小学奥数:比例应用题(一).专项练习及答案解析

合集下载

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析一、填空题1、甲、乙两车分别从、两地同时相向开出,甲车速度是千米/小时,乙车速度是千米/小时,当甲车驶过、距离的多千米时与乙车相遇,、两地相距()千米.【答案】225【解析】在相同的时间内,两车行驶的路程比等于两车的速度之比,由于两车的速度之比等于,那么、距离的多千米即是、距离的,所以千米的距离相当于全程的,全程的距离为(千米).2、袋子里红球与白球的数量之比是.放入若干只红球后,红球与白球数量之比变为;再放入若干只白球后,红球与白球数量之比变为.已知放入的红球比白球少只.那么原来袋子里共有()只球.【答案】960【解析】根据第一次操作白球的数量不变,把改写成,改写成.第二次操作相对于第一次操作红球数量不变,把改写成,这时我们可以看出,经过两次操作后,红球共增加了份,白球增加了份.原来红球有个,白球有个.两种球共个.3、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为.实际上,甲、乙、丙三人所得糖果数的比为,其中有一位小朋友比原计划多得了块糖果.那么这位小朋友是()(填“甲”、“乙”或“丙”),他实际所得的糖果数为()块.【答案】丙 150【解析】方法一:原计划甲、乙、丙三人所得糖果数分别占总数的,,;实际甲、乙、丙三人所得糖果数分别占总数的,,,只有丙占总数的比例是增加的,所以这位小朋友是丙.糖果总数为(块),丙实际所得的糖果数为(块).方法二:对比分析甲15——14,乙12——12,丙9——10,发现多得糖果的是丙所以15÷(10—9)×10=150(块)4、一项机械加工作业,用4台型机床,5天可以完成;用4台型机床和2台型机床3天可以完成;用3台型机床和9台型机床,2天可以完成,若3种机床各取一台工作5天后,剩下、型机床继续工作,还需要______ 天可以完成作业.【答案】3【解析】由于用4台型机床5天可以完成;用4台型机床和2台型机床3天可以完成,所以2台型机床3天完成的量等于4台型机床2天完成的量,则、两种机床每天完成的量的比为,即型机床每天完成的量为3,型机床每天完成的量为4,该项作业总量为,那么型机床每天完成的量为,3种机床各取一台工作5天后,剩下的工作量为,、型机床还需继续工作天.5、有甲、乙两块含铜率不同的合金,甲块重千克,乙块重千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为________.【答案】2.4【解析】设切下的部分重量为千克,则甲切下的千克与乙剩下的千克混合.由于得到的两块新合金的含铜率相同,所以若将这两块新合金混合,得到的大块合金的含铜率应与原来的两块新合金的含铜率相同,而这一大块合金是由千克甲块合金与千克乙块合金混合而成的,所以千克甲块合金与千克乙块合金混合后的含铜率与千克甲块合金与千克乙块合金混合后的含铜率相同,而甲、乙两块合金含铜率不同,所以这两种混合中甲、乙两种合金的重量比相同,即,所以:,解得.6、甲、乙两个工人上班,甲比乙多走的路程,而乙比甲的时间少,甲、乙的速度比是().【答案】12:11【解析】甲走的路程是乙走的路程的,甲用的时间是乙用的时间的,所以甲的速度是乙的速度的,即甲、乙的速度比是.二、解答题7、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【答案】2【解析】解:设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为:20×4+21×3=143,则单位“1”的价格为:71.5÷143=0.5元,所以圆珠笔的单价是O.5×4=2(元).8、加工某种零件,甲分钟加工个,乙分钟加工个,丙分钟加工个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件?【答案】1400 1200 1050【解析】根据题意可知,甲、乙、丙的工作效率之比为,那么在相同的时间内,三人完成的工作量之比也是,所以甲加工了个零件,乙加工了个零件,丙加工了个零件。

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

小学六年级奥数系列讲座:比的应用(含答案解析)

小学六年级奥数系列讲座:比的应用(含答案解析)

比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。

运用这种方法解决一些实际问题可以化难为易,化繁为简.二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ):():()。

