高中数学直线与方程练习题及答案详解

合集下载

完整高中数学直线与方程习题及解析

完整高中数学直线与方程习题及解析

点的P反射后通过点B(3,1),求射向(-1,3)x轴,经过x轴上的点P1.一条光线从点A坐标.0013--13 k=-=,,依题意,=,则k=0)设解P(x,PBAP x--1x3x-+3-1x由光的反射定律得k=-k,PBAP31即=,解得x=2,即P(2,0).x+13-x2.△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.解如右图,由题意知∠BAO=∠OAC=30°,∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,3,=-tan 150°∴k=AB33. ==tan 30°k AC3f?a?f?b?f?c?3.已知函数f(x)=log(x+1),a>b>c>0,试比较,,的大小.2abcf?x?可视为过原点直线的斜率.画出函数的草图如图,解xf?c?f?b?f?a?由图象可知:>>.cba4.(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11),求证:AB⊥CD.32+1)且l,a⊥l,求实数(3,直线l经过点Aa,-2),B(0k(2)已知直线l的斜率=211124a的值.(1)证明由斜率公式得:6-33 =,=k AB55-1011-?-4?5=-,=k CD3-6-3则k·k=-1,∴AB⊥CD. CDAB(2)解∵l ⊥l,∴k·k=-1,2121+1-?-2?2a3即=-1,解得a=1或a=3. ×40-3a5. 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0)、的形状.OPQR试判断四边形>0.t,其中2)t,2-(R、)t+2t,2-(1Q、)t,(1P.0t-,t==由斜率公式得k解OP01-t-0-2-?2+t?21==t,k=-,==k ORQR t-2t-?1-2t?-1-2t-02+t-t12=-=.=k PQ tt-212t-1-. PQ,OR∥OP∴k=k,k=k,从而∥QR PQQROPOR为平行四边形.∴四边形OPQRk 又 ,⊥OR ·k =-1,∴OP OROP 为矩形.故四边形OPQR的值,使n 2),D (2,2),求m 和,,.已知四边形ABCD 的顶点A (mn ),B (5,-1)C (4,6 为直角梯形.四边形ABCD 解 ∵四边形ABCD 是直角梯形, ∴有2种情形:,AB ⊥ADCD (1)AB ∥, .,-1)A 由图可知:(2 AB ,∥(2)ADBC ,AD ⊥ ?kk =?BCAD ? ?·1k =-k ?ADAB 2n -?3?=1-2m -? ?12n -n +??1=-·5-m 2-m 16?=m 5?. ∴8?=-n 5 16? =m ? 2=m ?5?或综上?. 8?1=-n ??=-n 5l 与平行于l ,直线ly -3=0.直线l 的方程分别为l 与l 7x +8y +9=0,7x +87.已知直线1112 的方程.2,求直线l ,且d ∶d =1∶,与的距离为dl 的距离为d 22211|C |-9||C -?-3?d ,.=,则d =l ,设直线l 的方程为7x +8y +C =0平行解 因为直线l 2118+8+222277d 2又3|. +C -9|=|C =d ,∴2|215.=解得C =21或C 0=+8y +5x +8y +21=0或7x 的方程为故所求直线l 722求证:BD |·|AB |DC =|AD ||.+|,8.△ABC 中,D 是BC 边上任意一点(D 与BC 不重合),且| △ABC 为等腰三角形.轴,建立轴,以OA 所在直线为y ,垂足为作AO ⊥BCO ,以BC 所在直线为x 证明(如右图所示).直角坐标系 .d,0)0)0),C (c,,D (设A (0,a ),B (b, ,所以,由距离公式可得DC ||AD |+|BD |·|因为|AB |=22 ),d -b )(c -d =+ad +a +(2222b .b -)(c -d )即-(d -b )(b +d )=(d . c -d ,即-b =-又d -b ≠0,故-bd =c |,即△ABC 为等腰三角形.|所以|AB |=AC ,求反P (-4,3)xl :8+6y =25反射后通过点9.一束平行光线从原点O (0,0)出发,经过直线 射光线与直线l 的交点坐标.上的中点在l 与),由直线OAl 垂直和线段AOa 解 设原点关于l 的对称点A的?-1=-·?4=a??3?a?,解得,?ba?3b=??25×=+6×8坐标为(,b得4b??22∴A的坐标为(4,3).∵反射光线的反向延长线过A(4,3),又由反射光线过P(-4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.7??3=y?=x?8 ,,解得由方程组???256y=x8+??3=y?7??,3.的交点坐标为∴反射光线与直线l??8.。

高中数学《直线与方程》练习题(含答案)

