基于FPGA的实时彩色图像边缘检测实施(IJIGSP-V4-N12-3)

合集下载

基于FPGA的实时边缘检测系统

基于FPGA的实时边缘检测系统

基于FPGA的实时边缘检测系统陈伦海;黄君凯;杨帆;唐徐立【摘要】提出一种基于FPGA的实时边缘检测系统,运用Verilog语言实现了系统的数据采集、存储和显示.并针对目前边缘检测易受噪声影响的缺点,采用一种结合中值滤波和改进的Sobel边缘检测的图像预处理算法.通过与经典Sobel边缘检测算法处理后的图像相比较.证明所研制的系统对图像噪声干扰有较强的抑制能力,且提取的边缘定位较准确,可适用于对实时性要求较高的智能监控、识别和跟踪等领域.%This paper presents a real-time edge detection system based on FPGA,using Veilog language to implement the system of data collection,storage and display.Aiming at the problem that the image edge detection affected by noise, this paper proposes a combination of median filtering and the improved Sobel edge detection preprocessing algorithm.Experimental results are compared with the results of the classic Sobel edge detection, which demonstrate the developed system has a strong image noise suppression and precise of edge extraction.It can be used in the fields that required for real-time,such as intelligent surveillance, identification and tracking and so on.【期刊名称】《液晶与显示》【年(卷),期】2011(026)002【总页数】5页(P200-204)【关键词】FPGA;中值滤波;Sobel;边缘检测【作者】陈伦海;黄君凯;杨帆;唐徐立【作者单位】暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632;暨南大学信息科学技术学院,广东,广州,510632【正文语种】中文【中图分类】TP3911 引言边缘检测系统是数字图像处理和模式识别的重要组成部分,在图像处理中起着重要作用,其中检测算法的速度与精度直接影响着检测系统的性能。

《基于FPGA的边缘检测系统设计》范文

《基于FPGA的边缘检测系统设计》范文

《基于FPGA的边缘检测系统设计》篇一一、引言随着计算机视觉技术的飞速发展,边缘检测已成为图像处理领域中一个重要的研究方向。

边缘检测是图像处理的基本任务之一,能够有效地提取图像中的轮廓和特征信息。

传统的边缘检测算法在计算上往往存在耗时、复杂度高的问题,而基于FPGA (现场可编程门阵列)的边缘检测系统设计,能够显著提高算法的运算速度和效率。

本文将介绍一种基于FPGA的边缘检测系统设计,以实现高效、快速的边缘检测。

二、系统设计概述本系统设计以FPGA为核心,通过硬件加速的方式实现边缘检测算法。

系统主要包括图像输入模块、预处理模块、边缘检测模块、后处理模块以及图像输出模块。

各模块之间通过FPGA内部的逻辑控制单元进行协调工作,实现图像的实时处理和输出。

三、模块设计1. 图像输入模块:负责接收原始图像数据,并将其传输至预处理模块。

该模块可采用高速图像传输接口,如PCIe或HDMI 等,以保证图像数据的实时传输。

2. 预处理模块:对输入的原始图像进行预处理,包括去噪、灰度化等操作,以提高边缘检测的准确性和效率。

预处理模块可采用FPGA内部的硬件加速器进行加速处理。

3. 边缘检测模块:本系统的核心模块,负责实现边缘检测算法。

该模块采用硬件加速的方式,通过FPGA内部的逻辑控制单元和专用硬件加速器实现边缘检测算法的快速运算。

常见的边缘检测算法包括Sobel算子、Canny算子等,可根据实际需求选择合适的算法。

4. 后处理模块:对边缘检测结果进行后处理,包括阈值处理、形态学处理等,以进一步提高边缘检测的准确性和效果。

后处理模块同样可采用FPGA内部的硬件加速器进行加速处理。

5. 图像输出模块:将处理后的图像数据输出至显示设备或存储设备。

该模块可采用高速图像传输接口,如HDMI、DVI或USB等,以满足不同场景下的需求。

四、硬件平台设计本系统设计的硬件平台主要包括FPGA芯片、内存模块、电源模块等。

其中,FPGA芯片是系统的核心,负责实现边缘检测算法的硬件加速。

基于fpga的图像边缘检测及显示

基于fpga的图像边缘检测及显示

Techniques of Automation &Applications基于FPGA 的图像边缘检测及显示*李文方,李海霞,杨治才(黄河科技学院,信息工程学院,河南郑州450063)摘要:随着通信技术和图像处理技术的发展,车牌识别技术和人脸识别技术也得到了广泛的应用,并且识别速度越来越快,分辨率也越来越高。

