挑战中考数学压轴题平行四边形存在性问题
【常考压轴题】平行四边形存在性问题—2023-2024学年八年级数学下册(浙教版) (解析版)

平行四边形存在性问题【知识储备】①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: 类型一 几何背景下的平行四边形存在性问题【典题练习】1.(2023•河北二模)如图,在四边形ABCD 中,∠A =∠B =90°,AD =8cm ,BC =6cm ,点P 从点D 出发,以1cm /s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当t =3s 时,四边形ABMP 为矩形B .当t =4s 时,四边形CDPM 为平行四边形C .当CD =PM 时,t =3sD .当CD =PM 时,t =3s 或5s【分析】根据题意,表示出DP ,BM ,AP 和CM 的长,当四边形ABMP 为矩形时,根据AP =BM ,列方程求解即可;当四边形CDPM 为平行四边形,根据DP =CM ,列方程求解即可;当CD =PM 时,分两种情况:①四边形CDPM 是平行四边形,②四边形CDPM 是等腰梯形,分别列方程求解即可.【解答】解:根据题意,可得DP =t cm ,BM =t cm ,∵AD =8cm ,BC =6cm ,∴AP =(8﹣t )cm ,CM =(6﹣t )cm ,当四边形ABMP 为矩形时,AP =BM ,即8﹣t =t ,解得t =4,故A 选项不符合题意;当四边形CDPM 为平行四边形,DP =CM ,)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若即t=6﹣t,解得t=3,故B选项不符合题意;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,此时CM=PD,即6﹣t=t,解得t=3,②四边形CDPM是等腰梯形,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:则∠MGP=∠CHD=90°,∵PM=CD,GM=HC,∴△MGP≌△CHD(HL),∴GP=HD,∵AG=AP+GP=8﹣t+,又∵BM=t,∴8﹣t+=t,解得t=5,综上,当CD=PM时,t=3s或5s,故C选项不符合题意,D选项符合题意,故选:D.2.(2023春•盱眙县期末)如图,在▱ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动.点Q在BC边上以每秒4cm的速度从点C出发,在CB之间往返运动.两个点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒.当5<t<10时,运动时间t为何值时,以P、D、Q、B为顶点的四边形是平行四边形()A.B.8C.4或D.或8【分析】根据P的速度为每秒1cm,可得AP=t cm,从而得到PD=(10﹣t)cm,由四边形ABCD为平行四边形可得出PD∥BQ,结合平行四边形的判定定理可得出当PD=BQ时以P、D、Q、B四点组成的四边形为平行四边形,当5<t<10时,分两种情况考虑,在每种情况中由PD=BQ即可列出关于t的一元一次方程,解之即可得出结论.【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则PD=BQ.当5<t≤时,AP=t cm,PD=(10﹣t)cm,CQ=(4t﹣20)cm,BQ=(30﹣4t)cm,∴10﹣t=30﹣4t,解得:t=;当<t≤10时,AP=t cm,PD=(10﹣t)cm,BQ=(4t﹣30)cm,∴10﹣t=4t﹣30,解得:t=8综上所述:当运动时间为秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选:D.3.(2022春•曹县期中)如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F 运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q 也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或5【分析】由平行四边形的性质可得AD∥BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD =AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.4.(2023春•大竹县校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t=时,四边形AECF是平行四边形.【分析】先根据平行四边形的性质求出OB的长,从而得到OE的长,再由平行四边形的性质得到OE=OF进而得到关于t的方程,解方程即可.【解答】解:由题意得OE=OB﹣BE=OB﹣t,OF=2t,∵四边形ABCD是平行四边形,BD=12cm,∴OB=OD=6cm,∴OE=6﹣t,∵四边形AECF是平行四边形,∴OE=OF,∴6﹣t=2t,∴t=2,∴当t=2时,四边形AECF是平行四边形,故答案为:2.5.(2023秋•红山区校级月考)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度向点C运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点P运动到点C时,点Q随之停止运动,设运动的时间t(秒).(1)求DQ、PC的代数表达式;(2)当t为何值时,四边形PQDC是平行四边形;(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【分析】(1)根据题意,写出代数表达式即可;(2)根据平行四边形的性质知DQ=CP,分当P从B运动到C时,当P从C运动到B时,两种情况进行求解即可;(3)分PQ=QD、PQ=PD、QD=PD三种情况讨论求出t值即可.【解答】解:(1)根据题意,DQ=(16﹣t)cm,PC=(21﹣2t)cm;(2)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t,∴16﹣t=21﹣2t,解得:t=5,∴当t=5秒时,四边形PQDC是平行四边形;(3)当PQ=PD时,作PH⊥AD于H,则HQ=HD,∵cm,AH=BP,∴,∴.当PQ=QD时,QH=AH﹣AQ=BP﹣AQ=2t﹣t=t cm,QD=(16﹣t)cm,∵QD2=PQ2=t2+122,∴(16﹣t)2=122+t2,解得.当QD=PD时,DH=AD﹣AH=AD﹣BP=16﹣2t,∵QD2=PD2=PH2+HD2=122+16﹣2t)2,∴(16﹣t)2=122+(16﹣2t)2,即3t2﹣32t+144=0,∵Δ=(﹣32)2﹣4×3×144=﹣704<0,∴方程无实根,综上可知,当秒或秒时,△PQD是等腰三角形.6.(2023春•和平区校级月考)已知▱ABCD中,一动点P在AD边上,以每秒1cm的速度从点A向点D 运动.(1)如图1,运动过程中,若BP平分∠ABC,且满足AB=BP,求∠ABC的度数.(2)如图2,在(1)的条件下,连结CP并延长,与AB的延长线交于点F,连结DF,若CD=2cm,直接写出:△DPF的面积为cm2.(3)如图3,另一动点Q在BC边上,以每秒4cm的速度从点C出发,在BC间往返运动,两个点同时出发,当点P停止运动时Q点也停止,设运动时间为t(t>0),若AD=12cm,则t=秒时,以P、D、Q、B为顶点的四边形是平行四边形.【分析】(1)可证AB=AP,从而可证AB=BP=AP,即可求解;(2)设边CD上的高为h1,边BC上的高为h2,,可得S△DPF=S△P AB,即可求解;(3)当PD=BQ时,四边形PDBQ是平行四边形,进行分类讨论:①当12﹣t=12﹣4t时,②当12﹣t =24﹣4t时,③当12﹣t=4t﹣12时,④当12﹣t=4t﹣24时,⑤当12﹣t=36﹣4t时,⑥当12﹣t=4t﹣36时,即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠APB=∠CBP,∵BP平分∠ABC,∴∠ABP=∠CBP,∴∠ABP=∠APB,∴AB=AP,∵AB=BP,∴AB=BP=AP,∴△ABP是等边三角形,∴∠ABP=60°,∴∠ABC=120°.(2)如图,设边CD上的高为h1,边BC上的高为h2,,∵四边形ABCD是平行四边形,∴S△CDF=•CD=S▱ABCD,S△PBC=h2•BC=S▱ABCD,∴S△PBC=S△CDF=S▱ABCD,∴S△PCD+S△DPF=S▱ABCD,∴S△P AB+S△PCD=S▱ABCD,∴S△PCD+S△DPF=S△P AB+S△PCD,∴S△DPF=S△P AB,∵△ABP是等边三角形,∴S△DPF=S△P AB==3,故答案为:;(3)∵PD∥BQ,∴当PD=BQ时,四边形PDBQ是平行四边形,∵(s),∴0≤t<12,①当12﹣t=12﹣4t时,解得:t=0(不合题意,舍去);此时当P与A重合,Q与C重合;②当12﹣t=24﹣4t时,解得:t=4;③当12﹣t=4t﹣12时,解得:t=4.8;④当12﹣t=4t﹣24时,解得:t=7.2;⑤当12﹣t=36﹣4t时,解得:t=8;⑥当12﹣t=4t﹣36时,解得:t=9.6;综上所述:t为4秒或4.8秒或7.2秒或8秒或9.6秒.类型二“三定一动”求平行四边形的顶点坐标当平面直角坐标系中有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A、B、C三点,在平面内找第4个点,构成平行四边形;【典题练习】7.(2022春•西双版纳期末)在平面直角坐标系中,点A、B、C的坐标分别是A(0,1),B(1,0),C(3,1),若以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(4,0);②AB为对角线时,点D的坐标为(﹣2,0)③AC为对角线时,点D的坐标为(2,2)综上所述,点D的坐标是(﹣2,0)或(4,0)或(2,2);故答案为:(4,0)或(﹣2,0)或(2,2).8.(2018春•大邑县期末)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;(2)在图中作出△ABC关于y轴的对称图形△A2B2C2;(3)若以点A,B,C,D为顶点的四边形为平行四边形时,请直接写出满足条件的点D的坐标.【分析】(1)根据关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)根据关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)分别以AB、BC、AC为对角线画平行四边形可得到D点坐标.【解答】解:(1)如图,△A11C1为所作;(2如图,△A2B2C2为所作;(3)满足条件的点D的坐标为(2,2)或(﹣4,﹣2)或(﹣6,4).9.