五年级行程问题经典例题

合集下载

小学五年级路程应用题100道附答案(完整版)

小学五年级路程应用题100道附答案(完整版)

小学五年级路程应用题100道附答案(完整版)题目1一辆汽车每小时行驶60 千米,行驶4 小时,一共行驶了多少千米?答案:路程= 速度×时间= 60×4 = 240(千米)题目2小明骑自行车的速度是15 千米/时,他骑了3 小时,行驶了多少千米?答案:15×3 = 45(千米)题目3一辆火车的速度是120 千米/时,行驶5 小时,行驶的路程是多少?答案:120×5 = 600(千米)题目4甲、乙两地相距300 千米,一辆汽车以75 千米/时的速度从甲地开往乙地,需要几小时到达?答案:时间= 路程÷速度= 300÷75 = 4(小时)题目5某人步行的速度是5 千米/时,走15 千米需要多长时间?答案:15÷5 = 3(小时)题目6飞机的速度是800 千米/时,飞行1600 千米需要多长时间?答案:1600÷800 = 2(小时)题目7一艘轮船从A 港到B 港,速度是40 千米/时,8 小时到达,A、B 两港相距多少千米?答案:40×8 = 320(千米)题目8小强跑步的速度是8 米/秒,跑了50 秒,跑了多少米?答案:8×50 = 400(米)题目9一辆汽车3 小时行驶了180 千米,照这样的速度,5 小时能行驶多少千米?答案:速度= 180÷3 = 60(千米/时),5 小时行驶60×5 = 300(千米)题目10小明家距离学校1200 米,他每天步行上学需要15 分钟,他的步行速度是多少?答案:1200÷15 = 80(米/分钟)题目11一辆摩托车以45 千米/时的速度行驶2 小时后,又以50 千米/时的速度行驶3 小时,一共行驶了多少千米?答案:45×2 + 50×3 = 90 + 150 = 240(千米)题目12甲、乙两地相距480 千米,一辆客车从甲地开往乙地,前3 小时行驶了180 千米,照这样的速度,还需要几小时到达乙地?答案:速度= 180÷3 = 60(千米/时),剩余路程= 480 - 180 = 300(千米),还需时间= 300÷60 = 5(小时)题目13一辆汽车从A 地开往 B 地,平均每小时行驶70 千米,4 小时后距离中点还有20 千米,A、B 两地相距多少千米?答案:4 小时行驶的路程= 70×4 = 280(千米),总路程的一半= 280 + 20 = 300(千米),A、B 两地相距300×2 = 600(千米)题目14小亮骑自行车去郊游,前2 小时行了24 千米,后3 小时行了36 千米,小亮平均每小时行多少千米?答案:总路程= 24 + 36 = 60(千米),总时间= 2 + 3 = 5(小时),平均速度= 60÷5 = 12(千米/时)题目15一辆汽车往返于甲、乙两地,去时的速度是60 千米/时,返回时的速度是40 千米/时,往返的平均速度是多少?答案:设甲、乙两地的距离为“1”,去时的时间= 1÷60 = 1/60,返回的时间= 1÷40 = 1/40,往返总路程= 2,平均速度= 2÷(1/60 + 1/40)= 48(千米/时)题目16小明和小红同时从学校出发去图书馆,小明每分钟走80 米,12 分钟到达,小红每分钟走60 米,多长时间到达?答案:学校到图书馆的距离= 80×12 = 960(米),小红到达所需时间= 960÷60 = 16(分钟)题目17一辆汽车从甲地开往乙地,去时每小时行80 千米,返回时每小时行100 千米,往返共用9 小时,甲、乙两地相距多少千米?答案:设去时用了x 小时,则返回时用了9 - x 小时,80x = 100×(9 - x),80x = 900 - 100x,180x = 900,x = 5,甲、乙两地相距80×5 = 400(千米)题目18甲、乙两车同时从A、B 两地相对开出,甲车每小时行50 千米,乙车每小时行60 千米,经过4 小时两车相遇,A、B 两地相距多少千米?答案:(50 + 60)×4 = 440(千米)题目19一辆汽车以每小时75 千米的速度行驶,行驶了3 小时后离目的地还有120 千米,到达目的地一共需要多长时间?答案:已行驶路程= 75×3 = 225(千米),总路程= 225 + 120 = 345(千米),总时间= 345÷75 = 4.6(小时)题目20一列火车长200 米,以每秒25 米的速度通过一座长400 米的大桥,从车头上桥到车尾离桥一共需要多长时间?答案:(200 + 400)÷25 = 24(秒)题目21甲、乙两人同时从相距800 米的两地相向而行,甲每分钟走60 米,乙每分钟走40 米,几分钟后两人相遇?