六年级数学比的意义和基本性质练习题
六年级上数学比的意义和比的基本性质练习题-2019年精选教学文档

六年级上数学比的意义和比的基本性质练习题学习是劳动,是充满思想的劳动。
查字典数学网为大家整理了比的意义和比的基本性质练习题,让我们一起学习,一起进步吧!
填空:
1,一车水果重1.8吨,按2:3:5的比例分配给甲,乙,丙三个水果店,乙水果店分得这批水果的().
2,甲数比乙数多,甲数与乙数的比是().
3,甲,乙,丙三个数的平均数是15,甲,乙,丙三个数的比是2:3:4,甲数是().
4、东风小学六年级人数是五年级人数的,五年级与六年级人数的比是().
5,把3克盐放入12克水中,盐与盐水重量的最简整数比是().
6,把(5平方米):(50平方分米)化成最简整数比是( ),它们的比值是( ).
7,甲数除以乙数的商是1.5,甲数与乙数的最简整数比是( ). 8,写同样多的作业,李莉用12分钟,王祥用15分钟,李莉与王祥的最简单的速度比是( ).
9,把1与它的倒数的比化成最简整数比是( ),比值是( ). 10,4分:时的比值是( ),最简整数比是( ).
11,把:0.75化成最简单的整数比是( ),比值是( ).
12,1:0.75化成最简单的整数比是( ),比值是( ).
13,:0.125化成最简单的整数比是( ),读作( ),比值是( ),读作( ).
欢迎大家去阅读由小编为大家提供的比的意义和比的基本性质练习题大家好好去品味了吗?希望能够帮助到大家,加油哦!。
六年级数学上册《比的意义和基本性质》习题

六年级数学上册《比的意义和基本性质》习题一、想一想,填一填。
1、()叫做两个数的比。
2.将比率的前后项乘以()或除以()(0除外),再除以比率()。
3、比的前项除以1/5,要使比值不变,比的后项应该()。
4、()∶1/12=3/5,4∶()=0.5。
5、4÷5=()/15=28∶()=()∶20=()(小数)。
二、请当裁判。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2.如果a:B=8:3,那么a=8,B=3。
()3、爸爸和小明的年龄比是7∶2,3年后他们的年龄比不变。
()4.圆圆身高1米,母亲身高162厘米,母亲与圆圆身高之比为162:1。
()5、乙队在一场球赛中以4∶0的比分大胜甲队,这里的4∶0不是比。
()三、按号码就座。
1、a∶b=4/7,如果比的前项和后项同时除以3,比值是()。
a、 4/7第1页b、 4/21c、12/72.在下列比率中,等于0.5:0.6的比率为()。
a、1/5∶1/6b、1/2∶3/5c、25∶263.如果比率是最简单的整数比率,则比率的第一项和最后一项必须为()。
a、素数b、互质数c、整数4.如果在前一项3:7的基础上加9,为保持其比例不变,后一项应为()。
a、加上9b、加21C减去9四、求比值。
0.75∶1.52/5∶1/62∶1.84∶1/22/3小时:45分钟第2页0.3平方米:9平方分米五、把下面各比化成最简单的整数比。
12∶210.8∶2.45/8∶15/160.5∶0.751/8千克:500克15秒:1/3分钟六、请按要求写比。
1.a是B的8/17,B和a的比率是()。
2、在97克水里放入3克盐,盐与水的比是(),比值是();水与盐水的比是(),比值是()。
3、一个工程小组在四天内建造2022米的道路。
工程团队建造的总米数与道路施工时间的比率为(),比率为(),代表()。
七、走进生活,解决问题。
一.一批服装可由甲方单独在30天内完成,由乙方单独在20天内完成。
六年级下册数学试题-专题10比和比例 全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。
比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。
“:”是比号,读作“比”,所以a:b读作a比b。
比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。
前项除以后项所得的商是比的结果,叫做比值。
例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。
比可以写成分数形式,如7:4可读作:七比四。
