GM +==216()33OM HM =+42OM HM =+,D 项正确,故选:BCD.3.(2022·全国·课时练习)(多选题)已知O 是四边形ABCD 内一点,若0OA OB OC OD +++=,则下列结论错误的是( )A .四边形ABCD 为正方形,点O 是正方形ABCD 的中心 B .四边形ABCD 为一般四边形,点O 是四边形ABCD 的对角线交点 C .四边形ABCD 为一般四边形,点O 是四边形ABCD 的外接圆的圆心 D .四边形ABCD 为一般四边形,点O 是四边形ABCD 对边中点连线的交点 【答案】ABC【解析】对于A ,若四边形ABCD 为正方形,点O 是正方形ABCD 的中心,则必有0OA OB OC OD +++=, 但反过来,由0OA OB OC OD +++=推不出四边形ABCD 为正方形,故A 错误; 对于BCD ,如图所示,O 是四边形ABCD 内一点,且0OA OB OC OD +++=设AB ,CD 的中点分别为E ,F ,由向量加法的平行四边形法则知2OA OB OE =+,2OC OD OF +=,0OE OF ∴=+,即O 是EF 的中点;同理,设AD ,BC 的中点分别为M ,N ,由向量加法的平行四边形法则知2OA OD OM +=,2OC OB ON =+,即O 是MN 的中点;所以O 是EF ,MN 的交点,故BC 错误,D 正确; 故选:ABC4.(2022·山东省平邑县第一中学)(多选)在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是( )A .满足||||||OA OB OC ==,则点O 是ABC 的外心 B .满足0NA NB NC ++=,则点N 是ABC 的重心 C .满足PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC 的垂心D .满足()0||||AB AC BC AB AC +⋅=,且12||||AB AC AB AC ⋅=,则ABC 为等边三角形 【答案】ABCD 【解析】对于A ,因为||||||OA OB OC ==,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC ++=得:2ND NA =-,所以||:||2:1AN ND =,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC ⋅=⋅得:()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥;同理可得:AB PC ⊥,所以点P 是ABC 的垂心,故C 正确; 对于D ,由()0||||AB ACBC AB AC +⋅=得:角A 的平分线垂直于BC ,所以AB AC =; 由12||||AB AC AB AC ⋅=得:1cos 2A =,所以3A π=,所以ABC 为等边三角形,故D 正确.故选:ABCD .考点六 三角的面积【例6-1】(2022·全国·高三)点P 菱形ABCD 内部一点,若230PA PB PC ++=,则菱形ABCD 的面积与PBC 的面积的比为( ) A .4 B .6 C .8 D .12【答案】B【解析】如图,设AB 中点为E ,BC 中点为F ,因为230PA PB PC ++=,即220PA PB PB PC +=++,则420PE PF +=,即2PF PE =-, 则24111122334326PBCPBFBEFABCABCD ABCD SSSS S S ==⨯=⨯=⨯=, 所以ABCD 的面积与PBC 的面积的比值是6.故选:B.【例6-2】(2022·全国·高三专题练习)已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( )A .12 B .13C .2D .3【答案】B【解析】(1)0OA OB OC λλ+++=, ()0OA OC OB OC λ→∴+++=.如图,D ,E 分别是对应边的中点,由平行四边形法则知2OA OC OE +=,()2OB OC OD λλ+=,故OE OD λ=-,在正三角形ABC 中,11114428COAAOBABCABCSS S S ==⨯=,113828COB ACBABCABCABCS SS S S =--=,且三角形AOC 与三角形COB 的底边相等,面积之比为13,所以13OE OD =,得13λ=.故选:B 【一隅三反】1.(2022·上海交大附中)设O 为OAB 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与OAB 的面积的比值为( ) A .6 B .83C .127D .4【答案】A【解析】设1112,7,3===OA OA OB OB OC OC ,因为2730OA OB OC ++=,所以1110OA OB OC ++=,所以O 为111A B C △的重心, 设111111===OA B OA C OB C SSSk ,所以111111*********,,21146⋅⋅⋅======⋅⋅⋅OBC OAB OAC OB C OA B OA C S S S OB OC OA OB OA OC S OB OC S OA OB S OA OC ,则111,,21146===OBCOABOACSk S k S k ,所以27=++=ABCOBCOAB OACS SSSk ,所以276121==ABC BOCk S Sk , 故选:A2.(2022·全国·高三)P 是ABC 所在平面内一点,若3CB PA PB =+,则:ABP ABC S S =△△( ) A .1:4 B .1:3C .2:3D .2:1【答案】A【解析】由题设,3PA CB BP CP =+=,故,,C P A 共线且3CP PA =,如下图示:所以:1:4ABPABCSS=.故选:A3.(2022·四川凉山)已知P 为ABC 内任意一点,若满足()0,,0xPA yPB zPC x y z ++=>,则称P 为ABC 的一个“优美点”.则下列结论中正确的有( ) ∵若1x y z ===,则点P 为ABC 的重心; ∵若1x =,2y =,3z =,则16PBCABCSS =;∵若PA PB PB PC PA PC ⋅=⋅=⋅,则点P 为ABC 的垂心; ∵若1x =,3y =,1z =且D 为AC 边中点,则25BP BD =. A .1个 B .2个C .3个D .4个【答案】D【解析】对于∵,当1x y z ===时,0PA PB PC ++=;设BC 中点为M ,则2PB PC PM +=,即22PA PM MP =-=,P ∴为ABC 的重心,∵正确;对于∵,当1x =,2y =,3z =时,230PA PB PC ++=,()2PA PC PB PC ∴+=-+,取AC 中点D ,BC 中点E ,2PA PC PD +=,2PB PC PE +=,24PD PE ∴=-,即2PD EP =,P ∴到直线BC 距离1d 与D 到直线BC 距离2d 之比为:1:3,即12:1:3d d =;又D 为AC 中点,∴点A 到直线BC 距离322d d =,13:1:6d d ∴=, 13::1:6PBCABCSSd d ∴==,即16PBCABCSS =,∵正确;对于∵,由PA PB PB PC ⋅=⋅得:()0PA PB PB PC PB PA PC PB CA ⋅-⋅=⋅-=⋅=,PB AC ∴⊥,同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心,∵正确;对于∵,当1x =,3y =,1z =时,30PA PB PC ++=,3PA PC PB ∴+=-, 又D 为AC 边中点,233PD PB BP ∴=-=,又BP PD BD +=,32BP BP BD ∴+=,25BP BD ∴=,∵正确.