高中数学《直线与方程》练习题(含答案)

高中数学《直线与方程》同步练习(含答案)1. 经过点P(−1, 2)并且在两坐标轴上的截距的绝对值相等的直线有( )A.0条B.1条C.2条D.3条2. 已知直线l:y=3x−2的纵截距是()A.−3B.−2C.3D.23. 动点P(cosθ, sinθ)(θ∈R)关于直线y=x−2的对称点是P′,则|PP′|的最大值()A.2√2−2B.√2+1C.2√2D.2√2+24. 若直线y=0的倾斜角为α,则α的值是()A.0B.π4C.π2D.不存在5. 下列命题中真命题为()A.过点P(x0, y0)的直线都可表示为y−y0=k(x−x0)B.过两点(x1, y1),(x2, y2)的直线都可表示为(x−x1)(y2−y1)=(y−y1)(x2−x1)C.过点(0, b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为xa +yb=16. 过点(2, 4)可作在x轴,y轴上的截距相等的直线共()A.1条B.2条C.3条D.4条7. 直线3x−√3y+1=0的倾斜角是( )A.30∘B.60∘C.45∘D.150∘8. 经过两点M(6, 8),N(9, 4)的直线的斜率为()A.4 3B.−43C.34D.−349. 过两直线l1:2x−y+1=0,l2:x+3y−2=0的交点,且在两坐标轴上截距相等的直线方程可以为()A.7x+7y+4=0B.7x+7y−4=0C.7x−7y+6=0D.7x−7y−6=010. 若不论m取何实数,直线l:mx+y−1+2m=0恒过一定点,则该定点的坐标为()A.(−2, 1)B.(2, −1)C.(−2, −1)D.(2, 1)11. 设直线y=2x−1交曲线C于A(x1, y1),B(x2, y2)两点,(1)若|x1−x2|=√2,则|AB|=________;(2)|y1−y2|=√2,则|AB|=________.12. 已知点M(1, 1)平分线段AB,且A(x, 3),B(3, y),则x=________,y=________.13. 设复数z=x+yi(x, y∈R)且|z+i|+|z−i|=4,则点(x, y)的轨迹方程是________.14. 直线2x−3y−12=0与坐标轴围成的三角形的面积为________.15. 已知ab<0,bc<0,则直线ax+by=c的图象一定不过第________象限.16. 直线y=−x+b与5x+3y−31=0的交点在第一象限,则b的取值范围是________.17. 若三点A(−2, 3),B(3, −2),C(12, a)共线,则a的值为________.18. 过点A(2, −1)和B(4, 5)的直线方程是________.19. 已知直线l1:ax+2y+6=0,直线l2:x+(a−1)y+a2−1=0.当a________时,l1与l2相交;当a________时,l1⊥l2;当a________时,l1与l2重合;当a________时,l1 // l2.20. 已知θ∈R,则直线x|sinθ|−√3y+1=0的倾斜角的取值范围是________.21. 求m为何值时,这三条直线l1:4x+y=4,l2:mx+y=0,l3:2x−3my=4,不能构成三角形.22. 已知直线l经过两条直线l1:3x+y−5=0和l2:x+y−3=0的交点M.(1)若直线l与直线2x+y+2=0垂直,求直线l的方程;(2)求经过点M并且在两个坐标轴上的截距的绝对值相等的直线方程.23. 已知点A(−1, 2),B(2, 1)在y轴上,求点Q,使|QA|=|QB|,并且求|QA|值.24. 已知:A(2, 5),B(6, −1),C(9, 1),求证:AB⊥BC.25. 直线l经过两直线2x−y+4=0与x−y+5=0的交点,且与直线l1:x+y−6=0平行.(1)求直线l的方程;(2)若点P(a, 1)到直线l的距离与直线l1到直线l的距离相等,求实数a的值.26. 求经过点(5, 10)且与原点的距离为5的直线方程.27. 根据条件写出直线的方程(1)经过点A(8, −2),斜率是−12.(2)经过点P1(3, −2),P2(5, −4).28. 求过点P(0, 1)的直线l,使它包含在两已知直线l1:2x+y−8=0和l2:x−3y+10=0间的线段被点P平分.29. 已知直线l1:ax+3y+1=0,l2:x+(a−2)y+a=0.(1)若l1⊥l2,求实数a的值;(2)当l1 // l2时,求直线l1与l2之间的距离.30. 已知直线l1:x+my+1=0和l2:(m−3)x−2y+(13−7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1 // l2,求l1与l2之间的距离d.参考答案一、 选择题1.D2.B3.D4.A5.B6.B7.B8.B9.B 10.A 二、 填空题11.