本设计以XILINX FPGA XC6SLX9作为主控芯片,使用串口通信将Matlab 处理转换的图像数据传输给FPGA 板卡,FPGA 将接收到的数据使用图像边缘检测算法即Sobel 算子完成图像边缘提取,并通过VGA 接口将原图像和处理后的图像在显示器上显示出来进行对比,同时将边缘检测的信息通过串口传输到电脑上以备后续处理。

本技术可用于需要图像识别的领域,并为图像的进一步处理打下基础。

关键词:FPGA;串口通信;边缘检测;Sobel 算子中图分类号:TP391.41文献标志码:B文章编号:1003-7241(2020)01-0108-06Image Edge Detection and Display Based on FPGALI Wen -fang,LI Hai -xia,YANG Zhi -cai(College of Information and Engineering,Huanghe University of Science and Technology,Zhengzhou 450063China )Abstract:With the development of communication technology and image processing technology,license plate recognition technolo-gy and face recognition technology are widely used,meanwhile,the recognition speed is getting faster and the rate of sepa-ration is getting higher.The design uses XILINX FPGA XC6SLX9as the main control chip,and uses serial communica-tion to convert Matlab processing of image data transmission to the FPGA board,the FPGA receives the data using the al-gorithms of image edge detection of Sobel operator to complete the image edge detection,and the through the VGA inter-face,the original image and processed image are displayed on the display,at the same time,the information of edge detec-tion is transmitted to the computer for subsequent processing.This technology can be used in the field of image recogni-tion and lays a foundation for further image processing.Key words:FPGA;serial communication;edge detection;Sobel operator*基金项目:郑州市智能检测技术与应用重点实验室,郑州市嵌入式系统应用技术重点实验室(编号121PYFZX177),黄河科技学院基层教学组织(编号jxzz201807)收稿日期:2018-11-061引言在数字图像处理以及对物体的识别、计算机视觉、生物医学、人工智能、遥感、气象预测学等诸多领域中,图像的特征提取有着很重要的作用。

基于 FPGA 的实时边缘检测控制系统研究

基于 FPGA 的实时边缘检测控制系统研究

基于 FPGA 的实时边缘检测控制系统研究
何铭森;洪晖
【期刊名称】《中国集成电路》
【年(卷),期】2024(33)4
【摘要】本文属于图像识别处理技术领域,提出一种基于FPGA的实时边缘检测控制系统。

本文通过FPGA对摄像头进行寄存器配置,采集并得到原始图像,对采集的图像进行数字图像灰度处理,均值滤波、sobel边缘检测计算、二值化处理后并转化为RGB等操作,提取出目标图像的图像边缘轨迹,把图像边缘数据缓存到DDR里面,通过对FPGA内部DDR读写控制模块的处理,把DDR内部图像数据转成RGB 格式,并通过HDMI显示器实时显示出目标图像边缘。

本文采用改进型的sobel边缘提取算法,能够在边缘提取过程中细化边缘宽度,去除伪边缘,同时滤除多余的图像噪声,使输出的边缘图像更加符合实际的边缘信息。

【总页数】5页(P21-25)
【作者】何铭森;洪晖
【作者单位】福州大学
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于FPGA的实时彩色图像边缘检测系统设计和实现分析
2.基于FPGA的实时彩色图像边缘检测
3.基于FPGA的深空图像实时边缘检测算法与实现
4.基于FPGA的实时视频边缘检测系统
5.基于FPGA和USB3.0的实时边缘检测系统
因版权原因,仅展示原文概要,查看原文内容请购买。

基于FPGA的图像边缘检测算法设计

基于FPGA的图像边缘检测算法设计

河南科技Journal of Henan Science and Technology总562期第4期2015年4月Vol.562,No.4Apr ,2015收稿日期:2015-4-2作者简介:王静(1980-),女,本科,实验师,研究方向:计算机应用。

摘要:通过研究Sobel 原理和算法,在FPGA 内部用流水线的方式来实现数据的具体提取、计算和存储,最终实现了对任意Bmp 格式图像的边缘检测图像的计算和提取,并显示出来,证实Sobel 算法有比较好的边缘检测效果,而且采用流水线的技术,可以有效提高数据计算的效率,实现了一个时钟周期就输出一个像素图像的导数值。