比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。
组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。
例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。
五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。
小学六年级数学上册练习题第四单元-比

小学六年级数学上册练习题第四单元-比第一课时 比的意义班级: 姓名:巩固达标 一、填空。
(1)在4:7=中,( )是比的前项,( )是比的后项,比值是( )。
(2)43=( )÷( ) =( ):( )(3)人体血液中,红细胞的平均寿命是120天,血小板的平均寿命是10天。
红细胞与血小板的寿命的比是( )。
(4)--辆“复兴号”高铁3小时行驶了1050km,这列高铁行驶的路程和时间的比是( ) :( ),比值是( ),比值表示( )。
(5)一条公路已修了全长的125,已修的和未修的比是( ),未修的和全长的比是( )。
(6)比与分数、除法的联系。
( )(7) 甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
(8)在100克水中加入10克盐,盐和盐水的比是( )。
二、判断。
(对的画“√”,错的画“X”)(1)在今年一场足球比赛中,法国1:0战胜比利时,所以比的后项为0。
( )(2) 小明的身高125cm,弟弟的身高是1m,小明和弟弟身高的比是125:1。
( )三、求下面各比的比值。
0.36 : 0.45 1.5t:400kg 32:9420分: 0.25时能力拓展应用题。
1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
小华体重多少千克?2、修一条工路,第一天修了全长的,第二天修的比第一天的少50米,两周共修了160米,这条路一共有多长?3、学校有彩色粉笔48盒,比白粉笔的少3盒,学校有白粉笔多少盒?4、一满杯糖水正好是200 g,其中含糖20g 。
从杯中倒出20g 糖水后,再往杯里加满水,这时杯子里的糖与水的质量比是多少?第二课时 比的基本性质班级: 姓名:巩固达标 1、填空(1).填表后再说一说比与分数、除法有怎样的关系。
(2)如果把3: 7的前项加上12,要使比值不变,后项应加上( )。
(3)12:16=( ):4=18÷( )=( ):0.8=32(4)甲数的43等于乙数的32,那么甲、乙两数的最简整数比是( ):( )。
六年级上册数学试题比的意义和基本性质

六年级上册数学试题比的意义和基本性质【知识点】1、两个数的比表示两个数相除2、在两个数的比中,比号前面的叫做比的前项,比前面的叫做比的后项,比的前项除以后项所得的商叫做比值3、比与比值的关系:比表示两个数量的相除关系,比值表示一个详细的数〔如分数和整数〕4、比的基本性质:比的前项和后项同时乘以或许除以一个相反的数比值不变5、最简整数比:比的前项和后项都是整数并且两者的最大公因数为1留意:比的后项不能为0【例题解说】例题1、两个数之间的数量关系可以用比来表示15比10 写作: 比值:20比14 写作: 比值:变式1、求下面各式的比值10:5 4:23 5.0:3.0 例题2、两个不同单位的数之间的比化简比4km:500m 5kg :1吨 600ml :5L变式2、40cm:1.2m 57分:2小时 780cm:24m例题3、分数化简比41:52 61:23 0.78:2 变式3、56:94 321:43 20:9.6 例题4、三个数的连比:单位1,中间量,设数甲数是乙数的103,乙数是丙数的94,求这三个数的连比? 变式4、奶糖是水果糖的51,水果糖是泡泡糖的61,求这三种糖果的连比? 例题5、处置实践效果两个盒子中都装有水果糖和奶糖,且两盒糖果的质量是相等,第一个盒子中的水果糖是奶糖的23,第二个盒子里的水果糖是奶糖的51,假定把这两个盒子里的糖果混合在一同,那么水果糖和奶糖的质量比是多少?变式5、在两个相反的瓶子里装满盐水,第一个瓶子中盐和水的比是1:8,第二个瓶子中的盐和水的比是3:15,把两个瓶子的盐水混合在一同,这时盐和盐水的质量比是多少?