答案:800÷(60 + 40)= 8(分钟)题目22一辆汽车4 小时行驶了320 千米,照这样的速度,再行驶2 小时,一共行驶了多少千米?答案:速度= 320÷4 = 80(千米/时),2 小时行驶80×2 = 160(千米),一共行驶320 + 160 = 480(千米)题目23A、B 两地相距560 千米,一辆客车从A 地开往B 地,每小时行70 千米,几小时后离B 地还有140 千米?答案:(560 - 140)÷70 = 6(小时)题目24一辆汽车从甲地到乙地,前 2 小时平均每小时行40 千米,后3 小时平均每小时行60 千米,甲地到乙地的全程是多少千米?答案:2×40 + 3×60 = 80 + 180 = 260(千米)题目25小明和小刚从相距1200 米的两地同时相对走来,小明每分钟走70 米,小刚每分钟走50 米,几分钟后两人相遇?答案:1200÷(70 + 50)= 10(分钟)题目26一辆汽车以90 千米/时的速度行驶6 小时,然后以60 千米/时的速度行驶4 小时,这辆汽车一共行驶了多少千米?答案:90×6 + 60×4 = 540 + 240 = 780(千米)题目27甲乙两地相距600 千米,一辆货车从甲地开往乙地,每小时行50 千米,已经行驶了8 小时,距离乙地还有多远?答案:50×8 = 400(千米),600 - 400 = 200(千米)题目28一艘快艇的速度是70 千米/时,行驶350 千米需要多长时间?答案:350÷70 = 5(小时)题目29明明跑步的速度是6 米/秒,跑480 米需要多长时间?答案:480÷6 = 80(秒)题目30一辆客车从A 地出发去B 地,每小时行85 千米,10 小时后超过中点120 千米,A、B 两地相距多少千米?答案:10 小时行驶的路程为85×10 = 850(千米),总路程的一半为850 - 120 = 730(千米),A、B 两地相距730×2 = 1460(千米)题目31小红和小丽同时从相距960 米的两地相对而行,小红每分钟走70 米,小丽每分钟走50 米,几分钟后两人还相距160 米?答案:(960 - 160)÷(70 + 50)= 800÷120 = 20 / 3(分钟)题目32一辆汽车从甲地开往乙地,前半程的速度是60 千米/时,后半程的速度是40 千米/时,这辆汽车的平均速度是多少?答案:设全程为“1”,前半程时间为1/2÷60 = 1/120,后半程时间为1/2÷40 = 1/80,总时间为1/120 + 1/80 = 1/48,平均速度为1÷(1/48)= 48(千米/时)题目33一列火车长300 米,每秒行35 米,通过一座长1200 米的大桥,需要多长时间?答案:(300 + 1200)÷35 = 1500÷35 = 300 / 7(秒)题目34甲、乙两车同时从相距500 千米的两地出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,几小时后两车相遇?答案:500÷(70 + 80)= 500÷150 = 10 / 3(小时)题目35一辆汽车4 小时行驶了360 千米,照这样的速度,行驶720 千米需要多长时间?答案:速度为360÷4 = 90(千米/时),720÷90 = 8(小时)题目36A、B 两地相距720 千米,一辆客车从A 地开往B 地,每小时行80 千米,行驶了6 小时后,距离B 地还有多远?答案:80×6 = 480(千米),720 - 480 = 240(千米)题目37一艘游船的速度是45 千米/时,在一条河中顺水行驶 3 小时,行驶了150 千米,这条河的水流速度是多少?答案:顺水速度= 150÷3 = 50(千米/时),水流速度= 50 - 45 = 5(千米/时)题目38小明和小刚分别从相距1800 米的两地同时出发,相向而行,小明每分钟走85 米,小刚每分钟走75 米,多少分钟后两人相遇?答案:1800÷(85 + 75)= 1800÷160 = 11.25(分钟)题目39一辆汽车从甲地到乙地,去时的速度是90 千米/时,用了5 小时,返回时用了 6 小时,返回时的速度是多少?答案:路程= 90×5 = 450(千米),返回速度= 450÷6 = 75(千米/时)题目40一条公路长800 米,工人叔叔已经修了6 天,每天修70 米,还剩多少米没修?答案:6×70 = 420(米),800 - 420 = 380(米)题目41一辆自行车的速度是12 千米/时,行驶60 千米需要多长时间?