(2023春•凤山县期末)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,且OA,OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C,过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求直线AB的解析式;(2)若△ABC的面积为15,求点C的坐标;(3)在(2)的条件下,在坐标平面内是否存在点P,使以O,C,E,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据绝对值和完全平方式的非负性得出OA和OB的值,然后确定A点和B点的坐标,用待定系数法求出直线AB的解析式即可;(2)根据△ABC的面积为15,得出AC的长,确定C点的坐标即可;(3)分情况根据平行四边形的性质分别求出P点的坐标即可.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,∴A(﹣8,0),B(0,6),设直线AB的解析式为y=kx+b,代入A点和B点的坐标得,解得,∴直线AB的解析式为y=;(2)∵△ABC的面积为15,∴AC•OB=15,即AC×6=15,∴AC=5,∵OA=8,∴OC=OA﹣AC=8﹣5=3,即C(﹣3,0);(3)存在,∵D点在直线AB上,设D(a,a+6),∵BC平分∠ABO,∴CD=OC,即=3,解得a=﹣,∴D(﹣,),设直线DE的解析式为y=sx+t,∴,解得,∴直线DE的解析式为y=﹣x﹣4,∴E(0,﹣4),设点P的坐标为(m,n),①以CE为对角线时,此时以O,C,E,P为顶点的四边形是矩形,∵O(0,0),C(﹣3,0),E(0,﹣4),∴P(﹣3,﹣4);②以OE为对角线时,由平行四边形对角线互相平分可知,,解得,即P'(3,﹣4);③以OC为对角线时,由平行四边形对角线互相平分可知,,解得,即P''(﹣3,4);综上所述,符合条件的P点坐标为(﹣3,﹣4)或(3,﹣4)或(﹣3,4).类型三“两定两动”求平行四边形的顶点坐标当坐标系中有2个定点,且另外两个动点均在特殊的位置上时,方法策略同类型二。
2020年中考数学压轴题训练平行四边形的存在性问题

2020年中考数学压轴题训练平⾏四边形的存在性问题2020年中考数学压轴题训练平⾏四边形的存在性问题针对训练1、如图已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 顶点为P .若以A 、C 、P 、M 为顶点的四边形是平⾏四边形,求点M 的坐标2、如图,在平⾯直⾓坐标系xOy 中,已知抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平⾏四边形,求点M 的坐标3、将抛物线c1:y=23x 3-+沿x 轴翻折,得到抛物线c2如图所⽰现将抛物线c1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B :将抛物线c2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D E 在平移过程中,是否存在以点A 、N 、F,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理⽈如图,4、抛物线y=25x bx c 4-++与y 轴交于点A (0,1),过点A 的直线与抛物线交于为⼀点B (3.2),过点B 作BC ⊥x 轴,垂⾜为C(1)求抛物线的表达式;(2)点P是x轴正半轴上的⼀动点,过点P作PN⊥x轴交直线AB于点M,交抛物线于点N设OP的长度为m,连结CM、BN,当m 为何值时,四边形BCMN为平⾏四边形?5、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C秒1个单位长度的速度运动,动点Q从点C 开始沿边CB向点B以每秒2个单位长度的速度过点P作PD∥BC,交AB于点D,连结PQ点P、Q分别从点A、C同时出发,当其中⼀点到达终点时,另⼀点也随之停⽌运动,设运动的时间为t秒(t≥0)(1)直接⽤含t的代数式分别表⽰:QB= ,PD=(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某⼀时刻为菱形,求点Q的速度6、如图,在平⾯直⾓坐标系中,直线AB与x轴、y轴分别交于点A(4,0)、B(0,3),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴上的⼀动点,且满⾜O=2x,连结DE,以DE、DA为边作平⾏匹边形DEFA(1)如果平⾏四边形DEFA为矩形,求m的值(2)如果平⾏四边形DEFA为菱形,请直接写出m的值真题演练7、(18衢州24)如图,Rt△OAB的直⾓边OA在x轴上,顶点B的坐标为(6,8),直线CD 交AB 于点D (6,3),交x 轴于点C (12,0)(1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(-10,0)出发,以每秒1个单位的速度向x 轴正⽅向运动,过点P 作直线l 垂直于x 轴,设运动时间为t①点P 在运动过程中,是否存在某个位置,使得∠PDA=∠B ?若存在,请求出点P 的坐标;若不存在,请说明理由②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为⼀边,O 、B 、M 、Q 为顶点的四边形是菱形?并求出此时t 的值8、(19连云港26)如图,在平⾯直⾓坐标系xOy 中,抛物线L1:y=x 2+bx+c 过点C (0,-3),与抛物线L2:y=213222x x --+的⼀个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L1,L2上的动点(1)求抛物线L1的函数表达式(2)若以A 、C 、P 、Q 为顶点的四边形恰为平⾏四边形,求点P 的坐标;(3)设点R 为抛物线L1上另⼀个动点,且CA 平分∠PCR 若OQ ∥PR ,求点Q 的坐标9、(19南充25)抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0)、点B (-3,0)与y 轴交于点C ,且OB=OC (如图所⽰)(1)求抛物线的解析式;(2)若点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上有两点M 、N ,点M 的横坐标为m ,点N 的横坐标为m+4.点D 是抛物线上M 、N 之间的动点,过点D 作y 轴的平⾏线交MN 于点①求DE 的最⼤值②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形?10(17泰安28)如图是将抛物线y=-x2平移后得到的抛物线,其中对称轴为x=1,与x轴的⼀个交点为A(-1,0),另⼀个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上⼀点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上⼀点,点Q是⼀次函数y=2x+2的图象上⼀点,若四边形OAPQ 为平⾏四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,请说明理由模拟训练11、(2018年长沙市中考模拟(三)第26题)如图,已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M直线y=2x-a分别与x轴、y轴相交于B、C两点,并且与直线M相交于点N.(1)试⽤含a的代数式分别表⽰点M与N的坐标;(2)如图,将△NAC沿y轴翻折,若点N的对应点N恰好落在抛物线上,AN与x 轴交于点D,连结CD,求a的值和四边形ADCN的⾯积;(3)在抛物线y=x2-2x+a上是否存在⼀点P,使得以P、A、C、N为顶点的四边形是平⾏四边形?若存在,求出点P的坐标;若不存在,试说明理由12、(2019年内蒙古准格尔旗中考模拟第24题)如图所⽰,已知抛物线y=-x2+bx+c与⼀直线相交于A(-1,0)、C(2,3)两点,其顶点为D(1)求抛物线及直线AC的函数关系式(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意⼀点,过点E 作EF∥BD交抛物线于点F,以B、D、E、F为顶4O点的四边形能否为平⾏四边形?若能,求点E的坐标;若不能,请说明理由(3)若P是抛物线上位于直线AC上⽅的⼀个动点,直接写出△APC的⾯积的最⼤值及此时点P的坐标专题预测13、如图,在平⾯直⾓坐标系中,矩形1BC的顶点A、C分别在x轴和y轴上,点B的坐标为(3.33)。
压轴题解题策略:平行四边形的存在性问题(最新整理)

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶ 如图1-1,在平面直角坐标系中,已知抛物线y=-x 2-2x +3与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为P ,如果以点P 、A 、C 、D 为顶点的四边形是平行四边形,求点D 的坐标.图1-1【解析】P 、A 、C 三点是确定的,过△PAC 的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D (如图1-2).由y =-x 2-2x +3=-(x +1)2+4,得A (-3,0),C (0, 3),P (-1, 4).由于A (-3,0)C (0, 3),所以P (-1, 4)D 1(2, 7).33 右,上33 右,上由于C (0, 3)A (-3,0),所以P (-1, 4)D 2(-4, 1).33 下,左33 下,左由于P (-1, 4)C (0, 3),所以A (-3,0)D 3(-2, -1).11 右,下11 右,下我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C 和C ′(4-,点C 和C ′向左平移4个单位得到点D 和D ′.(4+-(--图3-2图3-3 图3-4例❹ 如图4-1,已知抛物线与x 轴的负半轴交241633y x x =+于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M .16(2,3--图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点D 是第四象限内抛物线上的一点,直线AD 与y 轴负半轴交于点C ,且CD =4AC .设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图5-1【解析】由y =ax 2-2ax -3a =a (x +1)(x -3),得A (-1, 0).由CD =4AC ,得x D =4.所以D (4, 5a ).已知A (-1, 0)、D (4, 5a ),x P =1,以AD 为分类标准,分两种情况讨论:①如图5-2,如果AD 为矩形的边,我们根据AD //QP ,AD =QP 来两次平移坐标.由于A 、D 两点间的水平距离为5,所以点Q 的横坐标为-4.所以Q (-4,21a ).由于A 、D 两点间的竖直距离为-5a ,所以点P 的纵坐标为26a .所以P(1, 26a ).根据矩形的对角线相等,得AP 2=QD 2.所以22+(26a )2=82+(16a )2.整理,得7a 2=1.所以P .a =(1-,②如图5-3,如果AD 为矩形的对角线,我们根据AP//QD ,AP =QD 来两次平移坐标.由于A 、P 两点间的水平距离为2,所以点Q 的横坐标为2.所以Q (2,-3a ).由于Q 、D 两点间的竖直距离为-8a ,所以点P 的纵坐标为8a .所以P (1, 8a ).再根据AD 2=PQ 2,得52+(5a )2=12+(11a )2.整理,得4a 2=1.所以.此时P .12a =-(14)-,我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么;如图5-3,如果∠QAP =90°,那么MA ND MD NP=.GQ KA GA KP=图5-2 图5-3例❻ 如图6-1,将抛物线c 1:x 轴翻折,得到抛物线c 2.2y =+现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,、,M ,根据OA 2=OM (1,0)A m --(1,0)B m -(m -2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G 分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE、DA为边作平行四边形DEFA.(1)如果平行四边形DEFA为矩形,求m的值;(2)如果平行四边形DEFA为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEFA.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。