关键词:图像边缘检测;Sobel 算子中图分类号:TP391文献标识码:A文章编号:1003-5168(2015)04-0028-2Image Edge Detection Algorithm Design based on FPGAWang Jing(Department of Electronic &Information Engineering Ankang University ,Ankang Shanxi 725000)Abstract:Through the study of the principle and algorithm of Sobel ,by the way of production lines ,in the internal FPGA achieve specific extraction ,computing and storage of data ,and ultimately achieve image edge detection calcu ⁃lation and extraction of the arbitrary BMP format images ,and display it ,confirm that Sobel algorithm has good edgedetection effect ,and the use of production lines technology ,can effectively improve the data calculation efficiency ,achieve a clock cycle on the output of an image pixel value.Keywords:image edge detection ;Sobel operator在数字图像处理以及对物体的识别、计算机视觉、生物医学、人工智能、遥感、气象预测学等诸多领域中,图像的特征提取有着很重要的作用。

基于FPGA的图像边缘检测

基于FPGA的图像边缘检测

基于FPGA的图像边缘检测
基于FPGA的图像边缘检测
 引言
 图像边缘检测是图像处理的一项基本技术,在工业、医学、航天和军事等领域有着广泛的应用。

图像处理的速度一直是一个难题。

虽然DSP具备指令流水线特性和很高的处理速度,但其速度仍然很受限制,而利用高速可编程逻辑器件FPGA/CPLD来设计图像边缘检测器可以很好的克服这个问题,是一种全新的解决方案。

 1 图像边缘检测算法
 用于图像边缘检测的算法很多,诸如Rorberts算子、Sobel算子、Prewitt 算子、Laplaceian算子等,由于Sobel算法只涉及到加法操作,并且可以取得很好的效果,所以是最常用的边缘检测算法。

由于图像在边缘附近会出现灰度上的突变,所以,Sobel边缘检测方法以原始图像灰度为基础,并通过考察图像每个像素在某个领域内灰度的变化,然后利用边缘邻近的一阶导数最大值来检测边缘,再设置权重来检测水平、垂直、左对角、右对角等各个不同方向上密度幅度的不同来实现边沿检测。

图1所示是一个3×3像素的举例,其水平、垂直、左对角和右对角图像上密度幅度的变化可以表示为:
 H=(Q0+Q3+Q3+Q6)-(Q2+Q5+Q5+Q8)。

论文正文(基于FPGA的实时图像边缘检测的研究)

The whole process of the research and design is completed in the environment QuartusII and DE1 and soon.Thesis is the focus of the system architecture and design of the simulation module, in which a detailed analysis of the ping-pongoperationof the system in ways, implementthe cameradriven, video data stream format, FIFO's read and write operations, data processing brightness, edge data processingand so on. All of theVHDL source code attached to the papers after.
FPGA(Field Programmable Gate Array)即现场可编程门阵列,是在可编程阵列逻辑PAL(Programmable Array Logic)、门阵列逻辑GAL(Gate Array Logic)、可编程逻辑器件PLD(Programmable Logic Device)等可编程器件的基础上进一步发展的产物[2]。由于拥有ASIC的稳定性、大容量、高集成度等优点,而且采用硬件描述语言所设计的电路可以直接综合成RTL级电路并对目标器件进行配置实现,极大的提高了硬件的设计效率。所以本课题将以此为研究和设计基础,以纯硬件方式实现实时图像处理过程[3]。
Theoretical analysis and the results show that the system architecture is very suitable for real-time image data processing, including read and write dual-portramapproachofping-pongoperation modeas well asthe multi-pipelineprocessorcan be a generalmethods of a follow-up real-time image processing system.

基于FPGA的图像边缘检测

基于FPGA的图像边缘检测本⽂主要内容是实现图像的边缘检测功能⽬录1. mif⽂件的制作2. 调⽤ ip 核⽣成rom以及在 questasim 仿真注意问题3. 灰度处理4. 均值滤波:重点是3*3 像素阵列的⽣成5. sobel边缘检测6. 图⽚的显⽰7. 结果展⽰mif⽂件的制作受资源限制,将图⽚像素定为 160 * 120,将图⽚数据制成 mif ⽂件,对 rom ip 核进⾏初始化。

mif⽂件的制作⽅法⽹上有好多办法,因此就不再叙述了,重点说mif⽂件的格式。

1、mif⽂件的格式为:1 WIDTH=16 ; //数据位宽2 DEPTH=19200 ; // rom 深度即图⽚像素点的个数3 ADDRESS_RADIX=UNS ; //地址数据格式4 DATA_RADIX=BIN ; //数据格式5 CONTENT6 BEGIN70:1010110011010000 ; // 地址:数据;注意格式要和上⾯定义的保持统⼀81:1010110011010000 ;92:1010010010110000 ;10 ......1119198:1110011011111001 ;1219199:1110011011011000 ;13 END;调⽤ip 核⽣成 rom 以及在 questasim 仿真注意问题这部分内容已经在上篇博⽂中详细描述过,详情请见灰度处理任何颜⾊都由红、绿、蓝三原⾊组成,假如原来某点的颜⾊为( R,G,B )那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度:浮点算法:Gray=0.299R+0.587G+0.114B平均值法:Gray=(R+G+B)/3;仅取单⾊(如绿⾊):Gray=G;将计算出来的Gray值同时赋值给 RGB 三个通道即RGB为(Gray,Gray,Gray),此时显⽰的就是灰度图。