答案:60÷12 = 5(小时)题目42甲、乙两地相距450 千米,一辆货车以50 千米/时的速度从甲地开往乙地,出发 3 小时后,离乙地还有多远?答案:50×3 = 150(千米),450 - 150 = 300(千米)题目43一架飞机以800 千米/时的速度飞行1500 千米,需要多长时间?答案:1500÷800 = 1.875(小时)题目44一辆汽车3 小时行驶了225 千米,照这样的速度,8 小时能行驶多少千米?答案:速度= 225÷3 = 75(千米/时),8 小时行驶75×8 = 600(千米)题目45一条跑道长400 米,小明每秒跑5 米,他跑完全程需要多少秒?答案:400÷5 = 80(秒)题目46一辆客车从A 地到B 地,每小时行65 千米,12 小时后距离B 地还有180 千米,A、B 两地相距多少千米?答案:65×12 + 180 = 780 + 180 = 960(千米)题目47一艘轮船从甲港开往乙港,速度是30 千米/时,8 小时到达,返回时用了6 小时,返回时的速度是多少?答案:路程= 30×8 = 240(千米),返回速度= 240÷6 = 40(千米/时)题目48小红和小明分别从相距1500 米的两地同时出发,相向而行,10 分钟后相遇,小红每分钟走80 米,小明每分钟走多少米?答案:两人的速度和为1500÷10 = 150(米/分),小明的速度= 150 - 80 = 70(米/分)题目49一辆汽车2 小时行驶了160 千米,按照这样的速度,行驶560 千米需要多少小时?答案:速度= 160÷2 = 80(千米/时),时间= 560÷80 = 7(小时)题目50一条公路,工人每天修80 米,修了10 天,还剩400 米没修,这条公路全长多少米?答案:80×10 + 400 = 800 + 400 = 1200(米)题目51一辆摩托车以60 千米/时的速度行驶5 小时,然后以80 千米/时的速度行驶3 小时,这辆摩托车一共行驶了多少千米?答案:60×5 + 80×3 = 300 + 240 = 540(千米)题目52甲、乙两地相距700 千米,一辆汽车从甲地开往乙地,前4 小时行驶了280 千米,照这样的速度,还需要几小时到达乙地?答案:速度= 280÷4 = 70(千米/时),剩余路程= 700 - 280 = 420(千米),还需时间= 420÷70 = 6(小时)题目53一列高铁3 小时行驶了960 千米,照这样的速度,5 小时能行驶多少千米?答案:速度= 960÷3 = 320(千米/时),5 小时行驶320×5 = 1600(千米)题目54小明和小刚从相距1680 米的两地同时相对走来,小明每分钟走75 米,小刚每分钟走85 米,几分钟后两人相遇?答案:1680÷(75 + 85)= 1680÷160 = 10.5(分钟)题目55一辆汽车从A 地开往 B 地,平均速度是72 千米/时,行驶了8 小时,A、B 两地相距多少千米?答案:72×8 = 576(千米)题目56一条水渠长1200 米,已经修了4 天,每天修150 米,还剩多少米没修?答案:4×150 = 600(米),1200 - 600 = 600(米)题目57一架飞机从甲地飞往乙地,每小时飞行900 千米,4 小时到达,如果每小时飞行800 千米,需要多少小时到达?答案:路程= 900×4 = 3600(千米),时间= 3600÷800 = 4.5(小时)题目58一辆汽车5 小时行驶了450 千米,照这样的速度,行驶720 千米需要多长时间?答案:速度= 450÷5 = 90(千米/时),时间= 720÷90 = 8(小时)题目59甲、乙两车同时从A、B 两地相对开出,甲车每小时行48 千米,乙车每小时行52 千米,经过5 小时两车相遇,A、B 两地相距多少千米?答案:(48 + 52)×5 = 500(千米)题目60一辆汽车以每小时85 千米的速度行驶,行驶了4 小时后离目的地还有150 千米,到达目的地一共需要多长时间?答案:已行驶路程= 85×4 = 340(千米),总路程= 340 + 150 = 490(千米),总时间= 490÷85 = 5.8(小时)题目61一艘轮船从港口出发,顺水航行3 小时,行驶了120 千米,已知水流速度为每小时5 千米,轮船在静水中的速度是多少?答案:顺水速度= 120÷3 = 40(千米/时),静水速度= 40 - 5 = 35(千米/时)题目62小丽和小美从相距1200 米的两地同时出发,相向而行,12 分钟后相遇。