解:(1)K AB =y 1−y2x 1−x 2=2,即(y 1−y 2)=2(x 1−x 2),|AB|=√(x 1−x 2)2+(y 1−y 2)2=√5|x 1−x 2|=√5×√2=√10, (2)由(1)可得,(y 1−y 2)=2(x 1−x 2), |AB|=√(x 1−x 2)2+(y 1−y 2)2=√55|x 1−x 2|=√2×√55=√105. 12. 1,1 13.y 24+x 23=114. 12 15. 二 16. 315<b <31317. 1218. 3x −y −7=019. a ≠−1且a ≠2,=23,a =2,a =−1 20. [0∘, 30∘] 三、 解答题21.解:①当直线l 1:4x +y −4=0平行于l 2:mx +y =0时,m =4. ②当直线l 1:4x +y −4=0平行于l 3:2x −3my −4=0时,m =−16, ③当l 2:mx +y =0平行于l 3:2x −3my −4=0时,−m =23m ,m 无解.④当三条直线经过同一个点时,把直线l 1与l 2的交点(44−m , −4m4−m )代入l 3:2x −3my −4=0得 84−m −3m ×−4m4−m −4=0,解得m =−1或23, 综上,满足条件的m 为4、或−16、或−1、或23. 22.解:(1)解方程组{3x +y −5=0,x +y −3=0,得x =1,y =2,M(1,2).与2x +y +2=0垂直的直线为x −2y +c =0, M(1,2)点代入得c =3.直线l 的方程为x −2y +3=0. (2)当截距为0时,设y =kx ,过点M(1,2), 则得k =2,即y =2x ;当截距不为0时,设x a +y a =1,或x a +y−a =1,过点M(1,2),则得a =3或a =−1,即x +y −3=0,或x −y +1=0,这样的直线有3条:y =2x, x +y −3=0,或x −y +1=0. 23.解:设Q(0, y),∵ |QA|=|QB|, ∴ √1+(y −2)2=√22+(y −1)2, 化为y =0. ∴ Q(0, 0), |QA|=√5.24.证明:∵ A(2, 5),B(6, −1),C(9, 1), ∴ AB →=(4, −6),BC →=(3, 2), ∴ AB →⋅BC →=4×3+(−6)×2=0,∴ AB →⊥BC →, ∴ AB ⊥BC .25.解:(1)由{2x −y +4=0x −y +5=0,解得{x =1y =6.即两直线的交点为(1, 6),∵ 直线l 1:x +y −6=0的斜率为−1, ∴ 直线l 的斜率为−1,∴ 直线l 的方程为y −6=−(x −1),即x +y −7=0; (2)由题意知,√2=√2整理得:|a −6|=1.解得:a =7或a =5.26.解:当直线无斜率时,方程为x −5=0,满足到原点的距离为5;当直线有斜率时,设方程为y −10=k(x −5),即kx −y +10−5k =0, 由点到直线的距离公式可得√k 2+(−1)2=5,解得k =34, ∴ 直线的方程为:3x −4y +25=0综合可得所求直线的方程为:x −5=0或3x −4y +25=0 27.解:(1)由题意得:直线方程为y +2=−12(x −8), 整理得:x +2y −4=0;(2)由题意得:直线方程为y +2=−2−(−4)3−5(x −3),整理得:x +y −1=0.28.解:根据题意,直线l 1:2x +y −8=0可化为 y =−2x +8;设直线l 1上的一点P 1(x 1, −2x 1+8),则P 1关于点P 的对称点是P 2(−x 1, 2−(−2x 1+8)); P 2在直线l 2:x −3y +10=0上,即−x 1−3(2x 1−6)+10=0, 解得x 1=4, ∴ y 1=0;∴ 所求的直线方程是x4+y =1,即x +4y −4=0. 29. 解:(1)由l 1⊥l 2可得:a +3(a −2)=0,…4分 解得a =32;…6分(2)当l 1 // l 2时,有{a(a −2)−3=03a −(a −2)≠0,…8分解得a =3,…9分此时,l 1,l 2的方程分别为:3x +3y +1=0,x +y +3=0即3x +3y +9=0, 故它们之间的距离为d =√32+32=4√23.…12分.30.解:(1)∵ 直线l 1:x +my +1=0和l 2:(m −3)x −2y +(13−7m)=0, ∴ 当l 1⊥l 2时,1⋅(m −3)−2m =0,解得m =−3;(2)由l 1 // l 2可得m(m −3)+2=0,解得m =1或m =−2, 当m =2时,l 1与l 2重合,应舍去,当m =1时,可得l 1:x +y +1=0,l 2:−2x −2y +6=0,即x +y −3=0, 由平行线间的距离公式可得d =√12+12=2√2。