通过观察调⾊板就能看明了。

通过观察可知,当RGB三个通道的值相同时即为灰⾊,Gray的值越⼤,颜⾊越接近⽩⾊,反之越接近⿊⾊(这是我⾃⼰的理解,不严谨错误之处请⼤神指正)。

基于FPGA的实时图像边缘检测系统的研究的开题报告

基于FPGA的实时图像边缘检测系统的研究的开题报告一、选题背景及意义随着数字图像处理技术的不断发展,图像边缘检测作为图像处理的基础和关键问题之一受到了广泛关注。

图像边缘指的是图像中亮度或颜色变化明显的位置,在图像处理和计算机视觉中,边缘可以提供重要的信息,如图像中物体的形状、位置、大小等等。

因此,边缘检测技术在计算机视觉、机器人控制、医学图像处理、人脸识别、视频压缩等领域中有着重要的应用。

传统的边缘检测算法大多是基于软件实现的,由于计算复杂度高、速度慢等问题,在某些实时性要求较高的应用场景中会受到极大的限制。

而现阶段,利用FPGA的并行处理能力,可以帮助提高边缘提取算法的速度和实时性,使其得到广泛应用。

因此,本文选择了基于FPGA的实时图像边缘检测系统为研究对象,旨在探究如何利用FPGA加速图像边缘检测算法,以实现高速实时处理。

二、研究内容本文的研究内容主要包括以下几个方面:1. FPGA硬件平台的设计首先需要设计一个基于FPGA的实时图像边缘检测系统,该系统包括图像输入输出模块、边缘检测算法模块、FPGA芯片等关键部件。

其中,图像输入输出模块负责读取输入的图像,将结果显示,并将结果输出;边缘检测算法模块则是实现边缘检测算法的核心部分;FPGA芯片是实现系统的硬件平台。

2. 边缘检测算法的研究和实现本文将研究和实现两种边缘检测算法,分别是Sobel算子和Canny边缘检测算法。

Sobel算子是较为简单的一种边缘检测算法,但是它可以很好地处理图像的实时性问题;Canny算法是一种比较复杂的算法,但是它能有效地抑制噪声和带宽,从而得到更好的边缘检测效果。

3. 系统集成和优化在硬件平台和边缘检测算法实现之后,需要将两者进行集成,并对整个系统进行优化,以达到更好的性能。

优化的内容包括:对系统的硬件资源进行分配和管理,对算法进行优化,进一步提高算法的效率和实时性。

三、预期成果1. 设计和实现一个基于FPGA的高速实时图像边缘检测系统。

基于FPGA的图像边缘检测Sobel算法的研究与实现

基于FPGA的图像边缘检测Sobel算法的研究与实现张伟【期刊名称】《电脑知识与技术》【年(卷),期】2014(000)020【摘要】图像边缘是图像识别信息最集中的地方,Sobel算法是基于一阶导数的边缘检测,通过逼近导数来找到边缘。

FPGA (Field Programmable Gate Array)即现场可编程门列阵,是在可编程逻辑器件(Programmable Logic Device)基础上发展的一种产物。