【基础达标】1、求比值2.0:52 1.5:35 43:85 2、判别(1)比的后项不能够为0 〔 〕(2)比值只能用分数表示 〔 〕(3)一场球赛的比分是2:0,所以比的后项可以是0 〔 〕(4)从学校到图书馆,甲用了7分钟,乙用了6分钟,甲速:乙速=7:6 〔 〕(5)2kg:500g 的比值是2501 〔 〕 3、大齿轮有100个齿,每分钟转25转,小齿轮有25个齿,每分钟转100转(1)写出大齿轮和小齿轮齿数的比,并求出比值(2)写出大齿轮和小齿轮每分钟转数的比,并求出比值4、假定甲比乙多41,那么甲:乙=〔 〕:〔 〕 5、假定a 是b 的四倍,c 是b 的51,那么a:b:c=〔 〕:〔 〕:〔 〕 【课堂稳固】1、化简比54:81 2.0:45.0 1.2米:10分米 1.2:532:65 41千米:60米 2、判别 (1)化简比就是求两个数的比值 〔 〕(2)最复杂的整数比就是比的前项和后项都是整数,并且这两个数的只要公因数1 〔 〕(3)把4:5的前项加上8,要使比值不变,后项也要加上8 〔 〕(4)平行四边形的底和高的比是5:7,说明平行四边形的底是5cm ,高是7cm 〔 〕(5)甲绳长1m ,乙绳长85cm ,甲绳长和乙绳长的比是1:85 〔 〕3、把下面的格比化成后项是100的比(1)一杯盐水,盐和盐水的质量比是9:25(2)某公司一月份的销量和二月份的销量比是178:2004、如以下图,两个长方形堆叠在一同,甲长方形没有堆叠的局部面积为S ,相当于甲长方形面积的65;乙长方形没有堆叠的局部的面积为B ,相当于乙长方形的面积的87,那么S 与B 的面积比是多少?【比的运用知识点】1、平均分法:总份数 总数量 每份是多少 各局部区分的数量举例2、转化法:总份数为单位1,各局部的量是分子,占总份数的几分之几,总数量乘以分率 举例规范量=比竞赛 分率。
六年级数学下册《比例的意义和性质》练习题(附答案解析)

六年级数学下册《比例的意义和性质》练习题(附答案解析)学校:___________姓名:___________班级:____________一、选择题1.能与11:34组成比例的是()。
A.4∶3B.3∶4C.1:43D.1:342.下面每组中的四个数,不能组成比例的是()。
A.2,0.25,3,0.375B.18,8,5.4,24C.5452,,,3767D.30,25,6,1253.下面能与3∶8组成比例的是()。
A.8∶3B.15∶40C.0.2∶0.6 4.下列哪个选项中的四个数不能组成比例。
()A.3,5,9,15B.1,2,3,4C.12,13,16,19D.2,4,7,145.如果a、b都是不为0的数,且56a=78b,则a和b的大小关系是()。
A.a<b B.a=b C.a>b6.能与13∶14组成比例的是()。
A.4∶13B.13∶4C.4∶3D.3∶47.下面各比中,能与0.14∶0.1组成比例的是()。
A.0.8∶0.25B.28∶20C.13∶35D.14∶18.在比例里,两个外项的积等于两个内项的积。
这叫做()。
A.比例的基本性质B.比例C.比例的外项9.根据下图中的信息判断,下列等式不成立的是()。
A.a∶c=d∶b B.a b=c dC.b d=c a10.如果a×3=b×4,那么a∶b=()。
A.4∶3B.3∶4C.1∶12二、填空题11.12的因数共有______个,选择其中的4个因数,把它们组成一个比例是______。
12.在30的因数中选择4个奇数组成一个比例:( )。
根据比例的基本性质把它改写成乘法等式:( )。
13.比值是2的一个比例是( )。
14.如果2a=3b(a、b≠0),那么a∶b=( )∶( );如果a∶b=5∶2 ,那么a∶5=( )∶( )。
15.比值是35的两个比可以为( ),( ),这两个比组成比例是( ).16.一个比例,等号左边的比和等号右边的比一定是( )的。
六年级比的意义和基本性质练习题

比的意义和基本性质练习题一、基本知识储备1、比的意义:两个数()又叫做两个数的比。
2、比与除法、分数之间的区别与联系。
3、比的基本性质:比的前项和( )同时乘上或( )相同的数(0除外),比值不变。
4、“化简比”与“求比值”的区别。
二、经典例题 例1:用字母表示三者之间的内在联系。
a ︰b =( )÷( )=()()()0b ≠,比的后项()为0。
(填“能”或“不能”)举一反三1:一袋洗衣粉重320克,一块香皂重80克。
