勾股定理全章教案 人教版(优秀教案)

合集下载

人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。

本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。

但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。

三. 教学目标1.了解勾股定理的定义和证明过程。

2.能够运用勾股定理解决直角三角形的相关问题。

3.培养学生的逻辑思维能力和空间想象能力。

4.激发学生对数学的兴趣,培养合作探究的精神。

四. 教学重难点1.教学重点:勾股定理的定义和证明过程。

2.教学难点:勾股定理的证明过程和运用。

五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。

六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。

2.学具:学生用书、练习册、文具。

七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。

教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。

”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。

学生独立思考,教师选取部分学生进行讲解。

5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。

第十七章勾股定理(教案)-2024学年人教版八年级数学下册

第十七章勾股定理(教案)-2024学年人教版八年级数学下册
c.解决与勾股定理相关的实际问题
3.勾股数及其性质
a.勾股数的定义
b.勾股数的特点
c.勾股数的应用
4.勾股定理在生活中的应用实例
a.建筑领域
b.艺术设计
c.自然科学等其他领域的应用
5.练习与拓展
a.勾股定理相关练习题
b.拓展勾股定理的相关知识,如勾股数在其他数学领域的应用等
c.创设实际情境,让学生运用勾股定理解决实际问题,提高学生的实际操作能力。
2.教学难点
a.勾股定理的数学证明:对于八年级学生来说,理解并掌握勾股定理的数学证明是难点。教师需要运用直观、生动的教学方法,如动画演示、实际操作等,帮助学生理解证明过程。
b.勾股定理在实际问题中的应用:学生在运用勾股定理解决实际问题时,往往会遇到难以确定直角三角形的情况,需要教师引导学生学会识别直角三角形,并正确应用勾股定理。
1.教学重点示例:
在讲解勾股定理的概念及其证明时,教师可以通过动画演示、实际操作等方式,引导学生观察直角三角形的特性,得出勾股定理的表述。并通过数学证明,让学生理解勾股定理的严谨性。
2.教学难点示例:
在解决实际问题中,教师可以给出以下例子:一根旗杆斜靠在墙上,旗杆与地面的夹角为30°,旗杆与墙面的距离为3米,求旗杆的长度。学生需要识别出这是一个直角三角形问题,并运用勾股定理求解。在这个过程中,教师需要引导学生正确识别直角三角形,并给出具体的解题步骤。
4.培养学生的数学建模素养,通过勾股定理在生活中的应用实例,引导学生发现生活中的数学规律,学会构建简单的数学模型。
5.培养学生的数学抽象与数学关联素养,使学生能够从具体问题中抽象出勾股定理的数学本质,理解数学知识之间的内在联系,提高数学知识的系统性和综合性。
三、教学难点与重点

人教版八年级数学下册17.1勾股定理(教案)

人教版八年级数学下册17.1勾股定理(教案)
-在勾股定理的证明环节,教师应使用不同的方法(如几何拼贴法、代数法等)来帮助学生从多个角度理解证明过程。
-对于勾股数的识别,教师可以通过列出一些常见的勾股数组合,并让学生自己尝试找出规律,以提高识别能力。
-在解决实际问题时,教师应引导学生如何从问题中提取关键信息,如何构建直角三角形模型,并运用勾股定理进行求解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,斜边的平方等于两直角边的平方和。它是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明过程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在学生小组讨论环节,我鼓励学生们提出自己的观点和想法,这有助于培养他们的创新思维和解决问题的能力。但从讨论成果来看,部分学生的观点较为片面,缺乏深度。在今后的教学中,我将加强对学生的引导,提高问题的开放性,促使他们更加深入地思考。
最后,总结回顾环节,学生们对勾股定理的理解和掌握程度有了明显提高。但在课后,我还会关注学生的反馈,了解他们在学习过程中遇到的困难和问题,以便在接下来的教学中进行调整。
人教版八年级数学下册17.1勾股定理(教案)
一、教学内容
人教版八年级数学下册第17.1节,本节课主要围绕勾股定理展开,内容包括:
1.勾股定理的概念与证明:介绍勾股定理的定义,引导学生通过图形观察、分析,理解并掌握勾股定理的证明过程。
2.勾股数:讲解勾股数的概念,指导学生运用勾股定理找出满足条件的勾股数,并能解决实际问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版八年级下册数学17.1《勾股定理》教案