该文即是采用FPGA技术实现基于Sobel算子的边缘检测算法。

%The image edge is the most concentrated place image identification information, Sobel algorithm is a derivative based edge detection, the derivative approximation to find the edge. FPGA (Field Programmable Gate Array) is a field programmable gate array, the programmable logic device (Programmable Logic Device) is a kind of product development based on. This paper is to realize Sobel operator edge detection algorithm based on the FPGA technology.【总页数】3页(P4810-4812)【作者】张伟【作者单位】天津大学电子信息学院,天津300000【正文语种】中文【中图分类】TP313【相关文献】1.基于FPGA的Sobel算子图像边缘检测算法 [J], 杨新华;寇为刚2.基于Sobel算法图像边缘检测的FPGA实现 [J], 杜正聪;宁龙飞3.图像边缘检测Sobel算法的FPGA仿真与实现 [J], 官鑫;王黎;高晓蓉;王泽勇4.基于FPGA的Sobel边缘检测算法研究与实现 [J], 孙百洋;冷建伟;赵嘉祺5.一种组合GAUSS-filter、SOBEL、NMS、OTSU 4种算法的图像边缘检测的FPGA实现 [J], 张灏;王素珍;郑宇;王伟;李潍志;王鹏;任贵珊;马家麟因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Image, Graphics and Signal Processing, 2012, 12, 19-25Published Online November 2012 in MECS (/)DOI: 10.5815/ijigsp.2012.12.03Real-time FPGA Based Implementation of ColorImage Edge DetectionSanjay Singh*, Anil Kumar Saini, Ravi SainiIC Design GroupCSIR-Central Electronics Engineering Research Institute, Pilani - 333031, Rajasthan, India.*E-mail: sanjaysingh@ceeri.ernet.inAbstract—Color Image edge detection is very basic and important step for many applications such as image segmentation, image analysis, facial analysis, objects identifications/tracking and many others. The main challenge for real-time implementation of color image edge detection is because of high volume of data to be processed (3 times as compared to gray images). This paper describes the real-time implementation of Sobel operator based color image edge detection using FPGA. Sobel operator is chosen for edge detection due to its property to counteract the noise sensitivity of the simple gradient operator. In order to achieve real-time performance, a parallel architecture is designed, which uses three processing elements to compute edge maps of R, G, and B color components. The architecture is coded using VHDL, simulated in ModelSim, synthesized using Xilinx ISE 10.1 and implemented on Xilinx ML510 (Virtex-5 FX130T) FPGA platform. The complete system is working at 27 MHz clock frequency. The measured performance of our system for standard PAL (720x576) size images is 50 fps (frames per second) and CIF (352x288) size images is 200 fps.Index Terms—Real-time Color Image Edge Detection, Sobel Operator, FPGA Implementation, VLSI Architecture, Color Edge Detection ProcessorI.I NTRODUCTIONHigh speed industrial applications require very accurate and real-time edge detection. Edge detection in gray images does not give very accurate results due to loss of color information during color to gray scale image conversion. Therefore, to achieve desired accuracy, detection of edges in color images is necessary. The main challenge for real-time implementation of color image edge detection is in processing of high volume of data (3 times as compared to gray images) within real-time constraints. Therefore, it is hard to achieve real-time performance of edge detection for PAL sizes color images with serial processors. Due to inherent parallelism property, FPGAs can deliver real-time time performance for such applications. Furthermore, FPGAs provide the possibility to perform algorithm modifications in later stages of the system development [1].The main focus of most of the existing FPGA based implementations for edge detection using Sobel operator has been on achieving real-time performance for gray scale images by using various architectures and different design methodologies. As edge detection is low-level image processing operation, Single Instruction Multiple Data (SIMD) type architectures [2] are very suitable for edge detection to achieve real-time performance. These architectures use multiple data processing elements and therefore, require more FPGA resources. The architecture clock frequency can be improved by using pipelining. A pipelined architecture for real-time gray image edge detection is presented in [3]. Some computation optimized architectures are presented in [4, 5]. Few more architectures for real-time gray image edge detection are available in [6 - 11]. In [12, 13], the architectures are designed using MATLAB-Simulink based design methodology.In this paper, we show that real-time Sobel operator based color image edge detection can be achieved by using a FPGA based parallel architecture. For each color component in RGB space, one specific edge computation processor is developed. As Sobel operator is sliding window operator, smart buffer based Memory architecture is used to move the incoming pixels in computing window. The specific datapaths are designed and controller is developed to perform the complete task. The design and simulation is done using VHDL. The design is targeted to Xilinx ML 510 (Virtex–5 FX130T) FPGA platform. The implementation is tested for real world scenario. It can robustly detect the edges in color images.The rest of the paper is organized in the following way. In section 2 we describe the original Sobel operator based edge detection algorithm. We show, in section 3, the customized architecture for algorithm implementation and how each stage works. In section 4, practical tests are evaluated and synthesis results are shown taking into account system performance. Finally conclusions and discussions are presented in section 5.II.E DGE DETECTION SCHEMEIn this section the used algorithm is briefly described, for a more detailed description we refer to [14, 15]. The Sobel operator is widely used for edge detection in images. It is based on computing an approximation of thegradient of the image intensity function. The Sobel filter uses two 3x3 spatial masks which are convolved with the original image to calculate the approximations of thegradient. The Sobel operator uses two filters H x and H y.