(完整版)压轴题解题策略:平行四边形的存在性问题

中考数学压轴题解题策略平行四边形的存在性问题解题策略2015年9月13日星期日专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.例题解析例❶如图1-1,在平面直角坐标系中,已知抛物线y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为P,如果以点P、A、C、D为顶点的四边形是平行四边形,求点D的坐标.图1-1【解析】P、A、C三点是确定的,过△P AC的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D(如图1-2).由y=-x2-2x+3=-(x+1)2+4,得A(-3,0),C(0, 3),P(-1, 4).由于A(-3,0)33右,上D1(2, 7).右,上C(0, 3),所以P(-1, 4)33由于C(0, 3)33下,左D2(-4, 1).下,左A(-3,0),所以P(-1, 4)33由于P(-1, 4)11右,下C(0, 3),所以A(-3,0)11右,下D3(-2, -1).我们看到,用坐标平移的方法,远比用解析式构造方程组求交点方便多了.图1-2例❷如图2-1,在平面直角坐标系中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.图2-1【解析】在P、M、A、B四个点中,A、B是确定的,以AB为分类标准.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图2-2,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P 关于AB的中点(1,0)对称,所以点M的横坐标为2.此时M(2,3).②如图2-3,图2-4,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.所以M (4,-5)或(-4,-21).我们看到,因为点P的横坐标是确定的,在解图2-2时,根据对称性先确定了点M的横坐标;在解图2-3和图2-4时,根据平移先确定了点M的横坐标.图2-2 图2-3 图2-4 例❸如图3-1,在平面直角坐标系中,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-1【解析】由y =-x +4,得A (4, 0),直线AB 与坐标轴的夹角为45°.在O 、A 、C 、D 四个点中,O 、A 是确定的,以线段OA 为分类标准.如图3-2,如果OA 是菱形的对角线,那么点C 在OA 的垂直平分线上,点C (2,2)关于OA 的对称点D 的坐标为(2,-2).如果OA 是菱形的边,那么又存在两种情况:如图3-3,以O 为圆心,OA 为半径的圆与直线AB 的交点恰好为点B (0, 4),那么正方形AOCD 的顶点D 的坐标为(4, 4).如图3-4,以A 为圆心,AO 为半径的圆与直线AB 有两个交点C (422,22)-和C ′(422,22)+-,点C 和C ′向左平移4个单位得到点D (22,22)-和D ′(22,22)-.图3-2 图3-3 图3-4例❹ 如图4-1,已知抛物线241633y x x =+与x 轴的负半轴交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.图4-1【解析】C (-4,0)、E (0,-3)两点是确定的,点N 的横坐标-2也是确定的.以CE 为分类标准,分两种情况讨论平行四边形:①如图4-2,当CE 为平行四边形的边时,由于C 、E 两点间的水平距离为4,所以M 、N 两点间的水平距离也为4,因此点M 的横坐标为-6或2.将x =-6和x =2分别代入抛物线的解析式,得M (-6,16)或(2, 16).②如图4-3,当CE 为平行四边形的对角线时,M 为抛物线的顶点,所以M 16(2,)3--.图4-2 图4-3例❺如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B 两点(点A在点B的左侧),点D是第四象限内抛物线上的一点,直线AD与y轴负半轴交于点C,且CD=4AC.设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图5-1【解析】由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图5-2,如果AD为矩形的边,我们根据AD//QP,AD=QP来两次平移坐标.由于A、D两点间的水平距离为5,所以点Q的横坐标为-4.所以Q(-4,21a).由于A、D两点间的竖直距离为-5a,所以点P的纵坐标为26a.所以P(1, 26a).根据矩形的对角线相等,得AP2=QD2.所以22+(26a)2=82+(16a)2.整理,得7a2=1.所以77a=-.此时P267(1)7-,.②如图5-3,如果AD为矩形的对角线,我们根据AP//QD,AP=QD来两次平移坐标.由于A、P两点间的水平距离为2,所以点Q的横坐标为2.所以Q(2,-3a).由于Q、D两点间的竖直距离为-8a,所以点P的纵坐标为8a.所以P(1, 8a).再根据AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.我们从图形中可以看到,像“勾股图”那样构造矩形的外接矩形,使得外接矩形的边与坐标轴平行,那么线段的等量关系就可以转化为坐标间的关系.上面我们根据“对角线相等的平行四边形是矩形”列方程,还可以根据定义“有一个角是直角的平行四边形叫矩形”来列方程.如图5-2,如果∠ADP =90°,那么MA ND MD NP =;如图5-3,如果∠QAP =90°,那么GQ KA GA KP=.图5-2 图5-3例❻ 如图6-1,将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2.现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图6-1【解析】没有人能精确画好抛物线,又怎么平移抛物线呢?我们去伪存真,将A 、B 、D 、E 、M 、N 六个点及它们的坐标在图中都标注出来(如图6-2),如果您看到了△MAB 和△NED 是边长为2的等边三角形,那么平移就简单了.如图6-3,在两个等边三角形平移的过程中,AM 与EN 保持平行且相等,所以四边形ANEM 保持平行四边形的形状,点O 为对称中心.【解法一】如果∠ANE =90°,根据30°角所对的直角边等于斜边的一半,可得AE =2EN =4.而AE =AO +OE =2AO ,所以AO =2.已知AB =2,此时B 、O 重合(如图6-4),所以m =BO =1.【解法二】如果对角线MN =AE ,那么OM =OA ,此时△MAO 是等边三角形.所以等边三角形MAB 与△MAO 重合.因此B 、O 重合,m =BO =1.【解法三】在平移的过程中,(1,0)A m --、(1,0)B m -,M (3)m -,根据OA 2=OM 2列方程(1+m )2=m 2+3.解得m =1.图6-2 图6-3 图6-4 例❼如图7-1,菱形ABCD的边长为4,∠B=60°,E、H分别是AB、CD的中点,E、G分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.图7-1 【解析】(1)证明三角形全等得EF=GH和FG=HE大家最熟练了.(2)平行四边形EFGH的对角线FH=4是确定的,当EG=FH=4时,四边形EFGH 是矩形.以FH为直径画圆,你看看,这个圆与AD有几个交点,在哪里?如图7-2.如图7-3,当E为AD的中点时,四边形ABGE和四边形DCGE都是平行四边形.如图7-4,当E与A重合时,△ABG与△DCE都是等边三角形.(3)如果平行四边形EFGH的对角线EG与FH互相垂直,那么四边形EFGH是菱形.过FH的中点O画FH的垂线,EG就产生了.在Rt△AOE中,∠OAE=60°,AO=2,此时AE=1.又一次说明了如果会画图,答案就在图形中.图7-2 图7-3 图7-4 图7-5例❽如图8-1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4, 0)、B(0, 3),点C的坐标为(0, m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD =2OC,连结DE,以DE、DA为边作平行四边形DEF A.(1)如果平行四边形DEF A为矩形,求m的值;(2)如果平行四边形DEF A为菱形,请直接写出m的值.图8-1【解析】这道题目我们着重讲解怎样画示意图.我们注意到,点A和直线AB(直线l)是确定的.如图8-2,先画x轴,点A和直线l.在直线l上取点E,以AE为对角线画矩形DEF A.如图8-3,过点E画直线l的垂线.画∠MDN,使得DN=2MN,MN⊥DN,产生点C.如图8-4,过点C画y轴,产生点O和点B.图8-2 图8-3 图8-4 您是否考虑到,画∠MDN时,还存在DM在x轴下方的情况?如图8-5.同样的,我们可以画如图8-6,如图8-7的两个菱形.图8-5 图8-6 图8-7。
第7讲二次函数综合 -平行四边形存在性问题-检测-2021年海南省中考数学压轴题典型题型训练