洗衣粉与香皂的重量比是(),比值是();香皂与洗衣粉的重量比是(),比值是()。
例2:盐与水的比是1︰10,则盐︰盐水=(︰),水︰盐=(︰),盐水︰水=(︰)。
举一反三2:两个正方形边长比是1︰3,这两个正方形的周长比是(︰)面积比是(︰)。
例3:男生与女生的人数比是3︰4,男生比女生少() ()。
举一反三3:1、某班有男生20人,女生30人,男生与全班人数的比是(),女生比男生多() ()。
2、甲数除以乙数的商是43,甲数与乙数的比是()。
例4:易错题分析1、在4︰9中,如果比的前项加上8,要使比值不变,后项应加上()。
易错题分析2、A ︰B=2︰3,B ︰C=4︰5,那么A ︰B ︰C=(︰︰)。
易错题分析3、一项工程,甲单独完成需要6小时完成,乙单独完成需要5小时完成,甲、乙工作效率之比是(︰)。
举一反三4:1、在3︰8中,如果比的前项加上15,要使比值不变,后项应加上()。
2、A ︰B=3︰4,B ︰C=5︰6,那么A ︰B ︰C =(︰︰)。
3、一辆汽车从甲地开往乙地,3小时到达,返回时4小时到达,前往速度与返回速度的比是(︰)。
三、迁移拓展 例1、如果532CB A ==(其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
举一反三7:如果2A=3B=4C (其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
例2、有两个重叠的正方形,大正方形的边长是5厘米,小正方形的边长是4厘米,重叠部分的面积是9平方厘米,求阴影部分面积。
3.9比的意义和基本性质练习

2 > 1.5 > 1
数越多,洗洁液越淡;对应的水的 份数越少,洗洁液反而更浓。
答:第二种洗洁液最浓,第一种洗洁液最淡。
把原来洗洁液与水的比,转化成前项是1的比,更容 易看出溶液中水占的比例的大小,也更容易调配。
练习九
13.搬运工人为了把汽油桶推上汽车,用木板搭 了两个斜面(如图)。分别写出每个斜面最高 点的高度与木板长度的比,并化简。
练习九
12.在洗洁液中加入不同数量的水后,可以 清洗不同的衣物。下图表示几种洗洁液与水 的比。你能把下面的表格填写完整吗?
2:4 4:4 4:6
1
1:2
2
1
1:1
2 3
1 : 1.5
2:4 4:4 4:6
1
1:2
2
1
1:1
2 3
1 : 1.5
思考一:想一想,不同的比值说明了什么?能从比值 里看出哪种洗洁液最浓,哪种洗洁液最淡吗?
21 1>3>2
比值越大,说明溶液中含有的洗洁液越多; 比值越小,说明溶液中含有的洗洁液越少;
答:第二种洗洁液最浓,第一种洗洁液最淡。
2:4
1
1:2
2
4:4 4:6
1
1:1
2 3
1 : 1.5
洗洁液1份 水的份数
思考二:比较前项是1的比,怎样看出哪一种含有的
洗洁液多?
同样一份的洗洁液,对应的水的份
通过本节课的练习,对于比 你又有了哪些新的认识?
谢谢
比
4 : 16 5.6 : 4.2 75 : 25
化简后的比 1 : 4 4 : 3 3 : 1
比值
1 4
4
3
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、细心填写:
1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的
9
2
,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的8
1
,三好学生与全班人数的比是( )。
7、白兔只数的3
1
与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( )
8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( ) 若A =B (A 、B 都不等于0) 则A :B =( ):( ) 二、求比值:
32:94
0.3:0.02 3321:11
3
0.21:6.3 48:36 0.5: 52
7:3.5 3: 116
1:0.125 90
72
三、解决问题:
1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了8
5
小时。
返回时每小时行多少千米?