人教版八年级下册数学17.1《勾股定理》教案
五、教学反思
在今天的勾股定理教学过程中,我发现学生们对于定理的理解和应用存在一些困难。首先,对于勾股定理的概念,尽管我通过直观的图形和动画进行了讲解,但部分学生仍然难以理解为何两条直角边的平方和等于斜边的平方。在今后的教学中,我需要进一步寻找更贴近学生生活实际的例子,帮助他们更好地理解这一概念。
其次,在案例分析环节,我发现学生们在解决实际问题时,对于如何运用勾股定理仍然感到困惑。特别是在非标准形式的直角三角形问题中,他们不知道如何将问题转化为勾股定理的形式。针对这一点,我打算在接下来的课程中增加一些变式题目,让学生们多加练习,提高他们解决问题的能力。
此外,在实践活动和小组讨论中,虽然学生们积极参与,但部分学生在讨论中显得有些拘谨,不够积极主动。为了鼓励他们发表自己的观点,我将在今后的教学中更加关注学生的情感态度,营造一个轻松、愉快的课堂氛围,让他们敢于表达、善于交流。
在小组讨论环节,我发现有些学生对于勾股定理在实际生活中的应用了解不多。这说明我们在教学中需要更多地联系实际,让学生了解到数学知识在现实生活中的重要性。为此,我计划在后续的课程中增加一些与生活密切相关的实例,让学生们感受到数学的魅力。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量和计算,演示勾股定理的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们身边的楼梯、墙壁等,都可能存在直角三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A 、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

人教版初中数学八年级下册第十七章:勾股定理(全章教案)

人教版初中数学八年级下册第十七章:勾股定理(全章教案)