五年级行程问题应用题100道

五年级行程问题应用题100道

五年级行程问题应用题100道及答案(1)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

(2)一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

14时10分时火车追上这位工人,15秒后离开。

14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。

问:工人与学生将在何时相遇?(3)在双轨铁道上,速度为千米/小时的货车时到达铁桥,时分秒完全通过铁桥,后来一列速度为千米/小时的列车,时分到达铁桥,时分秒完全通过铁桥,时分秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?(4)田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇.已知牛牛每分钟走50米,求甲、乙两地之间的路程.(5)一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

求水流的速度.(6)甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走,甲第一次遇到乙后又走了30秒遇到丙,再过4分钟第二次遇到乙.已知甲、乙的速度比是3:2,湖的周长是900米,求丙的速度.(7)一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?(8)当当和田田两人从相距1089米的两地同时出发相向而行,已知当当每分钟走52米,他们经过11分钟相遇,那么,请问:田田每分钟走多少米?(9)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?(10)一辆小汽车从武汉到杭州需要8小时,一辆大客车从杭州到武汉需要10小时.两车同时从两地出发相向而行,几小时相遇?(11)小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?(12)甲乙两人分别从两地同时出发同向而行,两地相距800米,乙在前面,甲在后面.乙每分钟走30米,甲每分钟走50米,请问:多久后甲可以追上乙?(13)一只蚂蚁沿着等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行45厘米,30厘米,36厘米,那么蚂蚁爬一周平均每分钟爬行几厘米?(14)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面.甲、乙两地相距84千米,小王一共经过4小时追上了小李小李每小时走10千米,请问:小王每小时走多少千米?(15)甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.(16)周六,乐乐骑自行车去朋友家参加聚会,已知乐乐与朋友家相距3600米,乐乐去的时候速度为300米/分,回来的速度是600米/分.求乐乐来回的平均速度.(17)小白和小青分别从甲、乙两地相向而行,小白开车每小时行驶60千米,小青开车每小时行驶80千米,两人相遇在距离中点40千米的地方.求甲乙两地之间的距离.(18)当当从教室去图书馆还书,如果每分钟走100米,能在图书馆闭馆前2分钟到达.如果每分钟走50米,到达时就要超出闭馆时间2分钟,求教室到图书馆的路程.(19)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第5次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了10次掌,问此时两人各走了多少米?(20)甲在乙前面100米,于是乙以每分钟50米的速度向他追去,已知甲每分钟走40米,问:乙多长时间能追上甲呢?(21)王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲,他应以多大的速度往回开?(22)在环形跑道上,甲、乙两人同时同地出发,若背向而行,每6分钟相遇一次;若同向而行,每20分钟甲追上乙一次,已知环形跑道的长度是1200米,现在两个人站在跑道上相距300米的地方同向出发,甲何时第一次追上乙?(23)当每天早上按时从家里出发去上学,乐乐每天早上也按时出门去散步,两人相向而行,当当每分钟走60米,乐乐每分钟走40米,两人每天都在同一时刻相遇,有一天当当提前出门,因此比平早9分钟与乐乐相遇,这天当当比平常提前多久出门?