2021届中考数学压轴题适应性训练第7讲二次函数综合-平行四边形存在性问题1.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.2.如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=12x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.3.如图,已知一次函数y=−34x+3的图象与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线的解析式;(2)若M(m,y1)、N(n,y2)是第一象限内抛物线上的两个动点,且m<n.分别过点M、N做MC、ND垂直于x轴,分别交直线AB于点C、D.①如果四边形MNDC是平行四边形,求m与n之间的关系;②在①的前提下,求四边形MNDC的周长L的最大值.4.如图,二次函数y=−13x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值.5.如图,抛物线y=﹣x2+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0),点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得▱PDNB是矩形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)点Q在y轴右侧抛物线上运动,当△ACQ的面积与△ABQ的面积相等时,请直接写出点Q的坐标.6.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=14x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.7.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C(0,﹣2).(1)求抛物线的函数关系式;(2)点D是OA上一点(不与点A、O重合),过点D作x轴的垂线,交抛物线于点E,交AC于点F,当DF=13EF时,求点E的坐标;(3)设抛物线的对称轴l交x轴于点G,在(2)的条件下,点M是抛物线对称轴上一点,点N是坐标平面内一点,是否存在点M、N,使以A、E、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.9.如图,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒1个单位的速度沿线段AB向点B 运动,过点P作PE⊥AB交AC于点E,运动时间为t秒.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)若动点Q同时..从点C出发,以每秒1个单位的速度沿线段CD向点D运动,在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.(4)在AB右侧的抛物线上有一动点M,在坐标平面内有一点N.当t为何值时,以A、E、M、N为顶点的四边形是正方形?请直接写出t的值.2021届中考数学压轴题适应性训练第7讲二次函数综合-平行四边形存在性问题1.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.【解答】解:(1)因为抛物线经过A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入,可得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE:S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE =4×38=32, ∴OE =0.5,设直线CE 的解析式为y =kx +b ,则有{b =30.5k +b =0,解得{k =−6b =3,∴直线EC 的解析式为y =﹣6x +3.(3)由题意C (0,3),D (1,4).当四边形P 1Q 1CD ,四边形P 2Q 2CD 是平行四边形时,点P 的纵坐标为1, 当y =1时,﹣x 2+2x +3=1, 解得x =1±√3,∴P 1(1+√3,1),P 2(1−√3,1),当四边形P 3Q 3DC ,四边形P 4Q 4DC 是平行四边形时,点P 的纵坐标为﹣1, 当y =﹣1时,﹣x 2+2x +3=﹣1, 解得x =1±√5,∴P 1(1+√5,﹣1),P 2(1−√5,﹣1),综上所述,满足条件的点P 的坐标为(1+√3,1)或(1−√3,1)或(1−√5,﹣1)或(1+√5,﹣1).2.如图,已知抛物线y =ax 2+bx ﹣1与x 轴的交点为A (﹣1,0),B (2,0),且与y 轴交于C 点.(1)求该抛物线的表达式; (2)点C 关于x 轴的对称点为C 1,M 是线段BC 1上的一个动点(不与B 、C 1重合),ME ⊥x 轴,MF ⊥y 轴,垂足分别为E 、F ,当点M 在什么位置时,矩形MFOE 的面积最大?说明理由.(3)已知点P 是直线y =12x +1上的动点,点Q 为抛物线上的动点,当以C 、C 1、P 、Q 为顶点的四边形为平行四边形时,求出相应的点P 和点Q 的坐标.【解答】解:(1)将A (﹣1,0),B (2,0)分别代入抛物线y =ax 2+bx ﹣1中,得{a −b =14a +2b =1,解得:{a =12b =−12 ∴该抛物线的表达式为:y =12x 2−12x ﹣1.(2)在y =12x 2−12x ﹣1中,令x =0,y =﹣1,∴C (0,﹣1) ∵点C 关于x 轴的对称点为C 1,∴C 1(0,1),设直线C 1B 解析式为y =kx +b ,将B (2,0),C 1(0,1)分别代入得{2k +b =0b =1,解得{k =−12b =1,∴直线C 1B 解析式为y =−12x +1,设M (t ,−12t +1),则 E (t ,0),F (0,−12t +1) ∴S 矩形MFOE =OE ×OF =t (−12t +1)=−12(t ﹣1)2+12, ∵−12<0,∴当t =1时,S 矩形MFOE 最大值=12,此时,M (1,12);即点M 为线段C 1B 中点时,S 矩形MFOE最大.(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ ,设P (m ,12m +1),Q (m ,12m 2−12m ﹣1),∴|(12m 2−12m ﹣1)﹣(12m +1)|=2,解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍),P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0) ②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0), ∴PQ 的中点为(0,0),设P (m ,12m +1),则Q (﹣m ,12m 2+12m ﹣1)∴(12m +1)+(12m 2+12m ﹣1)=0,解得:m 1=0(舍去),m 2=﹣2,∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).3.如图,已知一次函数y =−34x +3的图象与x 轴交于点A ,与y 轴交于点B .抛物线y =﹣x 2+bx +c 经过点A 、B . (1)求抛物线的解析式;(2)若M (m ,y 1)、N (n ,y 2)是第一象限内抛物线上的两个动点,且m <n .分别过点M 、N 做MC 、ND 垂直于x 轴,分别交直线AB 于点C 、D . ①如果四边形MNDC 是平行四边形,求m 与n 之间的关系; ②在①的前提下,求四边形MNDC 的周长L 的最大值.【解答】解:(1)∵一次函数y =−34x +3的图象与x 轴交于点A ,与y 轴交于点B , ∴A (4,0),B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A 、B , ∴{−16+4b +c =0c =3, 解得{b =134c =3,∴抛物线的解析式为y =﹣x 2+134x +3.(2)①由题意M (m ,﹣m 2+134m +3),N (n ,﹣n 2+134n +3),C (m ,−34m +3),D (n ,−34n +3),∵四边形MNDC 是平行四边形, ∴MC =DN ,∴﹣m 2+4m =﹣n 2+4n , ∴(m ﹣n )(m +n ﹣4)=0, ∵m <n , ∴m ﹣n ≠0, ∴m +n =4.(也可以设直线MN 解析式,再用韦达定理)②由题意L =2[(﹣m 2+4m )+54(n ﹣m )]=2[﹣m 2+4m +54(4﹣2m )]=2(﹣m 2+4m +5−52m )=﹣2(m −34)2+898, ∵﹣2<0,∴m =34时,L 有最大值,最大值为898.4.如图,二次函数y =−13x 2+bx +c 的图象过原点,与x 轴的另一个交点为(8,0). (1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线y 1=m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值.【解答】解:(1)将(0,0),(8,0)代入y =−13x 2+bx +c ,得:{c =0−643+8b +c =0,解得:{b =83c =0, ∴该二次函数的解析式为y =−13x 2+83x .(2)当y=m时,−13x2+83x=m,解得:x1=4−√16−3m,x2=4+√16−3m,∴点A的坐标为(4−√16−3m,m),点B的坐标为(4+√16−3m,m),∴点D的坐标为(4−√16−3m,0),点C的坐标为(4+√16−3m,0).∵矩形ABCD为正方形,∴4+√16−3m−(4−√16−3m)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.5.如图,抛物线y=﹣x2+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0),点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得▱PDNB是矩形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)点Q在y轴右侧抛物线上运动,当△ACQ的面积与△ABQ的面积相等时,请直接写出点Q的坐标.【解答】解:(1)把B点坐标、点C点坐标为代入抛物线y=﹣x2+bx+c方程,解得,抛物线方程为:y=﹣x2+2x+3…①;点A坐标为(﹣1,0),点D坐标为(2,3),函数的对称轴为x=1;(2)存在.设点P(1,m),设函数对称轴交x轴于点T,过点D作DM⊥PN于点M,则∠MDP =∠BPT ,则tan ∠MDP =tan ∠BPT , 即:3−m 2−1=3−1m,解得:m =1或m =2;则点P (1,1)或(1,2); (3)①当点Q 在x 轴上方时, 设点Q 坐标为(t ,﹣t 2+2t +3),则:AQ 所在的直线方程为:y =(3﹣t )x +(3﹣t ),如图所示,连接CA 、QB ,过点Q 作x 轴的垂线QN 交x 轴于N 点,当△ACQ 的面积与△ABQ 的面积相等时, 即:S 四边形ACQB =2S △ABQ , S四边形ACQB =S梯形CONQ +S △AOC +S △BQN =12(﹣t 2+2t +3+3)×t +12×1×3+12(3﹣t )(﹣t 2+2t +3), =32(﹣t 2+3t +4),S △ABQ =12(3+1)(﹣t 2+2t +3), ∵S 四边形ACQB =2S △ABQ , 化简得:5t 2﹣7t ﹣12=0, 解得:t =﹣1或125(舍去负值),②当Q 在x 轴下方时,由△ACQ 的面积与△ABQ 的面积相等, 则点B 、C 到AQ 的距离相等,即AQ ∥BC ,由点B 、C 的坐标得,直线BC 的表达式为:y =﹣x +3, 则AQ 的表达式为:y =﹣(x +1)=﹣x ﹣1…②, 联立①②并解得:x =4,故点Q 坐标为(4,﹣5), 综上,点Q 坐标为(125,5125)或(4,﹣5).6.