(1)(2)These filters compute the gradient components acrossthe neighboring lines or columns, respectively. Thesmoothing is performed over three lines or columnsbefore computing the respective gradients. In this Sobeloperator, the higher weights are assigned in smoothingpart tocurrent center line and column as compared tosimple gradient operators. The local edge strength isdefined as the gradient magnitude given by equation 3.(3)Thisequation 3 is computationally costly because ofsquare and square root operations for every pixel. It ismore suitable computationally to approximate the squareand square root operations by absolute values.(4)This expression is much easy to compute and stillpreserves the relativechanges in intensity (edges inimages).This above mentioned scheme is for gray scale images.For color images (RGB color space) this scheme isapplied separately for each color component. Final coloredge map of color image is computed by using the edgemaps of each color component [16].(5)III.P ROPOSED ARCHITECTURETo detect edges in real-time in PAL (720x576) sizecolor images, dedicated hardware architecture isimplemented for Sobel operator based edge detectionscheme. Fig. 1 shows the conceptual block diagram ofcomplete system. The hardware setup includes a videocamera, a video daughter card, and FPGA board. Thevideo output of camera connects to Digilent VDEC1Video Decoder Board which is interfaced with XilinxML510 (Virtex–5 FX130T) board using Interface PCB.Display Monitor is connected to the board using DVIconnector. The video signals are decoded in CameraInterface Module. The output RGB data of camerainterface module is applied to edge detection block. Theedge detected output from the Edge Detection Block isdisplayedon the display monitor using DVI controller.The camera interface module also generates video timingsignals which are necessary for proper functioning ofedge detection block and DVI controller. A more detaileddescription of this Camera Interface Design can be foundin [17].Figure 1. Complete System Block DiagramFig. 2 shows the basic block level data flow diagramfor computation of edges in color images using Sobeloperator. The goal is to perform edge detection threetimes, once each for red, green, and blue, and then theoutput is fused to form one edge map [16]. There aremainly four stages. First stage is Buffer Memory stage. Inthis stage, the three color components are separated andstored in three different memories. The second stage isgradientcomputation stage. In this stage the gradient iscomputed for each color component by adding absolutevalues of horizontal and vertical gradients. In third stage,the edge map is computed for each color component bycomparing the gradient values with threshold. Final edgemap is computed by combining the edge maps of eachcolor components in stage four.Figure 2. Edge Detection in Color Images using Sobel OperatorThe streaming data processing cannot be used becausethe edge detection using Sobel operator algorithm iswindow based operation. Therefore, input data fromcamera is stored in on-chip memory (BRAM andRegisters) before processing it on FPGA. The Sobel edgedetection logic can begin processing as soon as two rows arrived in Buffer Memory. The Smart Buffer based Buffer Memory architecture [18] is used in the proposed Sobel operator based color edge detection implementation for data buffering. This approach (Fig. 3) works if one image pixel is coming from camera interface module in one clock cycle. The pixels are coming row by row. When buffers are filled, this architecture provides the access to the entire pixel neighborhood every clock cycle. The architecture places the highest demand on internal memory bandwidth. Because modern FPGA devices contain large amount of embedded memory, this approach does not cause problems [19]. The length of the shift registers depends on the width of input image. For PAL (720x576) size images the length of FIFOs is 717 (i.e. 720 - 3). For CIF (352x288) size images, it is 349 (i.e. 352 –3).Figure 3. Sliding Window Memory Buffer ArchitectureThe absolute values of gradient H x and H y for pixel data P 2,2is given by following expressions.