(24)上午8点整,甲从A地出发匀速去B地,8点20分甲与从B地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3倍,乙速度不变;8点30分,甲、乙两人同时到达各自的目的地.那么,乙从B地出发时是8点几分.(25)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒.问:他后一半路程用了多少时间?(26)田田和当当沿着学校的环形林荫道散步,田田每分钟走55米,当当每分钟走65米.已知林荫道周长是480米,他们从同一地点同时背向而行,(1)经过多长时间两人第一次相遇?(2)又经过多长时间两人第二次相遇?(3)到第10次相遇共走几圈,共用多长时间?(4)在他们第10次相遇后,田田再走多少米就回到出发点?(27)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(28)汽车上山用了5小时,速度为每小时36千米.下山只用了4小时,汽车下山每小时行驶了多少千米?(29)甲、乙两辆汽车分别从A、B两地出发相对而行,甲车每小时行48千米,乙车每小时行50千米,若甲先出发1小时,再经过5小时与乙相遇,求A、B 两地间的距离.(30)甲和乙驾车从相距700千米的两地同时出发相向而行,甲每小时行驶48千米,乙每小时行驶52千米,请问:两人多久后相遇?(31)一辆汽车从甲地出发,开往相距190千米的乙地.它先以80千米/时的速度行驶了0.8小时,然后以90千米/时的速度行驶.(1)汽车再行驶多少小时才能到达乙地?(2)汽车全程平均每小时行驶多少千米?(保留一位小数(32)在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?(33)小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?(34)一辆汽车从甲城经过乙城开往丙城,共行驶了36小时.从甲城到乙城每小时行驶32千米,从乙城到丙城每小时行驶27千米.已知甲、乙两城之间的距离是640千米.问:全程共有多少千米?(35)甲、乙两车分别从A,B两地同时出发,相向而行.出发时,甲、乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离A地还有10千米.那么A,B两地相距多少千米?(36)乐乐和田田两人分别从A、B两地同时出发相向而行,已知乐乐每分钟走50米,田田走完全程要18分钟.出发3分钟,两人仍相距450米问:两人出发多久后能相遇?(37)上学路上当当发现田田在他前面,于是就开始追田田.当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(38)甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.(39)一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地.骑车时每小时行驶12千米,步行时每小时走4千米.问:这个人走完全程的平均速度是多少?(40)甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5倍,而且甲比乙速度快。

小学五年级环形跑道的行程问题例题精选十五道

小学五年级环形跑道的行程问题例题精选十五道

环形跑道的行程问题经典例题1.甲、乙两人在一个周长为180米的环形跑道上跑步,甲每秒跑5米,乙每秒跑4米,如果两人从同一点同时出发反向跑步,秒后两人第二次相遇。

2.阿呆和阿瓜在周长为400米的环形跑道上练习长跑,阿呆的速度是每秒3米,阿瓜的速度是每秒2米,如果两人从同一地点同时出发反向跑,经过秒两人第一次相遇。

3.甲、乙两人在周长为300米的环形跑道上同时同地同向而行,甲的速度是75米/分,乙的速度是50米/分,那么经过分钟甲第三次追上乙。

4.有一个圆形跑道,周长为360米,甲、乙二人同时从同一点沿同一方向出发,甲每秒跑5米,乙每秒跑2米,秒后甲第三次追上乙。

5.甲乙两人再周长为220米的环形跑道上同时同地背向而行练习跑步,已知甲的速度是每秒6米,乙的速度是每秒4米,那么到第五次相遇共用了秒。

6.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米,已知林荫道周长是480米,他们从同一地点同时背向而行,在他们第三次相遇后,王老师还需走米能回到出发点。