如图,直线y =x ﹣3与坐标轴交于A 、B 两点,抛物线y =14x 2+bx +c 经过点B ,与直线y =x ﹣3交于点E (8,5),且与x 轴交于C ,D 两点. (1)求抛物线的解析式;(2)抛物线上有一点M ,当∠MBE =75°时,求点M 的横坐标;(3)点P 在抛物线上,在坐标平面内是否存在点Q ,使得以点P ,Q ,B ,C 为顶点的四边形是矩形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【解答】解:(1)直线y =x ﹣3与坐标轴交于A 、B 两点, 则A (3,0)B (0,﹣3),把B 、E 点坐标代入二次函数方程,解得:抛物线的解析式y=14x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为−√3,所在的直线方程为:y=−√3x﹣3…②,联立方程①、②可求得:x=4﹣4√3,即:点M的横坐标4﹣4√3;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为−√33,其方程为y=−√33x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=12−4√33,故:即:点M的横坐标4﹣4√3或12−4√33.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=14m2﹣m﹣3…③,P′C所在直线的k1=nm−6,P′B所在的直线k2=n+3m,则:k1•k2=﹣1…④,③、④联立得:116m(m−6)(m2−2m+8)=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=12x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q 的坐标为:(2,8)或(﹣16,29).7.如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,点D 的坐标为 . (3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求△BCE 面积的最大值及此时点E 的坐标;(4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【解答】解:(1)∵OA =2,OC =6 ∴A (﹣2,0),C (0,﹣6) ∵抛物线y =x 2+bx +c 过点A 、C ∴{4−2b +c =00+0+c =−6 解得:{b =−1c =−6 ∴抛物线解析式为y =x 2﹣x ﹣6(2)∵当y =0时,x 2﹣x ﹣6=0,解得:x 1=﹣2,x 2=3 ∴B (3,0),抛物线对称轴为直线x =−2+32=12 ∵点D 在直线x =12上,点A 、B 关于直线x =12对称 ∴x D =12,AD =BD∴当点B 、D 、C 在同一直线上时,C △ACD =AC +AD +CD =AC +BD +CD =AC +BC 最小 设直线BC 解析式为y =kx ﹣6 ∴3k ﹣6=0,解得:k =2 ∴直线BC :y =2x ﹣6 ∴y D =2×12−6=﹣5∴D (12,﹣5)故答案为:(12,﹣5)(3)过点E 作EG ⊥x 轴于点G ,交直线BC 与点F 设E (t ,t 2﹣t ﹣6)(0<t <3),则F (t ,2t ﹣6) ∴EF =2t ﹣6﹣(t 2﹣t ﹣6)=﹣t 2+3t∴S △BCE =S △BEF +S △CEF =12EF •BG +12EF •OG =12EF (BG +OG )=12EF •OB =12×3(﹣t 2+3t )=−32(t −32)2+278∴当t =32时,△BCE 面积最大 ∴y E =(32)2−32−6=−214∴点E 坐标为(32,−214)时,△BCE 面积最大,最大值为278.(4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形. ∵A (﹣2,0),C (0,﹣6) ∴AC =√22+62=2√10 ①若AC 为菱形的边长,如图3, 则MN ∥AC 且,MN =AC =2√10∴N 1(﹣2,2√10),N 2(﹣2,﹣2√10),N 3(2,0) ②若AC 为菱形的对角线,如图4,则AN 4∥CM 4,AN 4=CN 4 设N 4(﹣2,n ) ∴﹣n =√22+(n +6)2 解得:n =−103 ∴N 4(﹣2,−103) 综上所述,点N 坐标为(﹣2,2√10),(﹣2,﹣2√10),(2,0),(﹣2,−103).8.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C(0,﹣2).(1)求抛物线的函数关系式;(2)点D 是OA 上一点(不与点A 、O 重合),过点D 作x 轴的垂线,交抛物线于点E ,交AC 于点F ,当DF =13EF 时,求点E 的坐标;(3)设抛物线的对称轴l 交x 轴于点G ,在(2)的条件下,点M 是抛物线对称轴上一点,点N 是坐标平面内一点,是否存在点M 、N ,使以A 、E 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.【解答】解:(1)由题意,OA =4,OB =1,OC ⊥AB , ∵∠ACB =90°,∴∠AOC =∠COB ,∠OCA +∠OAC =90°,∠OCA =∠OCB =90°, ∴∠OAC =∠OCB , ∴△OAC ~△OCB , ∴OC OA=OB OC,∴OC =√OA ⋅OB =√4×1=2, ∴C (0,﹣2),分别把A (﹣4,0),B (1,0),C (0,﹣2)代入y =ax 2+bx +c 得{16a −4b +c =0a +b +c =0c =−2解得{k =−12b =−2, ∴y =12x 2+32x −2;(2)设直线AC 函数关系式为y =kx +b ,代入A (﹣4,0),C (0,﹣2)得,{−4k +b =0b =−2,解得,k =−12,b =﹣2, ∴y =−12x −2,设D (m ,0),∴y E =12m 2+32m −2,y F =−12m −2, ∴DF =12m +2,EF =y F −y E =−12m 2−2m , 由题意12m +2=13(−12m 2﹣2m ),解得,m =﹣3或﹣4(舍去)将m =﹣3代入y E =12m 2+32m −2,得y E =12m 2+32m −2=−2, ∴E (﹣3,﹣2);(3)存在,理由:当以A 、E 、M 、N 为顶点的四边形是菱形时,△AEM 是等腰三角形. 由题意,AD =1,DE =2,−b 2a =−32, 在Rt △ADE 中,由勾股定理的,AE =√5, ①当AE 是边时, 当AM =AE =√5时,∵点A 到直线l 的距离是−32−(−4)=52>√5, ∴此时点M 不存在.当EM =AE =√5时,如图,此时菱形为AEMN ,过点E 作EH ⊥l 于点H ,∴y H =y E =﹣2,EH =−32−(−3)=32,在Rt △EHM 中,由勾股定理得MH =√(√5)2−(32)2=√112, ∴y M =−2+√112或−2−√112,∴M1(−32,−2+√112),M2(−32,−2−√112);当点M为(−32,﹣2+√112)时,由EM=AN知,x M﹣x E=x N﹣x A,即−32−(﹣3)=x N﹣(﹣4),解得x N=−52,同理可得,y N=√112,故点N1的坐标为(−52,√112);同理可得N2的坐标为(−52,−√112);②当AE是对角线时,此时MA=ME,即MA2=ME2,此时菱形为AM3EN,即MG2+AG2=MH2+EH2,设M(−32,n),n2+(52)2=(n+2)2+(32)2,解得n=0,∴M3=(−32,0),即点M3在x轴上,则EN=AM3=−32+4=52=x N﹣x E=﹣3﹣x N,解得x N=−11 2;综上,N1(−52,√112),N2(−52,−√112),N3(−112,−2).9.如图,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒1个单位的速度沿线段AB向点B 运动,过点P作PE⊥AB交AC于点E,运动时间为t秒.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)若动点Q同时..从点C出发,以每秒1个单位的速度沿线段CD向点D运动,在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.(4)在AB右侧的抛物线上有一动点M,在坐标平面内有一点N.当t为何值时,以A、E、M、N为顶点的四边形是正方形?请直接写出t的值.【解答】解:(1)A (1,4).由题意知,可设抛物线解析式为y =a (x ﹣1)2+4∵抛物线过点C (3,0),∴0=a (3﹣1)2+4,解得,a =﹣1,∴抛物线的解析式为y =﹣(x ﹣1)2+4,即y =﹣x 2+2x +3.(2)∵A (1,4),C (3,0),∴可求直线AC 的解析式为y =﹣2x +6.∵点P (1,4﹣t ).∴将y =4﹣t 代入y =﹣2x +6中,解得点E 的横坐标为x =1+t 2. ∴点G 的横坐标为1+t 2,代入抛物线的解析式中,可求点G 的纵坐标为4−t 24. ∴GE =(4−t 24)﹣(4﹣t )=t −t 24. 又∵点A 到GE 的距离为t 2,C 到GE 的距离为2−t 2, 即S △ACG =S △AEG +S △CEG =12•EG •t 2+12•EG (2−t 2) =12•2(t −t 24)=−14(t ﹣2)2+1. 当t =2时,S △ACG 的最大值为1.(3)第一种情况如图1所示,点H 在AC 的上方,由四边形CQEH 是菱形知CQ =CE=t,根据△APE∽△ABC,知AP AB =AEAC,即t4=√5−t2√5,解得t=20﹣8√5;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=12t,EM=2−12t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2−12t)2+(4﹣2t)2=t2,解得,t1=2013,t2=4(不合题意,舍去).综上所述,t=20﹣8√5或t=20 13.(4)t=29或49.理由:当AE为正方形的边时,如图1,过M作MK⊥PE,与PE的延长线交于点K,∵APE=∠EKM=90°,∴∠P AE+∠PEA=∠PEA+∠KEM=90°,∴∠P AE=∠KEM,∵AE=EM,∴△APE≌△EKM(AAS),∴AP=EK=t,PE=KM=12 t,∴M(1+32t,4−12t),把M(1+32t,4−12t)代入y=﹣x2+2x+3中,得4−12t=﹣((1+32t)2+2((1+32t)+3,解得,t=0(舍),或t=2 9;当AE为正方形的对角线时,如图2,过M作MK⊥PE,与PE的延长线交于点K,与AD交于点H,设M(m,﹣m2+2m+3),则MK=﹣m2+2m﹣1+t,MH=m2﹣2m+1,AH=m﹣1,EK=m−12t﹣1,按前一种情况的方法可得△AHM≌△MKE,∴AH=MK,MH=EK,∴m﹣1=﹣m2+2m﹣1+t,m2﹣2m+1=m−12t﹣1,两方程消去t得3m2﹣7m+4=0,解得,m=0(舍去),或m=4 3,∴t=4 9.综上,t=29或49.。
中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.