2、商店售出2筐橙子,每筐24千克。
售出的橙子占水果总数的11
6
,售出的香蕉占水果总数的4
1。
售出香蕉多少千克?
一、细心填写:
1、填写比、除法和分数的关系。
2、( )又叫做两个数的比。
( )叫做比值。
3、
4
3
=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。
5、男工人数是女工人数的
5
2
,男、女工人数的比是( )。
6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
7、甲数比乙数多
4
1
,甲数与乙数的比是( ),比值是( )。
二、求比值:
12:8 0.4:0.12
5:
41
4.5:0.9 31:65 32:9
10 0.75:41 4: 4
1
三、解决问题:
1、小明体重40千克,相当于小军的910,小华的体重是小军的6
5。
小华体重多少千克?
2、计划生产1800个零件,第一天生产了计划的
41,第二天生产了计划的6
1。
还剩下计划的几分之几没生产?还剩下多少个没生产?
一、细心填写 1、( ),叫做比的基本性质。
2、16:20=32:( ) =( )÷10 =
()
4
=
()80
=1.6( ) =( ):0.2
3、火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。
4、甲数是乙数的3倍乙数与甲数的比是( ),比值是( )。
5、601班男生与女生人数的比是2:3,女生占全班的( ),男生占全班的( )。
6、甲数是乙数的
3
2
,乙数与甲数的比是( ),甲数与乙数的比是( )。
二、化简比:
35:45 360:450
0.3:0.15 18: 32 6:0.36 203:5
4
0.6:52 3
2:6
三、求比值:
35:45 360:450
0.3:0.15 18:
32 6:0.36 203:5
4
0.6:52 3
2:6
四、解决问题:
1、一项工程,甲独做10天完成,乙独做15天完成。
写出甲、乙工作效率的比,并化简。
2、六年级男生人数是女生人数的1.2倍,写出男生与女生人数的比,并化简。
3、小明身高1.5米,小红身高1米25厘米。
写出小红与小明身高的比,并化简。
一、判断是否: 1、
5
4
可以读作“6比7”。
……………………………………………………( ) 2、比的前项和后项同时乘一个相同的数,比值不变。
……………………( ) 3、比的基本性质与商不变的性质是一致的。
………………………………( ) 4、10克盐溶解在100克水中,这时盐和盐水的比是1:10。
……………( ) 5、比的前项乘5,后项除以5
1。
比值不变。
………………………………( ) 6、男生比女生多5
2
,男生与女生人数的比是7:5. ………………………( ) 7、
5
9
既可以看作分数,也可以看成一个比。
………………………………( ) 8、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达形不同。
( ) 二、化简比:
83:21 0.75: 4
3 24: 3
1
6.4:0.16
2.25:9 815:3
2
三、求比值:
83:21 0.75: 4
3 24: 3
1
6.4:0.16
2.25:9 815:3
2
四、解决问题:
1、学校航模队有男生20人,女生15人。
男生是女生的几倍?女生人数是男生的几分之几?写出男生与女生人数的最简单的整数比,再求比值。
2、图书角中文艺书与故事书本数比是3:5,文艺书本数是故事书的几分之几?如果故事书有60本,文艺书有多少本?
一、谨慎选择:
1、比的( )不能为零。
A 前项
B 后项
C 比值
D 无法确定 2、比的前项和后项都乘
3
2
,比值( )。
A 变大 B 变小 C 不变 D 无法确定 3、
32:910的比值是( ),最简整数比是( )。
A 2720 B 35 C 5
3 D 3:5
4、在8:9中,如果前项增加16,要使比值不变,后项应( )。
A 增加16
B 乘2
C 不变
D 无法确定 5、糖占糖水的
5
1
,糖与水的比是( ) A 1:5 B 1:4 C 1:6 D 无法确定 二、化简下列各比,并求出比值。
三、解决问题:
1、商店六月份与七月份销售额的比是5:6,七月份销售3000万元。
六月份销售多少万元?
2、甲工程队有150名工人,甲乙两个工程队人数比是3:2。
乙工程队有多少工人?
3、两个正方形边长的比是5:3,周长的比是( ),面积的比是( )。