【思路导航】甲、乙两数的比2:3乙、丙两数的比4:5甲、乙、丙三数的比8:12:15答:甲、乙、丙三数的比是8:12:15。

练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是( ):():()。

2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。

3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。

【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5.这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。

①一、二两组人数的比2:3 二、三两组人数的比4:5一、二、三组人数的比8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1.每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2.已知第一组的人数比二、三组人数的总和少15人。

六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。

已知数学组与科技组共有69人。

数学组比作文组多多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

小学奥数:比例应用题(一).专项练习及答案解析

小学奥数:比例应用题(一).专项练习及答案解析

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题 比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有: 一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;L ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的知识点拨教学目标比例应用题(一)元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

2020-2021比例 (奥数)

2020-2021比例 (奥数)

2020-2021比例 (奥数)一、比例1.一个直角三角形的两条直角边缩小到原来的后,其斜边()A. 扩大3倍B. 不变C. 缩小到原来的D. 无法判断【答案】 C【解析】【解答】解:一个直角三角形的两条直角边缩小到原来的后,其斜边也缩小到原来的。

故答案为:C。

【分析】直角三角形斜边扩大或缩小的倍数与两条直角边扩大或缩小的倍数相同。

2.在下面各比中,能与组成比例的是()。

A. 4:3B. 3:4C.D. 8:6【答案】 B【解析】【解答】:=÷=;选项A,4:3=4÷3=;选项B,3:4=3÷4=;选项C,:=÷=;选项D,8:6=8÷6=;:=3:4.故答案为:B.【分析】根据比例的意义:表示两个比相等的式子叫比例,据此先求出原题中比的比值,用前项÷后项=比值,然后求出各选项的比值,并进行对比,比值相等就能组成比例,据此解答.3.下面各组的两个比,可以组成比例的是()A. :和:B. 12:9和9:6C. 8.4:2.1和1.2:8.4【答案】 A【解析】【解答】解:A、,=2,能组成比例;B、12:9=, 9:6=,不能组成比例;C、8.4:2.1=4,1.2:8.4=0.25,不能组成比例。

故答案为:A。

【分析】比值相等的两个比能组成比例,计算出每个选项中两个比的比值即可作出选择。

4.与∶能组成比例的是()。

A. ∶B. ∶C. ∶【答案】 C【解析】【解答】解:=1.5;A、=,不能组成比例;B、,不能组成比例;C、,能组成比例。

故答案为:C。

【分析】表示两个相等的比叫做比例,由此计算出每个比的比值并选出比值相等的两个比组成比例即可。

5.给6、12、15再加上一个数,使组成一个比例,这个数可能是________、________、和________。

【答案】 4.8;7.2;30【解析】【解答】解:4.8:6=12:15;6:12=7.2:15;6:15=12:30;所以这个数可能是4.8、7.2、30。

完整版六年级奥数题比和比例一

完整版六年级奥数题比和比例一

比例问题填空题1.4:( )= 20=()10=( )%2. 在3:5里,如果前项加上6,要使比值不变,后项应加 _.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是____ 毫米.4. 某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、茄子面积的比是25:1:丄,三种蔬菜各种了亩.25. 买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了____ 支.6. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 _—7. 自然数A、B满足- 丄 -,且A:B=7:13.那么,A+B=.A B 1828. 光明小学有三个年级,一年级学生占全校学生人数的25%二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生______________ 人.9. 水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺____ 吨.黄砂多 _____ 吨.10. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要_____ 小时.11. 已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.12. 有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克, 求在新合金内铜与锌的比.13. 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50 千米•问:此人走完全程用了多少时间?14. 一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?练习题1有一个长方体,长与宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和是220cm求这个长方体的体积。

浙江省丽水市数学小学奥数系列6-2-4比例应用题专练1

浙江省丽水市数学小学奥数系列6-2-4比例应用题专练1

浙江省丽水市数学小学奥数系列6-2-4比例应用题专练1姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、比例应用题专练1 (共26题;共118分)1. (5分) (2018六上·闽侯期中) 学校跑道一圈长400米,东东和西西在跑道上散步,从同一地点出发相背而行,分钟相遇.相遇时,东东和西西走的路程比是,东东走了多少米?2. (5分)把一条长216厘米的铁丝,做成一个长方体框架,要求楼长的比是1:2:6。