挑战中考数学压轴题平行四边形存在性问题
典型例题例1.如图,抛物线:y=x2﹣x﹣与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)(1)求过A、B、C三点的圆的半径.(2)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标.(1)∵A(﹣1,0)、B(3,0)、C(1,﹣2),∴AB=3﹣(﹣1)=4,AC==2,BC==2,∴AB2=16,AC2+BC2=8+8=16,∴AB2=AC2+BC2,∴△ABC是直角三角形,AB是直径,故半径为2;(2)①当AB是平行四边形的边时,PE=AB=4,且点P、E的纵坐标相等,∴点P的横坐标为4或﹣4,∴y=×42﹣4﹣=,或y=×42+4﹣=,∴点P、E的坐标为P1(4,)、E1(0,)或P2(﹣4,)、E2(0,),②如图,当AB是平行四边形的对角线时,PE平分AB,∴PE与x轴的交点坐标D(1,0),过点P作PF⊥AB,则OD=FD,∴点F的坐标为(2,0),∴点P的横坐标为2,y=×22﹣2﹣=﹣,∴点P的纵坐标为,∴点P、E的坐标为P3(2,﹣)、E3(0,),综上所述,点P、E的坐标为:P1(4,)、E1(0,)或P2(﹣4,)、E2(0,)或P3(2,﹣)、E3(0,).例2.将抛物线沿c:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.1(1)请直接写出拋物线c2的表达式.(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.(1)根据翻折的性质可求拋物线c2的表达式;(2)①求出拋物线c1与x轴的两个交点坐标,分当AD=AE时,当BD=AE时两种情况讨论求解;②存在.理由:连接AN,NE,EM,MA.根据矩形的判定即可得出.方法二:(1)求出翻折后抛物线顶点坐标,并求出抛物线表达式.(2)①抛物线c1平移m个单位长度后,求出点A,B,D,E的坐标,并分类讨论点B在点D 左侧和右侧的两种情况,进而求出m的值.②以点A、N、E、M为顶点的四边形是矩形,则AN⊥EN,利用黄金法则二,可求出m的值.【解答】方法一:解:(1)y=x2﹣.(2)①令﹣x2+=0,得x1=﹣1,x2=1则拋物线c1与x轴的两个交点坐标为(﹣1,0),(1,0).∴A(﹣1﹣m,0),B(1﹣m,0).同理可得:D(﹣1+m,0),E(1+m,0).当AD=AE时,(﹣1+m)﹣(﹣1﹣m)=[(1+m)﹣(﹣1﹣m)],∴m=.当BD=AE时,(1﹣m)﹣(﹣1+m)=[(1+m)﹣(﹣1﹣m)],∴m=2.故当B,D是线段AE的三等分点时,m=或2.②存在.理由:连接AN,NE,EM,MA.依题意可得:M(﹣m,),N(m,﹣).即M,N关于原点O对称,∴OM=ON.∵A(﹣1﹣m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形.∵AM2=(﹣m﹣1+m)2+()2=4,ME2=(1+m+m)2+()2=4m2+4m+4,AE2=(1+m+1+m)2=4m2+8m+4,若AM2+ME2=AE2,则4+4m2+4m+4=4m2+8m+4,∴m=1,此时△AME是直角三角形,且∠AME=90°.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.(1)略,(2)①抛物线C1:y=﹣x2+,与x轴的两个交点为(﹣1,0),(1,0),顶点为(0,),抛物线C2:y=﹣x2﹣,与x轴的两个交点也为(﹣1,0),(1,0),顶点为(0,﹣),抛物线C1向左平移m个单位长度后,顶点M的坐标为(﹣m,),与x轴的两个交点为A(﹣1﹣m,0)、B(1﹣m,0),AB=2,抛物线C2向右平移m个单位长度后,顶点N的坐标为(m,﹣),与x轴的两个交点为D(﹣1+m,0)、E(1+m,0),∴AE=(1+m)﹣(﹣1﹣m)=2(1+m),B、D是线段AE的三等分点,有两种情况.1、B在D的左侧,AB=AE=2,AE=6,∴2(1+m)=6,m=2,2、B在D的右侧,AB=AE=2,AE=3,∴2(1+m)=3,m=.(3)若A、N、E、M为顶点的四边形是矩形,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣)、M(﹣m,),∴点A,E关于原点对称,点N,M关于原点对称,∴A、N、E、M为顶点的四边形是平行四边形,则AN⊥EN,K AN×K EN=﹣1,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣),∴=﹣1,∴m=1.强化训练1.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,1),过点A的直线与抛物线交于另一点B (3,),过点B作BC⊥x轴,垂足为C.点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.(1)求抛物线的解析式;(2)当点P在线段OC上(不与点O、C重合)时,试用含m的代数式表示线段PM的长度;(3)连结CM,BN,当m为何值时,以B、C、M、N为顶点的四边形为平行四边形?解:(1)∵抛物线y=﹣x2+bx+c经过A(0,1)和点B(3,),∴,∴,∴抛物线的解析式为y=﹣x2+x+1;(2)设直线AB的解析式为y=kx+b(k≠0),∵A(0,1),B(3,),∴,∴直线AB的解析式为y=x+1,∵PN⊥x轴,交直线AB于点M,交抛物线于点N,OP=m,∴P(m,0),M(m,m+1),∴PM=m+1;(3)由题意可得:N(m,﹣m2+m+1),∵MN∥BC,∴当MN=BC时,四边形BCMN为平行四边形,当点P在线段OC上时,MN=﹣m2+m,又∵BC=,∴﹣m2+m=,解得m1=1,m2=2;当点P在线段OC的延长线上时,MN=m2﹣m,∴m2﹣m=,解得m1=(不合题意,舍去),m2=,综上所述,当m的值为1或2或时,以B、C、M、N为顶点的四边形为平行四边形.2.如图,已知二次函数的图象M经过A(﹣1,0),B(4,0),C(2,﹣6)三点.(1)求该二次函数的解析式;(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标;(3)设图象M的对称轴为l,点D(m,n)(﹣1<m<2)是图象M上一动点,当△ACD的面积为时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)∵二次函数的图象M经过A(﹣1,0),B(4,0)两点,∴可设二次函数的解析式为y=a(x+1)(x﹣4).∵二次函数的图象M经过C(2,﹣6)点,∴﹣6=a(2+1)(2﹣4),解得a=1.∴二次函数的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4.(2)设直线AC的解析式为y=sx+t,把A、C坐标代入可得,解得,∴线段AC的解析式为y=﹣2x﹣2,设点G的坐标为(k,﹣2k﹣2).∵G与C点不重合,∴△ABG与△ABC相似只有△AGB∽△ABC一种情况.∴=.∵AB=5,AC==3,AG==|k+1|,∴=,∴|k+1|=∴k=或k=﹣(舍去),∴点G的坐标为(,﹣).(3)能.理由如下:如图,过D点作x轴的垂线交AC于点H,∵D(m,n)(﹣1<m<2),∴H(m,﹣2m﹣2).∵点D(m,n)在图象M上,∴D(m,m2﹣3m﹣4).∵△ACD的面积为,∴[﹣2m﹣2﹣(m2﹣3m﹣4)][(m+1)+(2﹣m)]=,即4m2﹣4m+1=0,解得m=.∴D(,﹣).∵y=x2﹣3x﹣4=(x﹣)2﹣,∴图象M的对称轴l为x=.∵点D关于l的对称点为E,∴E(,﹣),∴DE=﹣=2,若以点D、E、P、Q为顶点的四边形为平行四边形,有两种情况:当DE为边时,则有PQ∥DE且PQ=DE=2.∴点P的横坐标为+2=或﹣2=﹣,∴点P的纵坐标为(﹣)2﹣=﹣,∴点P的坐标为(,﹣)或(﹣,﹣);当DE为对角线时,则可知P点为抛物线的顶点,即P(,﹣);综上可知存在满足条件的P点,其坐标为(,﹣)或(﹣,﹣)或(,﹣).3.已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m.n)(m<0),过点E(0.﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.解:(1)因为点C在抛物线上,所以C(1,),又∵直线BC过C、F两点,故得方程组:解之,得,所以直线BC的解析式为:y=﹣x+1;(2)要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M(x,﹣x+1),则D(x,x2),∵MD∥y轴,∴MD=﹣x+1﹣x2,由MD=OF,可得|﹣x+1﹣x2|=1,①当﹣x+1﹣x2=1时,解得x1=0(舍)或x1=﹣3,所以M(﹣3,),②当﹣x+1﹣x2,=﹣1时,解得,x=,所以M(,)或M(,),综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,M点坐标为(﹣3,)或(,)或(,);(3)过点F作FT⊥BR于点T,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,BF====,∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=∠BFC=90°,∴△RFS是直角三角形.4.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.∴S四边形ABCD从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).5.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB 于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N 点的坐标.方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).6.已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,点P从A点出发,沿AD边以1的速度向点D运动,点Q从点C开始沿CB边以3的速度向点B运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?解:(1)根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,∵AD∥BC,∴PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即24﹣t=3t,解得:t=6,即当t=6时,四边形PQCD为平行四边形;(2)过D作DE⊥BC于E,则四边形ABED为矩形,∴BE=AD=24cm,∴EC=BC﹣BE=2cm,当PQ=CD时,四边形PQCD为等腰梯形,如图所示:过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,∴EF=PD,PF=DE,在Rt△PQF和Rt△CDE中,,∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4,解得:t=7,即当t=7时,四边形PQCD为等腰梯形.。
挑战中考数学压轴题(学生版)
第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1例2 如图1,已知抛物线的方程C1:1(2)()y x x m=-+-(m>0)与x轴交于点B、C,m与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1例3 直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1例4 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2. (1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例6 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22=++上.y mx mx n (1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图1例7 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,例8 如图1,△ABC中,AB=5,AC=3,cos A=3.D为射线BA上的点(点D不与点10B重合),作DE//BC交射线CA于点E..(1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;(2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;(3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.图1 备用图备用图1.2因动点产生的等腰三角形问题例1 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例2 如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1例3 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).图1 图2例4 如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1例5 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N 以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1例6 如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC 上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1例7 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连结DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图11.3 因动点产生的直角三角形问题例1如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1例2在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k 的值.