第十七章勾股定理教材简析本章的内容包括:勾股定理、勾股定理的逆定理.本章主要研究并揭示直角三角形三边之间的关系的勾股定理与勾股定理的逆定理.勾股定理是一个著名的几何定理,在西方也被称为毕达哥斯拉定理.勾股定理有几百种证明方法,本章主要介绍的是我国古代数学家赵爽的证明方法,这种方法利用直角三角形的面积与正方形的面积关系,数形结合,直观、简洁.勾股定理在数学的发展和现实世界中有着广泛的作用.本章是直角三角形相关知识的延续,同时也让学生进一步认识无理数,充分体现了数学知识的紧密相关性、连续性.在中考中,主要考查勾股定理及三角形判别条件的应用,常与三角形的其他知识结合考查.教学指导【本章重点】勾股定理,勾股定理的逆定理.【本章难点】勾股定理的证明,勾股定理的应用.【本章思想方法】1.体会转化思想,如:应用勾股定理将实际问题转化成数学模型,从而构造直角三角形求解.2.体会和掌握方程思想,如:利用勾股定理求线段长时,往往需要列方程求解.课时计划17.1勾股定理3课时17.2勾股定理的逆定理1课时17.1勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A 的面积=4;B 的面积=9;C 的面积=52-4×12×(2×3)=13;所以A +B =C .A ′=9;B ′=25;C ′=82-4×12×(5×3)=34;所以A ′+B ′=C ′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图”证明勾股定理.解:朱实=12ab ;黄实=(a -b )2;正方形的面积=4朱实+黄实=(a -b )2+12ab ×4=a 2+b 2-2ab +2ab =a 2+b 2.又正方形的面积=c 2,所以a 2+b 2=c 2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再作三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.图1图2【互动探索】(引发学生思考)从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.又∵左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4,∴a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.【例2】 已知在Rt △ABC 中,∠C =90°,a 、b 为两直角边,c 为斜边. (1)若a =3,b =4,则c 2=____,c =____;(2)若a=6,b=8,则c2=____,c=____;(3)若c=41,a=9,则b=____;(4)若c=17,b=8,则a=____.【互动探索】(引发学生思考)根据勾股定理求解.【分析】(1)c2=a2+b2=32+42=25,则c=5.(2) c2=a2+b2=62+82=100,则c=10.(3) 因为c2=a2+b2,所以b=c2-a2=412-92=40.(4)因为c2=a2+b2,所以a=c2-b2=172-82=15.【答案】(1)255(2)10010(3)40(4)15【互动总结】(学生总结,老师点评)本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.a2+b2=c2的常用变形b=c2-a2,a=c2-b2.活动2巩固练习(学生独学)1.在△ABC中,∠C=90°.若a=5,b=12,则c=13;若c=41,a=9,则b=40.2.等腰△ABC的腰长AB=10 cm,底BC为16 cm,则底边上的高为6_cm,面积为48_cm2.3.已知在△ABC中,∠C=90°,BC=a,AC=b,AB=c.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.解:(1)根据勾股定理,得c2=a2+b2=12+22=5.∵c>0,∴c= 5.(2)根据勾股定理,得b2=c2-a2=172-152=64.∵b>0,∴b=8.活动3拓展延伸(学生对学)【例3】在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC 的周长.【互动探索】应考虑高AD在△ABC内和△ABC外的两种情形.【解答】当高AD在△ABC内部时,如图1.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得,BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1 图2【互动总结】(学生总结,老师点评)题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC 外的情形.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.练习设计请完成本课时对应练习!第2课时勾股定理的应用教学目标一、基本目标【知识与技能】能运用勾股定理解决有关直角三角形的简单实际问题.【过程与方法】经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.【情感态度与价值观】培养合情推理能力,体会数形结合的思维方法,激发学习热情.二、重难点目标【教学重点】勾股定理的简单应用.【教学难点】运用勾股定理建立直角三角形模型解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P25的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.在△ABC中,∠C=90°.若BC=6,AB=10,则AC=8.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,已知在△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,CD⊥AB于点D,求CD的长.【互动探索】(引发学生思考)观察图形:“多直角三角形嵌套”图形→已知边长,求高CD →利用等面积法求解.【解答】∵△ABC 是直角三角形,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC =AB 2-BC 2=4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm).【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【例2】 如图,侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m ,你能帮小王算出敌方汽车的速度吗?【互动探索】(引发学生思考)要求敌方汽车的速度,需要算出BC 的长.在Rt △ABC 中利用勾股定理即可求得BC .【解答】由勾股定理,得AB 2=BC 2+AC 2,即5002=BC 2+4002,所以BC =300 m. 故敌方汽车10 s 行驶了300 m ,所以它1 h 行驶的距离为300×6×60=108 000(m), 即敌方汽车的速度为108 km/h.【互动总结】(学生总结,老师点评)用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2 B .130 cm 2 C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm 、12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,求该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m). 即该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例3】如图1,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有绳子从D 出发,沿长方体表面到达B ′点,问绳子最短是多少厘米?图1 图2图3【互动探索】可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.【解答】如图2,由题易知,DD′=3 cm,B′D′=2×2=4(cm).在Rt△DD′B′中,由勾股定理,得B′D2=DD′2+B′D′2=32+42=25;如图3,由题易知,B′C′=2 cm,C′D=2+3=5 (cm).在Rt△DC′B′中,由勾股定理,得B′D2=B′C′2+C′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5 cm.【互动总结】(学生总结,老师点评)此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理的简单运用:(1)由直角三角形的任意两边的长度,可以应用勾股定理求出第三边的长度.(2) 用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.练习设计请完成本课时对应练习!