如果每个面都用铁皮包上做铁盒,那么这个铁盒的体积是多少?3. (5分) (2018五上·阳江月考) 有一块260公顷的地,其中60公顷种茄子,其余的按1:4的比例种黄瓜和西红柿,这块地种黄瓜和西红柿各多少公顷?4. (5分) (2020六上·西安期末) 甲、乙、丙三个修路队合修一条45千米的公路,完工时甲队修了这条公路的,乙队和丙队所修公路长度之比为3:2,三个队各修了多少千米?5. (5分) (2019六上·滨州期中) 学校把280棵树苗按3个班的人数分配给各班,一班有48人,二班有50人,三班有42人。

3个班各应分得多少棵树苗?6. (5分)一种混凝土的水泥、黄沙和石子的比是2:3:5,如果要搅拌15吨这样的混凝土,需要水泥、黄沙和石子各多少吨?7. (5分)(2018·梁平) 学校体育室购进足球、篮球、排球共300个,已知足球个数的、篮球个数的、排球个数的是相等的,那么购进足球多少个?8. (1分)甲、乙、丙三个数的平均数是60。

甲、乙、丙三个数的比是3:2:1。

甲、乙、丙三个数分别是________、________、________。

9. (5分) (2019六上·宁津期中) 学校修整校园用的混凝土是按2份水泥、3份石子和5份沙子的标准混合成的。

人教版六年级数学上册-第四单元-比--奥数题(附答案)【可编辑全文】

人教版六年级数学上册-第四单元-比--奥数题(附答案)【可编辑全文】

可编辑修改精选全文完整版第四单元 比 奥数题例题1.(比的问题转化为分数问题)(1)小明读一本书,已读的页数和未读的页数之比是5:4.如果再读27页,已读的页数和未读的页数之比是2:1.求这本书有多少页?(2)甲、乙两袋糖果的质量比是3:2,如果从甲袋糖果中拿出5千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?练习1.(1)六(1)班男生人数与女生人数的比是5:4,已知女生比男生少3人,全班共有多少人?(2)甲、乙两袋糖果的质量比是4:3,如果从甲袋糖果中拿出3千克放入乙袋,这时甲、乙两袋糖果的质量比是1:1.两袋糖果一共重多少千克?例题2.下图中阴影部分的面积占圆面积的31,占长方形面积的72,圆的面积与长方形面积的比是多少?练习2.下图中阴影甲占平行四边形面积的75,阴影乙占三角形面积的32,平行四边形面积与三角形面面积的比是多少?例题3.(按比分配)(1)一条路全长120千米,分成上坡、平路、下坡三段,三段路程之比是1:2:3,小明走完三段路程所用的时间之比是4:5:6,已知他上坡的速度是每小时5千米,小明走完全程用了多长时间?(2)甲、乙、丙三人合作加工一批零件,加工一个零件甲需要6分钟,乙需要5分钟,丙需要4.5分钟,三人完成加工任务后共得工钱1590元。

按照加工零件的数量分工钱,甲、乙、丙各分得工钱多少元?(3)学校组织体检,收费标准如下:老师每人3元,学生每人2元。

已知老师和学生人数比为2:9,共收得体检费3120元,那么老师、学生各有多少人?(4)徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋。

现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋。

如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?(5)甲、乙、丙三人合买一台电视机,甲所付钱数的21等于乙所付钱数的31,等于丙所付钱数的73。

已知丙比甲多付了120元,那么这台电视机多少钱?(6)张、王、李、赵4人联合为灾区捐款,张捐的钱数是王,李,赵总和的41,王捐的钱是张,李,赵总和的237,李捐的钱是张,王,赵总和的114,赵捐了9元钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题 比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有: 一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;L ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的知识点拨教学目标比例应用题(一)元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。