故选:D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章解三角形与平面向量学案23正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.自主梳理1.三角形的有关性质(1)在△ABC中,A+B+C=________;(2)a+b____c,a-b<c;(3)a>b⇔sin A____sin B⇔A____B;(4)三角形面积公式:S△ABC=12ah=12ab sin C=12ac sin B=_________________;(5)在三角形中有:sin 2A=sin 2B⇔A=B或________________⇔三角形为等腰或直角三角形;sin(A+B)=sin C,sinA+B2=cosC2.2.正弦定理和余弦定理定理正弦定理余弦定理内容________________=2Ra2=____________,b2=____________,c2=____________.变形形式①a=__________,b=__________,c=__________;②sin A=________,sin B=________,sin C=________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin Acos A=________________;cos B=________________;cos C=_______________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于()A.30°B.60°C.120°D.150°3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为()A .27 B.21 C.13 D .34.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3,则a =________.探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ;(2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c .变式迁移1 (1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________.探究点二 余弦定理的应用例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac .(1)求角B 的大小;(2)若c =3a ,求tan A 的值.变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .探究点三 正、余弦定理的综合应用例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A-B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状.变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C. (1)证明:B =C ;(2)若cos A =-13,求sin ⎝⎛⎭⎫4B +π3的值.1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用.2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.3.在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法.“化繁为简”“化异为同”是解此类问题的突破口.(满分:75分) 一、选择题(每小题5分,共25分)1.(2010·湖北)在△ABC 中,a =15,b =10,A =60°,则cos B 等于 ( )A .-223 B.223 C .-63 D.632.在△ABC 中AB =3,AC =2,BC 10则AB →⋅AC →等于 ( )A .-32B .-23 C.23 D.323.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形4.(2011·聊城模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( )A .30°B .45°C .135°D .45°或135°5.(2010·湖南)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <b 题号 1 2 3 4 5答案6.在△ABC 中,B =60°,b 2=ac ,则△ABC 的形状为________________.7.(2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b=3,A +C =2B ,则sin C =________.8.(2011·龙岩模拟)在锐角△ABC 中,AD ⊥BC ,垂足为D ,且BD ∶DC ∶AD =2∶3∶6,则∠BAC 的大小为________.三、解答题(共38分)9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足25cos25A =,AB →AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.10.(12分)(2010·陕西)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.11.(14分)(2010·重庆)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且3b 2+3c 2-3a 2=42bc .(1)求sin A 的值;(2)求2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫B +C +π41-cos 2A的值.答案 自主梳理1.(1)π (2)> (3)> > (4)12bc sin A (5)A +B =π2 2.a sin A =b sin B =c sin Cb 2+c 2-2bc cos A a 2+c 2-2ac cos B a 2+b 2-2ab cos C ①2R sin A 2R sin B 2R sin C ②a 2R b 2R c 2R ③sin A ∶sin B ∶sin C b 2+c 2-a 22bc a 2+c 2-b 22ac a 2+b 2-c 22ab自我检测1.C 2.A 3.C4.π65.1 课堂活动区例1 解题导引 已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况.具体判断方法如下:在△ABC 中.已知a 、b 和A ,求B .若A 为锐角,①当a ≥b 时,有一解;②当a =b sin A 时,有一解;③当b sin A <a <b 时,有两解;④当a <b sin A 时,无解.若A 为直角或钝角,①当a >b 时,有一解;②当a ≤b 时,无解.解 (1)由正弦定理a sin A =b sin B 得,sin A =32. ∵a >b ,∴A >B ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. 综上,A =60°,C =75°,c =6+22, 或A =120°,C =15°,c =6-22. (2)∵B =60°,C =75°,∴A =45°.由正弦定理a sin A =b sin B =c sin C , 得b =a ·sin B sin A =46,c =a ·sin C sin A=43+4. ∴b =46,c =43+4.