第3课时利用勾股定理表示无理数教学目标一、基本目标【知识与技能】进一步熟悉勾股定理的运用,掌握用勾股定理表示无理数的方法.【过程与方法】通过探究用勾股定理表示无理数的过程,锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力.【情感态度与价值观】让学生充分体验到了数学思想的魅力和知识创新的乐趣,体会数形结合思想的运用.二、重难点目标【教学重点】探究用勾股定理表示无理数的方法.【教学难点】会用勾股定理表示无理数.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P26~P27的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.教材P27,利用勾股定理在数轴上画出表示1,2,3,4,…的点.3.13的线段是直角边为正整数3,2的直角三角形的斜边.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1C.5-1D. 5【互动探索】(引发学生思考)先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【分析】图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A所表示的数为5-1.故选C.【答案】C【互动总结】(学生总结,老师点评)本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.活动2巩固练习(学生独学)1.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB ⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= 2 ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;….依此继续,得OP2018=2019,OP n=n+1(n为自然数,且n>0).3.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:面积为8平方单位的正方形的边长为8,8是直角边长为2,2的两个直角三角形的斜边长,画图如下:活动3拓展延伸(学生对学)【例2】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【互动探索】(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)先找出几个能构成勾股数的无理数,再画出来即可,如画一个边长2,22,10的三角形;(3)画一个边长为10的正方形即可.【解答】(1)直角三角形的三边分别为3,4,5 ,如图1.(2)直角三角形的三边分别为2,22,10,如图2.(3)画一个边长为10的正方形,如图3.【互动总结】(学生总结,老师点评)本题考查了格点三角形的画法,需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)利用勾股定理表示无理数.练习设计请完成本课时对应练习!17.2勾股定理的逆定理教学目标一、基本目标【知识与技能】掌握勾股定理的逆定理,并能进行简单运用;理解互逆命题的有关概念.【过程与方法】经历探索直角三角形的判定条件过程,理解勾股定理的逆定理.【情感态度与价值观】激发学生解决问题的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值.二、重难点目标【教学重点】掌握勾股定理的逆定理,勾股数,理解互逆命题的有关概念.【教学难点】利用勾股定理的逆定理解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P33的内容,完成下面练习.【3 min反馈】1.(1)勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2;那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.4.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.【互动探索】(引发学生思考)分别已知三角形的边和角,如何判定一个三角形是直角三角形呢?【解答】(1)在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形.(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.【互动总结】(学生总结,老师点评)判断直角三角形的常用方法有两种:(1)两锐角互余的三角形是直角三角形(即有一个角等于90°的三角形是直角三角形);(2)利用勾股定理的逆定理判断三角形的三边是否满足a2+b2=c2(c为最长边).【例2】写出命题“等腰三角形两腰上的高线长相等”的逆命题,判断这个命题的真假,并说明理由.【互动探索】(引发学生思考)原命题的题设为等腰三角形,结论为腰上的高相等,然后交换题设与结论得到其逆命题;可根据三角形面积公式判断此命题的真假.【解答】命题“等腰三角形两腰上的高线长相等”的逆命题是两边上的高相等的三角形为等腰三角形,此逆命题为真命题.如图,在△ABC中,CD⊥AB,BE⊥AC,且CD=BE.∵BC=BC,∴△CBD≌△BCE(HL),∴∠DBC=∠ECB,∴△ABC为等腰三角形.【互动总结】(学生总结,老师点评)两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.【例3】某港口位于东西方向的海岸线上.“远航”号“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【互动探索】(引发学生思考)根据“路程=速度×时间”分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【解答】根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知,∠QPS=45°,∴∠SPR=45°,即“海天”号沿西北方向航行.【互动总结】(学生总结,老师点评)本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.活动2巩固练习(学生独学)1.以下列各组数为边长,能组成直角三角形的是(C)A.5,6,7B.10,8,4C.7,25,24D.9,17,152.下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)同旁内角相等,两直线平行;(2)如果两个角是直角,那么这两个角相等.解:(1)“同旁内角相等,两直线平行”的逆命题是两直线平行,同旁内角相等,逆命题不成立.(2)“如果两个角是直角,那么这两个角相等”的逆命题是如果两个角相等,那么两个角是直角,逆命题不成立.3.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1=(m2+1)2,且c2=(m2+1)2,所以a2+b2=c2,即a、b、c是勾股数.m=2时,勾股数为4、3、5;m=3时,勾股数为6、8、10;m=4时,勾股数为8、15、17.4.如图,已知在四边形ABCD中,∠A=90°,AB=2 cm,AD= 5 cm,CD=5 cm,BC=4 cm,求四边形ABCD的面积.解:如图,连结BD.∵∠A=90°,AB=2 cm,AD= 5 cm,∴根据勾股定理,得BD=3 cm.又∵CD=5 cm,BC=4 cm,∴CD2=BC2+BD2,∴△BCD是直角三角形,∴∠CBD=90°,∴S四边形ABCD=S△ABD+S△BCD=12AB·AD+12BC·BD=12×2×5+12×4×3=()5+6cm2.活动3 拓展延伸(学生对学)【例4】在正方形ABCD 中,F 是CD 的中点,E 为BC 上一点,且CE =14CB ,试判断AF 与EF 的位置关系,并说明理由.【互动探索】观察图形,猜测AF ⊥EF .证明△AEF 为直角三角形可得AF ⊥EF .【解答】AF ⊥EF .理由如下:设正方形的边长为4a .∵F 是CD 的中点,CE =14CB , ∴EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,由勾股定理,得AE 2=AB 2+BE 2=16a 2+9a 2=25a 2.在Rt △CEF 中,由勾股定理,得EF 2=CE 2+CF 2=a 2+4a 2=5a 2.在Rt △ADF 中,由勾股定理,得AF 2=AD 2+DF 2=16a 2+4a 2=20a 2.∴AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.【互动总结】(学生总结,老师点评)利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.环节3课堂小结,当堂达标(学生总结,老师点评)1.勾股定理的逆定理:如果三角形的三边长a、b、c满足a2-b2=c2,那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.练习设计请完成本课时对应练习!。