7.甲乙两人在湖边散步,甲每分钟走50米,乙每分钟走40米,如果湖一周的长度是1800米,他们同时同地背向而行,在他们第四次迎面相遇后,甲再走米就能回到出发点。

8.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需要走米才能回到出发点。

9.周长为800米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3米/秒和5米/秒,那么秒后乙第三次追上甲。

10.周长为600米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3.5米/秒和5米/秒,那么乙第二次追上甲时距离出发地米。

11.小雨和小凡各以一定速度,在周长为1000米的环形跑道上跑步,小雨的速度是55米/分,小凡的速度是45米/分,两人同时从同一地点出发,反向跑步,分钟后两人第二次迎面相遇。

五年级行程问题经典例题

五年级行程问题经典例题

行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。

练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

练习二1,兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

五年级行程问题应用题

五年级行程问题应用题

五年级行程问题应用题1.XXX和XXX同时从两地出发,相向而行。

XXX每分钟走50米,XXX每分钟走40米。

他们经过3分钟相遇。

求两地相距多远?XXX和XXX相向而行,每分钟他们的距离是50+40=90米。

在3分钟内,他们相遇,因此他们走过的总距离是3×90=270米。

由于他们相向而行,所以两地的距离是他们走过的总距离的一半,即270÷2=135米。

2.两人同时从两地相向而行。

一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米。

他们经过几分钟相遇?两人相向而行,每分钟他们的距离是600+200=800米。

他们相遇时走过的距离是两地的距离,设为x。

根据时间和速度的关系,可以列出方程:x÷800=时间。

又因为他们是同时出发的,所以时间相等,所以可以得出方程:x÷800=时间×2.将时间代入方程,得到x÷800=2t,即x=1600t,其中t为他们相遇的时间。

又因为他们相遇时走过的距离是x,所以x=600t+200t=800t。

将x=1600t代入其中一个方程,得到1600t=800t×2,即t=1分钟。

3.两只轮船同时从上海和武汉相对开出。

从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。

上海到武汉的航路长多少千米?两只船相对开出,每小时的距离是26+17=43千米。

在25小时内,两船相遇,因此它们走过的总距离是25×43=1075千米。

由于它们是相对开出的,所以它们走过的距离是航路的总长度,设为x。

根据时间和速度的关系,可以列出方程:x÷43=时间。

将时间代入方程,得到x÷43=25,即x=1075千米。

4.一艘轮船从甲港开往乙港,每小时行25千米,4.5小时到达。

从乙港返回甲港时用了5小时,返回时平均每小时行多少千米?从甲港到乙港的航行时间是4.5小时,因此航行的距离是25×4.5=112.5千米。

五年级数学常考的行程问题练习(附答案)

五年级数学常考的行程问题练习(附答案)

五年级数学常考的行程问题练习(附答案)1.两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。

两车开出后几小时相遇?2.两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经4小时相遇。

甲乙两地相距多少千米?3.客车与货车分别从相距275千米的两站同时相向开出,2.5小时在途中相遇。

已知客车每小时行60千米,货车每小时行多少千米?4.两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。

一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?5.丙列火车同时从甲乙两城相对开出。

一列火车每小时行60千米,另一列火车每小时行80千米。

4小时后还相距210千米,求两城距离。

6.甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。

两队合作8天后还差52米这条水渠全长多少米?7.甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。

已知汽车每小时行40千米,求摩托车每小时行多少千米?8.甲镇与乙镇相距138千米,张王二人骑自行车分别从两镇同时出发相向而行。

张每小时行13千米,王每小时行12千米,王在行时中因修车耽误1小时,然后继续行进。

求从出发到相遇经过几小时?9.甲乙两城相距240千米。

客车从甲城开往乙城,每小时行50千米,货车从乙城开往甲城,每小时行30千米。

两车同时出发,2小时后还相距多少千米?10.甲、乙二人从相距31.2千米的两村相对起来,甲每小时行4千米,乙每小时行4.8千米。

两人相遇时乙行14.4千米,甲比乙先出发几小时?【参考答案】1.500/(55+45)=5(小时)2.(56+63)×4=476(千米)3.276/2.5-60=50(千米)4.(465-120)/4.5=39.7(千米)5.(60+80)×4+210=770(千米)6.(75=75-2.5)×8+52=1232(米)7.(484-40×1.5)/4-40=66(千米)8.(138-13)/(13+12)+1=6(小时)9.240-(50+30)×2=80(千米)10.(31.2-14.4)/4-14.4/4.8=1.2(小时)。