在解答分数应用题时,要注意以下几点:1. 题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。

2. 若题中数量发生变化的,一般要选择不变量为单位“1”。

3. 应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。

找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。

4. 题中有明显的等量关系,也可以用方程的方法去解。

5. 赋值解比例问题模块一、比例转化 【例 1】 甲、乙、丙三个数,已知甲:(乙+丙)4:3=,乙:丙2:7=,求甲:乙:丙。

【考点】比例应用题 【难度】2星 【题型】解答【解析】 由:2:7=乙丙可得到():2:9+=乙乙丙,():7:9+=丙乙丙,而():4:3+=甲乙丙,所以:427::::12:2:7399==甲乙丙. 【答案】12:2:7【例 2】 已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?【考点】比例应用题 【难度】2星 【题型】解答【解析】 甲的一半、乙的2倍、丙的23这三个数的比为1:1:1,所以甲、乙、丙这三个数的比为()121:12:123⎛⎫⎛⎫÷÷÷ ⎪ ⎪⎝⎭⎝⎭即132::22,化简为4:1:3,那么甲的23、乙的2倍、丙的一半这三个数的比为()214:12:332⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭即83:2:32,化简为16:12:9. 【答案】16:12:9【例 3】 已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两数和的57,求甲:乙:丙. 【考点】比例应用题 【难度】2星 【题型】解答 【解析】 由甲等于乙、丙两数和的13,得到甲等于三个数和的113+14=,同样的乙等于甲、例题精讲丙两数和的112+13=,同样的丙等于甲、乙两个数和的557512=+ ,所以甲:乙:丙115::3:4:54312==. 【答案】3:4:5【例 4】 甲、乙两个工人上班,甲比乙多走15的路程,而乙比甲的时间少111,甲、乙的速度比是 .【考点】比例应用题 【难度】2星 【题型】解答【关键词】2008年,清华附中 【解析】 甲走的路程是乙走的路程的65,甲用的时间是乙用的时间的1110,所以甲的速度是乙的速度的6111251011÷=,即甲、乙的速度比是12:11. 【答案】12:11【例 5】 右图是一个园林的规划图,其中,正方形的43是草地;圆的76是竹林;竹林比草地多占地450平方米. 问:水池占多少平方米?【考点】比例应用题 【难度】2星 【题型】解答【解析】 正方形的43是草地,那如果水池占1份,草地的面积便是3份;圆的76是竹林,水池占1份,竹林的面积是6份。