人教版八年级数学(下册)教案:17.1.1勾股定理

人教版八年级数学(下册)教案:17.1.1勾股定理
此外,学生在小组讨论环节表现出了很高的积极性,他们提出了许多有趣的问题和观点。我在这个过程中及时给予引导和鼓励,帮助他们解决问题。这让我深感,作为教师,我们要善于发现学生的优点,激发他们的潜能,让他们在课堂上充分展示自己。
然而,我也注意到,在小组讨论中,有些同学较为内向,不太愿意主动发言。为了解决这个问题,我计划在接下来的教学中,多关注这些学生,鼓励他们大胆表达自己的观点,提高他们在课堂上的参与度。
在总结回顾环节,学生对勾股定理的应用有了更加深入的认识。但我也发现,有些同学对于定理的证明过程仍然存在疑问。为了帮助学生更好地理解证明过程,我打算在下一节课中,利用更多的时间和方法来讲解和演示,让学生从多角度理解和掌握勾股定理。
4.培养学生的数学建模意识,使学生能够将勾股定理应用于现实生活中的问题,提高解决实际问题的能力;
5.培养学生的团队合作精神,通过小组讨论、互助学习,让学生在探索勾股定理的过程中学会与他人合作。
三、教学难点与重点
1.教学重点
-核心内容:勾股定理的概念、公式及其应用。
-详细列举:
-解释勾股定理的概念,即直角三角形两直角边的平方和等于斜边的平方;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.通过勾股定理的学习,培养逻辑思维能力和空间想象能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过勾股定理的探索和证明过程,让学生理解数学知识之间的内在联系;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章 勾股定理. 勾股定理(一)一、教学目标.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

.培养在实际生活中发现问题总结规律的意识和能力。

.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点.重点:勾股定理的内容及证明。

.难点:勾股定理的证明。

三、例题的意图分析例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为和的直角△,用刻度尺量出的长。

以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)的长是。

再画一个两直角边为和的直角△,用刻度尺量的长。

你是否发现与的关系,和的关系,即,,那么就有勾股弦。

对于任意的直角三角形也有这个性质吗? 五、例习题分析例(补充)已知:在△中,∠°,∠、∠、∠的对边为、、。

求证:+。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:△小正大正 ×21+(-),化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例已知:在△中,∠°,∠、∠、∠的对边为、、。

求证:+。

AB分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边×21+右边()左边和右边面积相等,即 ×21+()化简可证。