变式迁移1 (1)102(2)60°或120° 解析 (1)∵在△ABC 中,tan A =13,C =150°, ∴A 为锐角,∴sin A =110. 又∵BC =1.∴根据正弦定理得AB =BC ·sin C sin A =102. (2)由b >a ,得B >A ,由a sin A =b sin B, 得sin B =b sin A a =25650×22=32, ∵0°<B <180°∴B =60°或B =120°.例2 解 (1)∵a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12. ∵0<B <π,∴B =π3. (2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由余弦定理,得cos A =b 2+c 2-a 22bc =5714. ∵0<A <π,∴sin A =1-cos 2A =2114, ∴tan A =sin A cos A =35. 方法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由正弦定理,得sin B =7sin A .由(1)知,B =π3,∴sin A =2114. 又b =7a >a ,∴B >A ,∴cos A =1-sin 2A =5714. ∴tan A =sin A cos A =35. 方法三 ∵c =3a ,由正弦定理,得sin C =3sin A .∵B =π3,∴C =π-(A +B )=2π3-A , ∴sin(2π3-A )=3sin A ,∴sin 2π3cos A -cos 2π3sin A =3sin A , ∴32cos A +12sin A =3sin A , ∴5sin A =3cos A ,∴tan A =sin A cos A =35. 变式迁移2 解 由余弦定理得,b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 23π =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3,联立⎩⎪⎨⎪⎧a +c =4ac =3,解得a =1,c =3,或a =3,c =1. ∴a 等于1或3.例3 解题导引 利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系.解 方法一 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B )⇔a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2cos B sin A ,由正弦定理,得sin 2A cos A sin B =sin 2B cos B sin A ,∴sin A sin B (sin A cos A -sin B cos B )=0, ∴sin 2A =sin 2B ,由0<2A <2π,0<2B <2π,得2A =2B 或2A =π-2B ,即△ABC 是等腰三角形或直角三角形.方法二 同方法一可得2a 2cos A sin B =2b 2cos B sin A ,由正、余弦定理,即得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac, ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0,∴a =b 或c 2=a 2+b 2,∴三角形为等腰三角形或直角三角形.变式迁移3 解题导引 在正弦定理a sin A =b sin B =c sin C=2R 中,2R 是指什么?a =2R sin A ,b =2R sin B ,c =2R sin C 的作用是什么?(1)证明 在△ABC 中,由正弦定理及已知得sin B sin C =cos B cos C .于是sin B cos C -cos B sin C =0,即sin(B -C )=0.因为-π<B -C <π,从而B -C =0.所以B =C .(2)解 由A +B +C =π和(1)得A =π-2B ,故cos 2B =-cos(π-2B )=-cos A =13. 又0<2B <π,于是sin 2B =1-cos 22B =223. 从而sin 4B =2sin 2B cos 2B =429, cos 4B =cos 22B -sin 22B =-79. 所以sin ⎝⎛⎭⎫4B +π3 =sin 4B cos π3+cos 4B sin π3=42-7318. 课后练习区1.D 2.D 3.B 4.B 5.A6.等边三角形解析 ∵b 2=a 2+c 2-2ac cos B ,∴ac =a 2+c 2-ac ,∴(a -c )2=0,∴a =c ,又B =60°,∴△ABC 为等边三角形.7.1解析 由A +C =2B 及A +B +C =180°知,B =60°.由正弦定理知,1sin A =3sin 60°, 即sin A =12. 由a <b 知,A <B ,∴A =30°,C =180°-A -B =180°-30°-60°=90°,∴sin C =sin 90°=1.8.π4解析 设∠BAD =α,∠DAC =β,则tan α=13,tan β=12, ∴tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=13+121-13×12=1. ∵∠BAC 为锐角,∴∠BAC 的大小为π4. 9.解 (1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45.……………………………………………………(4分) 又由AB →·AC →=3得bc cos A =3,所以bc =5,因此S △ABC =12bc sin A =2.…………………………………………………………………(8分) (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-165bc =20,所以a =2 5.………(12分) 10.解在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,…………………………………………………………………(6分) ∴∠ADC =120°,∠ADB =60°.…………………………………………………………(8分) 在△ABD 中,AD =10,B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.…………………………………………………………………………(12分) 11.解 (1)∵3b 2+3c 2-3a 2=42bc ,∴b 2+c 2-a 2=423bc . 由余弦定理得,cos A =b 2+c 2-a 22bc =223,……………………………………………(4分) 又0<A <π,故sin A =1-cos 2A =13.……………………………………………………(6分) (2)原式=2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫π-A +π41-cos 2A………………………………………………………(8分)=2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫A -π42sin 2A=2⎝⎛⎭⎫22sin A +22cos A ⎝⎛⎭⎫22sin A -22cos A 2sin 2A…………………………………………(11分) =sin 2A -cos 2A 2sin 2A =-72. 所以2sin (A +π4)sin (B +C +π4)1-cos 2A =-72.……………………………………………………(14分)。