例3 如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1例4 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1例5 在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1例6 如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例 7 如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图11.4 因动点产生的平行四边形问题例 1 如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2例 2 如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.图1例 3 已知平面直角坐标系xOy (如图1),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA .二次函数 y =x 2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+的图象上,且四边形ABCD 是菱形,求点C 的坐标.图1例4将抛物线c1:2y=x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x 轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图1例5 如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2例6 在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2例 7 如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ 的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1例8 如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.图11.5 因动点产生的梯形问题例1已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73t a n =∠D P E ,求四边形BDEP 的面积.图1例2 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1例3 已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图例 4 已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN 对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.图1 图2例5 如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例 6 已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图1例7 如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图11.6 因动点产生的面积问题例 1 如图1,在平面直角坐标系中放置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出它的两条性质.图1例 2 如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D . (1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.图1例 3 如图1,直线l经过点A(1,0),且与双曲线myx=(x>0)交于点B(2,1).过点(,1)P p p-(p>1)作x轴的平行线分别交曲线myx=(x>0)和myx=-(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.图1例4 如图1,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A、C分别在x轴、y轴的正半轴上,CB∥OA,OC=4,BC=3,OA=5,点D在边OC上,CD =3,过点D作DB的垂线DE,交x轴于点E.(1)求点E的坐标;(2)二次函数y=-x2+bx+c的图象经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方,满足S△CEM=2S△ABM,求点M的坐标.图1例5 如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1例 6 如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E 在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图例7 如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图21.7 因动点产生的相切问题例1 如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图1例2如图1,菱形ABCD的边长为2厘米,∠DAB=60°.点P从A出发,米的速度沿AC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动.当点P到达点C时,P、Q都停止运动.设点P运动的时间为t秒.(1)当P异于A、C时,请说明PQ//BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?图一1.8 因动点产生的线段和差问题例1 如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.图1例2 如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y 轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P 的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1第二部分 函数图象中点的存在性问题2.1 由比例线段产生的函数关系问题例1 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3例2 如图1,甲、乙两人分别从A、B两点同时出发,点O为坐标原点.甲沿AO方向、乙沿BO方向均以每小时4千米的速度行走,t小时后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达点O前,MN与AB不可能平行;(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长.设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.图1。
二次函数中考压轴题四边形的存在性问题解析
二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 的解析式及B .D 两点的坐标;(2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A .P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.【答案】解:(1)当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3。
∵点A 在点B 的左侧,∴A .B 的坐标分别为(﹣1,0),(3,0)。
当x=0时,y=3。
∴C 点的坐标为(0,3)。
设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则111b =3k +b =0⎧⎨-⎩,解得11k =3b =3⎧⎨⎩。
∴直线AC 的解析式为y=3x+3。
∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4)。
(2)抛物线上有三个这样的点Q 。
如图,①当点Q 在Q 1位置时,Q 1的纵坐标为3,代入抛物线可得点Q 1的坐标为(2,3);②当点Q 在点Q 2位置时,点Q 2的纵坐标为﹣3,代入抛物线可得点Q 2坐标为(1+7,﹣3);③当点Q 在Q 3位置时,点Q 3的纵坐标为﹣3,代入抛物线解析式可得,点Q 3的坐标为(1﹣7,﹣3)。
综上可得满足题意的点Q 有三个,分别为:Q 1(2,3),Q 2(1+7,﹣3),Q 3(1﹣7,﹣3)。
(3)点B 作BB′⊥AC 于点F ,使B′F=BF ,则B′为点B 关于直线AC 的对称点.连接B′D 交直线AC 与点M ,则点M 为所求。
过点B′作B′E ⊥x 轴于点E 。
中考数学压轴题专题练习---与动点有关的四边形存在性问题-图
中考数学压轴题专题练习---与动点有关的四边形存在性问题-图中考数学压轴题专题练习-----与动点有关的四边形存在性问题1.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.2.(12分)(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M 是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标_____(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.3.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA=3/5.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA 上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t >0).(1)C点的坐标为,当t= 时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的1/5?若存在,请求出对应的t 的值;若不存在,请说明理由. 4.(1)正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90°,点Q在BC上,连接PD,△ADP与△ABQ全等吗?请说明理由.(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合转动三角板使两直角边始终与BC、AB相交于点M、N,使探索OM与ON的数量关系,并说明理由.(3)如图3,将(2)中的“正方形”改成“长方形”,其它的条件不变,且AB=4,AD=6,FM=x,FN=y,试求y与x之间的函数关系式.5.问题探究:在边长为4的正方形ABCD中,对角线AC、BD 交于点O.探究1:如图1,若点P是对角线BD上任意一点,则线段AP 的长的取值范围是__________;探究2:如图2,若点P是ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP 的值在探究1中的取值范围内变化时,若不存在,请说明理由;问题解决:如图3,在边长为4的正方形ABCD中,点P是ABC内任意一点,且AP?4,点M、N分别是AB边和对角线AC上的两个动点,则当PMN的周长取到最小值时,求四边形N面积的最大值.PMN的周长是否存在最小值?如果存在,请求出PMN周长的最小值,6.问题探究(1)如图①,已知正方形ABCD的边长为4,点M和N分别是边BC、CD上两点,且BM?CN.连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4,点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动,连接AM和BN,交于点P,求APB周长的最大值.问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线, ?ABC?60?.点M和N分别从点B、C同时出发;以相同的速度沿BC、CA向终点C和A运动,连接AM和BN,交于点P,求APB 周长的最大值.7.已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7cm.8.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ 由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒 cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是;(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;[来源:学#科#网](3)是否存在某一时刻t,使S四边形PQCM=1/2S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.9.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D 在边BC上,且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AC向终点运动;点Q以1.25cm/s的速度沿BC向终点C运动,过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为ts(0<t<4).(1)连接DP,当t>1时,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值,总有PQ与AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形?10.