从而竹林比草地多出的面积是(6-3=)3份。

3份的面积是450平方米,可见1份面积是450÷3=150(平方米),即水池面积是150平方米。

【答案】150【例 6】 如下图所示,圆B 与圆C 的面积之和等于圆A 面积的45,且圆A 中的阴影部分面积占圆A 面积的16,圆B 的阴影部分面积占圆B 面积的15,圆C 的阴影部分面积占圆C 面积的13.求圆A 、圆B 、圆C 的面积之比. CB A【考点】比例应用题 【难度】3星 【题型】解答【解析】 设A 与B 的共同部分的面积为x ,A 与C 的共同部分的面积为y ,则根据题意有()()564A B C x y =+=+,5B x =,3C y =,于是得到()56453B C B C ⎛⎫+=+ ⎪⎝⎭,这条式子可化简为15B C =,所以()5204A B C C =+=.最后得到::20:15:1A B C =.【答案】::20:15:1A B C =【例 7】 地球表面的陆地面积和海洋面积之比是29∶71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是( )A . 284∶29B . 284∶87C . 87∶29D . 171∶113【考点】比例应用题 【难度】2星 【题型】选择【关键词】华杯赛,六年级【解析】 解:设地球表面积为1, 则北半球海洋面积为:0.5-0.29×34=1.134 南半球海洋面积为:0.71-1.134=1.714 南北半球海洋面积之比为:1.714∶1.134=171∶113 答案:D【答案】D【例 8】 某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.【考点】比例应用题 【难度】3星 【题型】解答【解析】 以总人数为1,则甲组男会员人数为103310873110⨯=+++,女会员为31110310⨯=,乙组男会员为8511087535⨯=+++,女会员为1335525⨯=;丙组男会员为33113+210510⎛⎫-+= ⎪⎝⎭,女会员为21393+2102550⎛⎫-+= ⎪⎝⎭;所以,丙组中男、女会员人数之比为19:5:91050=. 【答案】5:9【巩固】 某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【考点】比例应用题 【难度】3星 【题型】解答【解析】 会员总人数100人,男女比例为14:11,则可知男、女会员人数分别为56人、44人;又已知甲组人数与乙、丙两组人数之和一样多,则可知甲组人数为50人,乙、丙人数之和为50人,可设丙组人数为x 人,则乙组人数为()50x -人,又已知甲组男、女会员比为12:13,则甲组男、女会员人数分别为24人、26人,又已知乙、丙两组男、女会员比例,则可得:5224(50)5683x x +-+=,解得18x =.即丙组会员人数为18人,又已知男、女比例,可得丙组男会员人数为218123⨯=人.【答案】12【例 9】 一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.【考点】比例应用题 【难度】3星 【题型】解答【解析】 (法一)甲工程队以3倍乙工程队建设速度,仅完成了40%的承包任务,而乙工程队完成了60%,所以甲工程队承包任务的40%等于乙工程队承包任务的60%3180%⨯=,所以甲工程队的承包的任务是乙工程队承包任务的180%40%450%÷=,所以两个工程队承包的修建公路长度之比为450%:19:2=.(法二)两个工程队完成的工程任务(修建公路长度)之比等于工作效率之比,等于3:1,而他们分别完成了各自任务的40%和60%,所以两个工程队承包的修建公路长度之比为()()340%:160%9:2÷÷=.【答案】9:2【例 10】 A 、B 、C 三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【考点】比例应用题 【难度】4星 【题型】解答【关键词】2007年,华杯赛,总决赛【解析】 根据题意,如果把A 工程的工作量看作1,则B 工程的工作量就是2,C 工程的工作量就是3.设甲、乙、丙三个工程队的工作效率分别为x 、y 、z .经过k 天,则:()()()22133213kx ky ky kz kz kx =-⎧⎪=-⎨⎪=-⎩L L L LL L 将⑶代入⑵,得()243kx ky +=L L ,将⑷代入⑴,得2223kx kx +=-,47x k =, 将47x k =代入⑴,得67y k =.代入⑶,得37z k=. 甲、乙、丙三队的.工作效率的连比是463::4:6:3777k k k=. 【答案】4:6:3【巩固】 某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【考点】比例应用题 【难度】3星 【题型】解答【解析】 由①、②可知甲、乙两校获奖总人数的比为6:5,不妨设甲校有60人获奖,则乙校有50人获奖.由③知两校获二等奖的共有(6050)20%22+⨯=人;由⑤知甲校获二等奖的有22(4.51) 4.518÷+⨯=人;由④知甲校获一等奖的有606050%1812-⨯-=人,那么乙校获一等奖的也有12人,从而所求百分数为1250100%24%÷⨯=.【答案】24%【例 11】 ①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【考点】比例应用题 【难度】3星 【题型】解答【解析】 如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,等,则女生总数等于四个班的人数之和.所以,男、女生人数之比是5:4.【答案】5:4=模块二、按比例分配与和差关系(一)量倍对应【例 12】 一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【考点】比例应用题 【难度】2星 【题型】解答【解析】 一共有()()1613111311192÷-⨯+=个苹果.【答案】192个【巩固】 甲、乙两个班共种树若干棵,已知甲班种的棵数的14等于乙班种的棵数的15,且乙班比甲班多种树24棵,甲、乙两个班各种树多少棵?【考点】比例应用题 【难度】2星 【题型】解答【解析】 甲、乙两班种树棵数之比为:11:4:554=,甲班种树棵数为:()2454496÷-⨯=(棵),乙班种树棵数为:()24545120÷-⨯=(棵).【答案】120棵【例 13】 甲乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有 人。

相关文档
最新文档