小学五年级数学行程问题典型练习题

行程问题(一)【知识分析】相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。

【例题解读】例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米,两地相距多少千米?【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。

那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。

(1)两车经过几小时相遇?8×2÷(90-85)=3.2小时(2)两地相距多少千米?(90+85)×3.2=560(千米)例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地相距多少千米?【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离1.5×2×8÷(10-8)×=120千米【经典题型练习】1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车每小时都比原来多行10千米,则2小时就相遇,求两地的距离?2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?【知识分析】两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题【例题解读】例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米?【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离95×3—55=230千米【经典题型练习】1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?【知识分析】在行程问题中,有时候两车同时出发,但中途因意外可能需要停车,有时候不一定同时出发,也可能同一车在不同的时间段的速度不一样,今天我们学习这种变化的问题。

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

北师大版五年级数学上册典型例题系列之第一单元:行程问题专项练习(解析版)

五年级数学上册典型例题系列之第一单元:行程问题专项练习(解析版)1.甲乙两地相距600千米,一列客车和一列货车同时从甲地开往乙地,客车比货车早到2小时,客车到达乙地时,货车行了440千米,客车行完全程需要多少小时?【答案】5.5小时【分析】根据题意,货车2小时可以行驶(600-440)千米,据此先利用除法求出货车的速度,再用总路程600千米除以货车速度,求出货车行完全程需要的时间。

最后,用货车行完全程的时间减去2小时,即可求出客车行完全程要多少小时。

【详解】货车速度:(600-440)÷2=160÷2=80(千米/时)货车时间:600÷80=7.5(小时)客车时间:7.5-2=5.5(小时)答:客车行完全程需要5.5小时。

【点睛】本题考查了行程问题,灵活运用“速度×时间=路程”是解题的关键。

2.一列货车前往疫区运送抗疫物资,2小时行驶160km。

从出发地到疫区有1000km,按照这样的速度,全程需要多少小时?【答案】12.5小时【分析】根据题意可得出货车速度,运用路程=速度×时间,进行计算可得出答案。

【详解】全程需要的时间为:÷÷1000(1602)=÷100080=(小时)。

12.5答:全程需要12.5小时。

【点睛】本题主要考查的是路程问题及小数运算,解题的关键是熟练运用小数相关运算,进而得出答案。

3.随着旅游景区公路的改造。

从市区到景区的路程由原来的28.8千米缩短到22.4千米。

现在小明和小刚骑车到景区的速度比原来快了多少?【答案】7千米/时【分析】根据“速度=路程÷时间”分别求出现在和原来的速度,再求差即可。

【详解】22.4÷1.4-28.8÷3.2=16-9=7(千米/时)答:现在小明和小刚骑车到景区的速度比原来快7千米/时。

【点睛】解答此题应根据速度、时间、路程三者之间的关系进行解答。

五年级数学行程问题

五年级数学行程问题一、行程问题题目。

1. 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?- 解析:这是一个相遇问题,相遇时间 = 总路程÷速度和。

甲、乙的速度和为6 + 4=10千米/小时,总路程是20千米,所以相遇时间为20÷10 = 2小时。

2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?- 解析:根据路程 = 速度×时间,从甲地到乙地的路程为85×6 = 510千米。

返回的路程也为510千米,返回时间是5小时,所以返回速度为510÷5 = 102千米/小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明每秒跑5米,小红每秒跑3米,他们从同一地点同时出发,同向而行,多少秒后小明第一次追上小红?- 解析:这是一个追及问题,追及时间 = 追及路程÷速度差。

在环形跑道上同向而行,追及路程就是跑道的周长400米,速度差为5 - 3 = 2米/秒,所以追及时间为400÷2 = 200秒。

4. 两列火车从相距720千米的两地同时相对开出,甲车每小时行80千米,乙车每小时行70千米,经过几小时两车相遇?- 解析:相遇时间 = 总路程÷速度和,两车速度和为80+70 = 150千米/小时,总路程720千米,相遇时间为720÷150 = 4.8小时。