(6) (7)The processing modules architectures for computing these horizontal and vertical gradients for each color components are shown in Fig. 4. Both the architectures are same except the inputs applied to them at a particular time. Each processing module performs additions, subtractions, and multiplication. The multiplication is costly in digital hardware but multiplication by 2 is easily achieved by shift operation.The complete architecture (Fig. 5) uses three processing elements in parallel (each for R, G, and B color components). The data coming from camera interface module is 24-bit RGB data. Incoming data is separated in three color components R, G, and B. Each color component data is of 8-bit (i.e. any value from 0 to 255). Three smart buffer based Sliding Window Memories are used to store two rows of the three color components. Each memory uses two First-in First-out(FIFO) shift-registers and 9 registers. The width of FIFOs and registers is 8-bit. Therefore, in total 6 FIFOs and 27 registers are required for designing Sliding Window Buffer Memory for RGB color image edge detection architecture. The designing of FIFOs using available registers in FPGA occupies large area in FPGA. Therefore, available Block RAMs on FPGA are used for designing the FIFOs. This resulted in efficient utilizationof FPGA resources.Figure 4. Gradient H x and H y Computation Module ArchitecturesFor detecting edge in PAL (720x576) size color images, it takes 1440 (720x2) clock cycles to fill the two rows of image data in buffer memory. After this, in every clock cycle, each color component (R, G, and B) of new pixel is moved in their respective computing window (consists of 9 registers). The available 9 pixels in computing window (P 1,1, P 1,2, P 1,3, P 2,1, P 2,2, P 2,3, P 3,1, P 3,2, P 3,3) are used for computing the H x and H y gradient values. These are computed according to equations 6 and 7 by using the processing module architectures shown in Fig 4. The approximate magnitude of the gradient is computed along each color component by adding the absolute values of H x and H y . After this, the approximate gradient of each color component is compared with a user defined threshold value. If the approximate value of gradient is more than the user defined threshold, the comparator output for that color component is 1 else it is 0. The outputs of all three comparators (R, G, and B) are finally fused to find the final edge map. The final edge map is computed by ORing the Edge Map outputs of each color component. It requires one three input OR gate. If the final edge map output is one, the each color component value is set to 11111111 else it is set to 00000000. These values are used by DVI controller to display the result on display Monitor.Figure 5. Complete Architecture for Color Image Edge Detection using Sobel OperatorIV.R ESULTSThe proposed architecture is designed using VHDL and simulated in ModelSim. Synthesis is carried out using Xilinx ISE 10.3. Final design is implemented on Xilinx ML510 (Virtex–5 FX130T) FPGA board. It utilizes 294 Slice Registers, 592 Slice LUTs, 206 FPGA Slices, 642 LUT Flip Flop Pairs, 116 Route-thrus and 3 Block RAMS. The synthesis results (Table I) reveal that the FPGA resources utilized by proposed architecture are approximately 1% of total available resources. The FPGA resource utilization table is only for proposed color image edge detection architecture (i.e. buffer memory, gradient computation, edge map computation) and excludes the resources utilized by camera interface and display logic. The measured performance of our system at 27 MHz operating frequency for PAL (720x576) size images is 50 fps (frames per second), CIF (352x288) size images is 200 fps and QCIF (176x144) size images is 800 fps. PAL and CIF images are most commonly used video formats. Therefore, implemented system can easily detect edges in color images in real-time.TABLE I. S YNTHESIS RESULTSFigure 6.Input Color Image and Output Edge Detected ImageFigure 7.Input Color Image and Output Edge Detected ImageFigure 8.Input Color Image and Output Edge Detected ImageFigure 9. Complete SystemIn Fig. 6-8, the input PAL (720x576) size color test images taken from camera and respective output edge detected images produced by proposed architectures are shown. Fig. 9 shows the complete system. The images are captured by using Sony EVI D70P analog camera, processed by designed VLSI architecture running on FPGA, and displayed on monitor.V.C ONCLUSIONIn this paper, the hardware architecture for Sobel operator based color image edge detection scheme has been presented. The architecture used approximately 1% of total FPGA resources and maintained real-time constraints of video processing. The system is tested for various real world situations and it robustly detects the edge in real-time with a frame rate of 50 fps for standard PAL video (60 fps for NTSC video) in color scale. The speed could be further improved by adding pipelining stages in gradient computation modules at the expense of increasing FPGA resources usage. The Xilinx ML510 (Virtex-5 FX130T) FPGA board is chosen for this implementation due to availability of large number of FPGA resources, Block RAMs, and PowerPC processor (for hardware-software co-design) so that same board can be used to implement other complex computer vision algorithms which make use of edge detection architecture. The proposed architecture is very suitable for high frame rate industrial applications. The future work will look at the use of this architecture for finding the focused areas in a scene for surveillance applications.A CKNOWLEDGMENTThe authors express their deep sense of gratitude to Director, Dr. Chandra Shekhar, for encouraging research and development. Also the authors would like to express their sincere thanks to Dr. AS Mandal and Group Leader, Raj Singh, for their precious suggestions in refining the research work. Authors specially thank Mr. Sanjeev Kumar, Technical Officer, for tool related support. We thank to reviewers, whose constructive suggestions have improved the quality of this research paper.R EFERENCES[1]H. Jiang, H. Ardo, and V. Owall (2009), A HardwareArchitecture for Real-Time Video Segmentation Utilizing Memory Reduction Techniques, IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 226–236.