如图,在直角梯形ABCD中,AD∥BC,∠B = 90o,AD = 24厘米,AB = 8厘米,BC = 30厘米,动点P从A开始沿AD边向D以每秒1厘米的速度运动,动点Q从点C开始沿CB边向B以每秒3厘米的速度运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒.(1) 当t在什么时间范围时,CQ>PD? (2) 存在某一时刻t,使四边形APQB是正方形吗?若存在,求出t值,若不存在,请说明理由.11.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y?ax?bx?c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.2已知抛物线y??于点C.23243,与x轴负半轴交x?x?23与其“梦想直线”交于A、B 两点(点A在点B的左侧)33(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.12.如图,抛物线y??x?bx?c与x轴的两个交点分别为A (3,0),D(﹣1,0),与y轴交于点C,点B在y轴正半轴上,且OB=OD.(1)求抛物线的解析式;(2)如图1,抛物线的顶点为点E,对称轴交x轴于点M,连接BE,AB,请在抛物线的对称轴上找一点Q,使∠QBA=∠BEM,求出点Q的坐标;(3)如图2,过点C作CF∥x轴,交抛物线于点F,连接BF,点G是x轴上一点,在抛物线上是否存在点N,使以点B,F,G,N为顶点的四边形是平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.213.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D 是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题例1.如图,抛物线:y=x2﹣x﹣及x轴交于A、B(A在B左侧),A(﹣1,0)、B (3,0),顶点为C(1,﹣2)(1)求过A、B、C三点的圆的半径.(2)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标.(1)∵A(﹣1,0)、B(3,0)、C(1,﹣2),∴AB=3﹣(﹣1)=4,AC==2,BC==2,∴AB2=16,AC2+BC2=8+8=16,∴AB2=AC2+BC2,∴△ABC是直角三角形,AB是直径,故半径为2;(2)①当AB是平行四边形的边时,PE=AB=4,且点P、E的纵坐标相等,∴点P的横坐标为4或﹣4,∴y=×42﹣4﹣=,或y=×42+4﹣=,∴点P、E的坐标为P1(4,)、E1(0,)或P2(﹣4,)、E2(0,),②如图,当AB是平行四边形的对角线时,PE平分AB,∴PE及x轴的交点坐标D(1,0),过点P作PF⊥AB,则OD=FD,∴点F的坐标为(2,0),∴点P的横坐标为2,y=×22﹣2﹣=﹣,∴点P的纵坐标为,∴点P、E的坐标为P3(2,﹣)、E3(0,),综上所述,点P、E的坐标为:P1(4,)、E1(0,)或P2(﹣4,)、E2(0,)或P3(2,﹣)、E3(0,).例2.将抛物线沿c1:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.(1)请直接写出拋物线c2的表达式.(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,及x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,及x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.方法一:(1)根据翻折的性质可求拋物线c2的表达式;(2)①求出拋物线c1及x轴的两个交点坐标,分当AD=AE时,当BD=AE时两种情况讨论求解;②存在.理由:连接AN,NE,EM,MA.根据矩形的判定即可得出.方法二:(1)求出翻折后抛物线顶点坐标,并求出抛物线表达式.(2)①抛物线c1平移m个单位长度后,求出点A,B,D,E的坐标,并分类讨论点B在点D左侧和右侧的两种情况,进而求出m的值.②以点A、N、E、M为顶点的四边形是矩形,则AN⊥EN,利用黄金法则二,可求出m的值.【解答】方法一:解:(1)y=x2﹣.(2)①令﹣x2+=0,得x1=﹣1,x2=1则拋物线c1及x轴的两个交点坐标为(﹣1,0),(1,0).∴A(﹣1﹣m,0),B(1﹣m,0).同理可得:D(﹣1+m,0),E(1+m,0).当AD=AE时,(﹣1+m)﹣(﹣1﹣m)=[(1+m)﹣(﹣1﹣m)],∴m=.当BD=AE时,(1﹣m)﹣(﹣1+m)=[(1+m)﹣(﹣1﹣m)],∴m=2.故当B,D是线段AE的三等分点时,m=或2.②存在.理由:连接AN,NE,EM,MA.依题意可得:M(﹣m,),N(m,﹣).即M,N关于原点O对称,∴OM=ON.∵A(﹣1﹣m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形.∵AM2=(﹣m﹣1+m)2+()2=4,ME2=(1+m+m)2+()2=4m2+4m+4,AE2=(1+m+1+m)2=4m2+8m+4,若AM2+ME2=AE2,则4+4m2+4m+4=4m2+8m+4,∴m=1,此时△AME是直角三角形,且∠AME=90°.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.方法二:(1)略,(2)①抛物线C 1:y=﹣x2+,及x轴的两个交点为(﹣1,0),(1,0),顶点为(0,),抛物线C 2:y=﹣x2﹣,及x轴的两个交点也为(﹣1,0),(1,0),顶点为(0,﹣),抛物线C1向左平移m个单位长度后,顶点M的坐标为(﹣m,),及x轴的两个交点为A(﹣1﹣m,0)、B(1﹣m,0),AB=2,抛物线C2向右平移m个单位长度后,顶点N的坐标为(m,﹣),及x轴的两个交点为D(﹣1+m,0)、E(1+m,0),∴AE=(1+m)﹣(﹣1﹣m)=2(1+m),B、D是线段AE的三等分点,有两种情况.1、B在D的左侧,AB=AE=2,AE=6,∴2(1+m)=6,m=2,2、B在D的右侧,AB=AE=2,AE=3,∴2(1+m)=3,m=.(3)若A、N、E、M为顶点的四边形是矩形,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣)、M(﹣m,),∴点A,E关于原点对称,点N,M关于原点对称,∴A、N、E、M为顶点的四边形是平行四边形,则AN⊥EN,K AN×K EN=﹣1,∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣),∴=﹣1,∴m=1.强化训练1.如图,抛物线y=﹣x2+bx+c及y轴交于点A(0,1),过点A的直线及抛物线交于另一点B(3,),过点B作BC⊥x轴,垂足为C.点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.(1)求抛物线的解析式;(2)当点P在线段OC上(不及点O、C重合)时,试用含m的代数式表示线段PM 的长度;(3)连结CM,BN,当m为何值时,以B、C、M、N为顶点的四边形为平行四边形?解:(1)∵抛物线y=﹣x2+bx+c经过A(0,1)和点B(3,),∴,∴,∴抛物线的解析式为y=﹣x2+x+1;(2)设直线AB的解析式为y=kx+b(k≠0),∵A(0,1),B(3,),∴,∴直线AB的解析式为y=x+1,∵PN⊥x轴,交直线AB于点M,交抛物线于点N,OP=m,∴P(m,0),M(m,m+1),∴PM=m+1;(3)由题意可得:N(m,﹣m2+m+1),∵MN∥BC,∴当MN=BC时,四边形BCMN为平行四边形,当点P在线段OC上时,MN=﹣m2+m,又∵BC=,∴﹣m2+m=,解得m1=1,m2=2;当点P在线段OC的延长线上时,MN=m2﹣m,∴m2﹣m=,解得 m1=(不合题意,舍去),m2=,综上所述,当m的值为1或2或时,以B、C、M、N为顶点的四边形为平行四边形.2.如图,已知二次函数的图象M经过A(﹣1,0),B(4,0),C(2,﹣6)三点.(1)求该二次函数的解析式;(2)点G是线段AC上的动点(点G及线段AC的端点不重合),若△ABG及△ABC 相似,求点G的坐标;(3)设图象M的对称轴为l,点D(m,n)(﹣1<m<2)是图象M上一动点,当△ACD 的面积为时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)∵二次函数的图象M经过A(﹣1,0),B(4,0)两点,∴可设二次函数的解析式为y=a(x+1)(x﹣4).∵二次函数的图象M经过C(2,﹣6)点,∴﹣6=a(2+1)(2﹣4),解得a=1.∴二次函数的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4.(2)设直线AC的解析式为y=sx+t,把A、C坐标代入可得,解得,∴线段AC的解析式为y=﹣2x﹣2,设点G的坐标为(k,﹣2k﹣2).∵G及C点不重合,∴△ABG及△ABC相似只有△AGB∽△ABC一种情况.∴=.∵AB=5,AC==3,AG==|k+1|,∴=,∴|k+1|=∴k=或k=﹣(舍去),∴点G的坐标为(,﹣).(3)能.理由如下:如图,过D点作x轴的垂线交AC于点H,∵D(m,n)(﹣1<m<2),∴H(m,﹣2m﹣2).∵点D(m,n)在图象M上,∴D(m,m2﹣3m﹣4).∵△ACD的面积为,∴[﹣2m﹣2﹣(m2﹣3m﹣4)][(m+1)+(2﹣m)]=,即4m2﹣4m+1=0,解得m=.∴D(,﹣).∵y=x2﹣3x﹣4=(x﹣)2﹣,∴图象M的对称轴l为x=.∵点D关于l的对称点为E,∴E(,﹣),∴DE=﹣=2,若以点D、E、P、Q为顶点的四边形为平行四边形,有两种情况:当DE为边时,则有PQ∥DE且PQ=DE=2.∴点P的横坐标为+2=或﹣2=﹣,∴点P的纵坐标为(﹣)2﹣=﹣,∴点P的坐标为(,﹣)或(﹣,﹣);当DE为对角线时,则可知P点为抛物线的顶点,即P(,﹣);综上可知存在满足条件的P点,其坐标为(,﹣)或(﹣,﹣)或(,﹣).3.已知直线y=kx+b(k≠0)过点F(0,1),及抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,及抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m.n)(m<0),过点E(0.﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.解:(1)因为点C在抛物线上,所以C(1,),又∵直线BC过C、F两点,故得方程组:解之,得,所以直线BC的解析式为:y=﹣x+1;(2)要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,设M(x,﹣x+1),则D(x,x2),∵MD∥y轴,∴MD=﹣x+1﹣x2,由MD=OF,可得|﹣x+1﹣x2|=1,①当﹣x+1﹣x2=1时,解得x1=0(舍)或x1=﹣3,所以M(﹣3,),②当﹣x+1﹣x2,=﹣1时,解得,x=,所以M(,)或M(,),综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,M点坐标为(﹣3,)或(,)或(,);(3)过点F作FT⊥BR于点T,如图2所示,∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,BF====,∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS=∠BFC=90°,∴△RFS是直角三角形.4.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3及x轴交于A,B两点(点A在点B的左侧),及y轴交于点C(0,﹣),顶点为D,对称轴及x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.解:(1)∵抛物线及y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能及边AD或BC相交,所以有两种情况:①当直线l边AD相交及点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交及点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).5.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且及直线y=﹣x+1相交于A、B 两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM及NC相互垂直平分?并求出所有满足条件的N点的坐标.方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM及NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM及NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC及BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).6.已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,点P从A点出发,沿AD边以1的速度向点D运动,点Q从点C开始沿CB边以3的速度向点B运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?解:(1)根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,∵AD∥BC,∴PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即24﹣t=3t,解得:t=6,即当t=6时,四边形PQCD为平行四边形;(2)过D作DE⊥BC于E,则四边形ABED为矩形,∴BE=AD=24cm,∴EC=BC﹣BE=2cm,当PQ=CD时,四边形PQCD为等腰梯形,如图所示:过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,∴EF=PD,PF=DE,在Rt△PQF和Rt△CDE中,,∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4,解得:t=7,即当t=7时,四边形PQCD为等腰梯形.。