5. 一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,客车的速度是75千米/小时,货车的速度是65千米/小时,经过3小时两车还相距40千米,甲、乙两地相距多少千米?- 解析:两车3小时行驶的路程之和为(75 + 65)×3=420千米,再加上相距的40千米,甲、乙两地相距420+40 = 460千米。

6. 甲、乙两人在一条长300米的直路上来回跑步,甲的速度是每秒4米,乙的速度是每秒3米,如果他们同时从路的两端出发,当他们跑了10分钟后,共相遇了几次?- 解析:10分钟=10×60 = 600秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。

练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

练习二1,兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米2,汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。

因此,东西两村的距离是15×(5-1)=60(千米)练习三1,甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地千米处与乙相遇。

A、B两地间的距离是多少千米2,小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。

小红每分钟走多少米例4 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距千米。

两车继续行驶到下午1时,两车相距还是千米。

A、B两地间的距离是多少千米分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距千米到又相距千米,共行×2=225千米。

两车的速度和是225÷3=75千米。

从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+=千米。

练习四1,甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米。

又行3小时,两车又相距120千米。

A、B两地相距多少千米2,快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米。

继续行驶到14时,两车又相距170千米。

甲、乙两地相距多少千米3,东、西两村相距36千米,甲、乙二人同时从东西两村相向出发,3小时后,丙骑车从东村出发去追甲,结果三人同时在某地相遇。

已知甲每小时行4千米,乙每小时行5千米,求丙的速度。

行程问题(二)专题简析:本周的主要问题是“追及问题”。

追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。

抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。

例1 中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。

60÷24=小时,所以小时后小轿车能追上中巴车。

练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟例2 一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的分析途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。

90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。

因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。

练习二(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的(2)一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行千米。

加油站离乙地多少千米例3 甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进。

甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。

甲骑车多少分钟才能追上乙分析当甲取了东西改骑自行车出发时,乙已行15+15+5=35分钟,行了60×35=2100米。

甲骑车每分钟比乙步行多行(360-60)米,用2100米除以(360-60)米就得到甲骑车追上乙的时间。

练习三(1)兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米。

出发10分钟钟后,哥哥返回家中取文具,然后立即骑车以每分钟310米的速度去追弟弟。

哥哥骑车几分钟追上弟弟(2)快车每小时行60千米,慢车每小时行40千米,两车同时从甲地开往乙地。

出发小时后,快车因故停下修车小时。

修好车后,快车仍用原速前进,经过几小时才能追上慢车例4 甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少分析出发10分钟后,甲从乙身后追上了乙,也就是10分钟内甲比乙多行了一圈。

因此,甲每分钟比乙多行4000÷10=400米。

知道了二人的速度差是每分钟400米,速度和是每分钟700米,就能算出甲骑车的速度是(700+400)÷2=550米,乙跑步的速度是700-550=150米。

练习四(1)爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。

爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明(2)在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑米。

两人起跑后的第一次相遇点在起跑线前多少米例5 甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。

甲在公路上A处,乙、丙在公路上B处,三人同时出发,甲与乙、丙相向而行。

甲和乙相遇3分钟后,甲和丙又相遇了。

求A、B之间的距离。

分析甲和乙相遇后,再过3分钟甲又能和丙相遇,说明甲和乙相遇时,乙比丙多行(100+75)×3=525米。

而乙每分钟比丙多行90-75=15米,多行525米需要用525÷15=35分钟。

35分钟甲和乙相遇,说明A、B两地之间的距离是(100+90)×35=6650米。

练习五(1)甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。

甲、乙二人在B地,丙在A地与甲、乙二人同时相向而行,丙和乙相遇后,又过2分钟和甲相遇。

求A、B两地的路程。

(2)甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。

甲、乙二人从B地同时同向出发,丙从A地同时同向去追甲和乙。

丙追上甲后又经过10分钟才追上乙。

求A、B两地的路程。

相关文档
最新文档