[2]R.L. Rosas, A.D. Luca, and F.B. Santillan (2005),SIMD Architecture for Image Segmentation using Sobel Operators Implemented in FPGA Technology, In Proceedings of 2nd International Conference on Electrical and Electronics Engineering, pp. 77-80. [3]T.A. Abbasi and M.U. Abbasi (2007), A NovelFPGA-based Architecture for Sobel Edge Detection Operator, International Journal of Electronics, vol.94, no. 9, pp. 889-896, 2007. [4]Z.E.M. Osman, F.A. Hussin, And N.B.Z. Ali (2010a),Hardware Implementation of an Optimized Processor Architecture for Sobel Image Edge Detection Operator, In Proceeding of International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1-4.[5]Z.E.M. Osman, F.A. Hussin, And N.B.Z. Ali(2010b), Optimization of Processor Architecture for Image Edge Detection Filter, In Proceeding of International Conference on Computer Modeling and Simulation, pp. 648-652[6]I. Yasri, N.H. Hamid, And V.V. Yap (2008),Performance Analysis of FPGA based Sobel Edge Detection Operator, In Proceedings of International Conference on Electronic Design, pp. 1-4.[7]V. Sanduja and R. Patial (2012), Sobel EdgeDetection using Parallel Architecture based on FPGA, International Journal of Applied Information Systems, vol. 3, no. 4, pp. 20-24.[8]G. Anusha, T.J. Prasad, and D.S. Narayana (2012),Implementation of SOBEL Edge Detection on FPGA, International Journal of Computer Trends and Technology, vol. 3, no. 3, pp. 472-475.[9]L.P. Latha (2012), Design of Edge DetectionTechnique Using FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor), VSRD International Journal of Electrical, Electronics & Communication Engineering, vol. 2, no. 6, pp. 346-352.[10]A.R. Ibrahim, N.A. Wahed, N. Shinwari, and M.A.Nasser (2011), Hardware Implementation of Real Time Video Edge Detection With Adjustable Threshold Level (Edge Sharpness) Using Xilinx Spartan-3A FPGA, Report.[11]P.S. Chikkali and K. Prabhushetty (2011), FPGAbased Image Edge Detection and Segmentation, International Journal of Advanced Engineering Sciences and Technologies, Vol. 9, Issue 2, pp. 187-192.[12]R. Harinarayan, R. Pannerselvam, M.M. Ali,And D.K. Tripathi (2011), Feature extraction of Digital Aerial Images by FPGA based implementation of edge detection algorithms, In Proceedings of International Conference on Emerging Trends in Electrical and Computer Technology, pp. 631-635.[13]K.C. Sudeep and J. Majumdar (2011), A NovelArchitecture for Real Time Implementation of Edge Detectors on FPGA, International Journal of Computer Science Issues, vol. 8, no. 1, pp. 193-202.[14]W. Burger and M.J. Burge (2008), Digital ImageProcessing: An Algorithmic Introduction Using Java, New York: Springer, 120-123.[15] R.C. Gonzalez, and R.E. Woods (2009), DigitalImage Processing, India: Pearson Education, Inc., 187-190. [16] M.A. Ruzon, A Short History of Color EdgeDetection./~ruzon/compass/color.html [17] S. Singh, A.K. Saini, R. Saini, A.S. Mandal, C.Shekhar, and A. Vohra (2012), Real-time Video Acquisition and PTZ Camera Movement Control for FPGA based Automated Video Surveillance System, International Journal of Research & Reviews in Computer Science, Vol. 3, No. 2, pp. 1572-1575. [18] C. Moore, H. Devos, and D. Stroobandt (2009),Optimizing the FPGA Memory Design for a Sobel Edge Detector, In Proceedings of 20th Annual Workshop on Circuits, Systems and Signal Processing, pp. 496-499. [19] Z. Vasicek, and L. Sekanina (2008), Novel HardwareImplementation of Adaptive Median Filters, In Proceedings of 11th IEEE workshop on Design and Diagnostics of Electronic Circuits and Systems, pp. 1-6.Sanjay Singh is working as Scientist in CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India. He is Member of IEEE - USA, IACSIT - Singapore, and IAENG - Hong Kong. Currently, he is involved in various projectssponsored by Indian Government on Computer Vision and Smart Cameras. His research interests are VLSI architectures for image & video processing algorithms, FPGA Prototyping, and Computer Vision. Prior to joining this research lab, he received his Master in Technology, Master in Electronics, and Bachelor in Science in 2007, 2005, and 2003 respectively from Kurukshetra University, Kurukshetra, Haryana, India. He earned Gold Medal (First Position in University) during his Master in Technology and Master in Electronics. He topped college during his Bachelor in Science. He received more than 20 Merit Certificates and Scholarships during his academic career.Anil Kumar Saini is working as Scientist in CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India. He is Member of IEEE – USA and IACSIT – Singapore. His research interests include Analog and Mixed Signal Design, Embedded SystemDesign, and CMOS RF IC design. Prior to joining this research lab, he worked in Cadence, India. He receivedhis Master in Technology and Master in Science in 2003 and 2000 respectively from IIT Roorkee, India.Ravi Saini is working as Scientist in CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, India. He is Member of IEEE – USA. His research interests include VLSI Architectures, ASIC and ASIP Design, HDLs, and FPGA Prototyping. He received his Masterin Technology in 2002 from Punjab University, India and Master in Electronics in 2000 from DAVV, Indore, India.。

相关文档
最新文档