六、课堂练习.勾股定理的具体内容是:。

.如图,直角△的主要性质是:∠°,(用几何语言表示)⑴两锐角之间的关系:;⑵若为斜边中点,则斜边中线;⑶若∠°,则∠的对边和斜边:; ⑷三边之间的关系:。

.△的三边、、,若满足 +,则°; 若满足>+,则∠是角; 若满足<+,则∠是角。

.根据如图所示,利用面积法证明勾股定理。

七、课后练习 .已知在△中,∠°,、、是△的三边,则 ⑴。

(已知、,求) ⑵。

(已知、,求) ⑶。

(已知、,求).如下表,表中所给的每行的三个数、、,有<<,试根据表中已有数的规律,写出当时,,的值,并把、用含的代数式表示出来。

.在△中,∠°,310,一动点从向以每秒2cm 的速度移动,问当点移动多少秒时,与腰垂直。

.已知:如图,在△中,,在的延长线上。

求证:⑴-·⑵若在上,结论如何,试证明你的结论。

. 勾股定理(二)一、教学目标.会用勾股定理进行简单的计算。

bbbA Bb EB.树立数形结合的思想、分类讨论思想。

二、重点、难点.重点:勾股定理的简单计算。

.难点:勾股定理的灵活运用。

三、例题的意图分析例(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

让学生明确在直角三角形中,已知任意两边都可以求出第三边。

并学会利用不同的条件转化为已知两边求第三边。

例(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。

例(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

让学生把前面学过的知识和新知识综合运用,提高综合能力。

四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

五、例习题分析例(补充)在△,∠°⑴已知,求。

⑵已知, 求。

⑶已知, 求。

⑷已知::, 求。

⑸已知,∠°,求,。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

⑴已知两直角边,求斜边直接用勾股定理。

⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。

⑷⑸已知一边和两边比,求未知边。

通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。

后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

例(补充)已知直角三角形的两边长分别为和,求第三边。

分析:已知两边中较大边可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。

让学生知道考虑问题要全面,体会分类讨论思想。

例(补充)已知:如图,等边△的边长是。

⑴求等边△的高。

⑵求△。

分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

欲求高,可将其置身于△或△中, 但只有一边已知,根据等腰三角形三线合一性质,可求21,则此题可解。

六、课堂练习 .填空题⑴在△,∠°,,,则。

⑵在△,∠°,,,则。

⑶在△,∠°,,::,则,。

D B A⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。

⑸已知直角三角形的两边长分别为和,,则第三边长为。

⑹已知等边三角形的边长为2cm,则它的高为,面积为。

.已知:如图,在△中,∠°,34,,是边上的高,求的长。

.已知等腰三角形腰长是,底边长是,求这个等腰三角形的面积。

七、课后练习.填空题在△,∠°,⑴如果,,则。

⑵如果∠°,,则。

⑶如果∠°,,则。

⑷如果,,则。

⑸如果、、是连续整数,则。

⑹如果,::,则。

.已知:如图,四边形中,∥,⊥,⊥,∠°,1cm,求的长。

八、参考答案课堂练习.;7;,;,,;或34;3,3;.;.。

课后练习.;3;2;;;;.332课后反思:.勾股定理(三)一、教学目标.会用勾股定理解决简单的实际问题。

.树立数形结合的思想。

AB B二、重点、难点.重点:勾股定理的应用。

.难点:实际问题向数学问题的转化。

三、例题的意图分析例(教材页探究)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。

例(教材页探究)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。

四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。

勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

五、例习题分析例(教材页探究)分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。

⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。

⑸注意给学生小结深化数学建模思想,激发数学兴趣。

例(教材页探究)分析:⑴在△中,已知,,利用勾股定理计算。

⑵ 在△中,已知,,利用勾股定理计算。

则-,通过计算可知≠。

⑶进一步让学生探究和的关系,给不同的值,计算。

六、课堂练习.小明和爸爸妈妈十一登香山,他们沿着度的坡路走了米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。

.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是米。

题图 题图 题图.如图,一根米高的电线杆两侧各用米的铁丝固定,两个固定点之间的距离是。

.如图,原计划从地经地到地修建一条高速公路,后因技术攻关,可以打隧道由地到地直接修建,已知高速公路一公里造价为万元,隧道总长为公里,隧道造价为万元,公里,公里,则改建后可省工程费用是多少? 七、课后练习.如图,欲测量松花江的宽度,沿江岸取、两点,在江对岸取一点,使垂直江岸,测得米,D A BC A CB∠°,则江面的宽度为。

.有一个边长为米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米。

.一根厘米的绳子被折成如图所示的形状钉在、两点,厘米,且⊥,则厘米。

.如图,钢索斜拉大桥为等腰三角形,支柱高米,∠∠°,、分别为、中点,试求、两点之间的距离,钢索和的长度。

(精确到米)八、参考答案: 课堂练习:.2250; ., 32; .米; .; 课后练习.350米; .22; .; .米,米,米;课后反思:. 勾股定理(四)一、教学目标.会用勾股定理解决较综合的问题。

.树立数形结合的思想。

二、重点、难点.重点:勾股定理的综合应用。

.难点:勾股定理的综合应用。

QAB D E F三、例题的意图分析例(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。

目前“双垂图”需要掌握的知识点有:个直角三角形,三个勾股定理及推导式,两对相等锐角,四对互余角,及°或°特殊角的特殊性质等。

例(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。

让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。

使学生清楚作辅助线不能破坏已知角。

例(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。

在转化的过程中注意条件的合理运用。

让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。

例(教材页探究)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

四、课堂引入复习勾股定理的内容。

本节课探究勾股定理的综合应用。

五、例习题分析例(补充).已知:在△中,∠°,⊥于,∠°,3,求线段的长。

分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。

目前“双垂图”需要掌握的知识点有:个直角三角形,三个勾股定理及推导式,两对相等锐角,四对互余角,及°或°特殊角的特殊性质等。

要求学生能够自己画图,并正确标图。

引导学生分析:欲求,可由,分别在两个三角形中利用勾股定理和特殊角,求出和。

相关文档
最新文档