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.平面直角坐标系中,直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为y=2x-3,故选D 项.2.如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2B.6C.3D.2【答案】A【解析】由题意知点P关于直线AB的对称点为D(4,2),关于y轴的对称点为C(-2,0),则光线所经过的路程为|CD|=2.故选A.3. [2014·武汉调研]直线x-2y+1=0关于直线x=1对称的直线方程是()A.x+2y-1=0B.2x+y-1=0C.2x+y-3=0D.x+2y-3=0【答案】D【解析】设直线x-2y+1=0关于直线x=1对称的直线为l2,则l2的斜率为-,且过直线x-2y+1=0与x=1的交点(1,1),则l2的方程为y-1=-(x-1),即x+2y-3=0.4.平面直角坐标系中,如果与都是整数,就称点为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果与都是无理数,则直线不经过任何整点;③如果与都是有理数,则直线必经过无穷多个整点;④如果直线经过两个不同的整点,则必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题是(写出所有真命题编号).【答案】①④⑤【解析】不与坐标轴平行的直线中横坐标为整数时,纵坐标为分数,同理纵坐标为整数时,横坐标为分数,即不经过任何整点,所以①正确,③不正确. 直线中与都是无理数,但经过唯一一个整数点所以②不正确,⑤正确.设直线经过整数点则直线必经过点由于不同时成立,所以点有无数个.【考点】直线整点5.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.作x轴6.(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1的垂线交椭圆于A、A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【答案】(1)(2)【解析】(1)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(2)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求椭圆方程为.7.直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)【答案】D【解析】由题意可得:直线2x﹣3y+1=0的斜率为k=,所以直线2x﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D.8.已知直线l:y=3x+3,那么直线x-y-2=0关于直线l对称的直线方程为____________.【答案】7x+y+22=0【解析】由得交点坐标P .又直线x-y-2=0上的点Q(2,0)关于直线l的对称点为Q′,故所求直线(即PQ′)的方程为,即7x+y+22=0.9.直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.【答案】2x+11y+16=0【解析】在直线l1上取一点A(2,0),又设点A关于直线l的对称点为B(x,y),则解得B .又l1与l2的交点为M(3,-2),故由两点式可求得直线l2的方程为2x+11y+16=0.10.求直线a:2x+y-4=0关于直线l:3x+4y-1=0对称的直线b的方程.【答案】2x+11y+16=0【解析】由解得a与l的交点E(3,-2),E点也在b上.(解法1)设直线b的斜率为k,又知直线a的斜率为-2,直线l的斜率为-.则,解得k=-.代入点斜式得直线b的方程为y-(-2)=- (x-3),即2x+11y+16=0.(解法2)在直线a:2x+y-4=0上找一点A(2,0),设点A关于直线l的对称点B的坐标为(x,y),由解得B .由两点式得直线b的方程为,即2x+11y+16=0.(解法3)设直线b上的动点P(x,y)关于l:3x+4y-1=0的对称点为Q(x0,y),则有解得x0=,y=.Q(x0,y)在直线a:2x+y-4=0上,则2×-4=0,化简得2x+11y+16=0,即为所求直线b的方程.(解法4)设直线b上的动点P(x,y),直线a上的点Q(x0,4-2x),且P、Q两点关于直线l:3x+4y-1=0对称,则有消去x,得2x+11y+16=0或2x+y-4=0(舍).11.已知直线的点斜式方程为y-1=- (x-2),则该直线另外三种特殊形式的方程为______________,______________,______________.【答案】y=-x+,,【解析】将y-1=- (x-2)移项、展开括号后合并,即得斜截式方程y=-x+.因为点(2,1)、均满足方程y-1=- (x-2),故它们为直线上的两点.由两点式方程得,即.由y=-x+知,直线在y轴上的截距b=,又令y=0,得x=.故直线的截距式方程为12.已知直线l:kx-y+1+2k=0.(1)求证:直线l过定点;(2)若直线l交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线l的方程.【答案】(1)见解析(2)x-2y+4=0.【解析】(1)证明:由已知得k(x+2)+(1-y)=0,∴无论k取何值,直线过定点(-2,1).(2)解:令y=0得A点坐标为,令x=0得B点坐标为(0,2k+1)(k>0),∴S=|2k+1|= (2k+1)=≥ (4+4)=4.△AOB当且仅当4k=,即k=时取等号.即△AOB的面积的最小值为4,此时直线l的方程为x-y+1+1=0,即x-2y+4=0.13.若点A(3,5)关于直线l:y=kx的对称点在x轴上,则k是()A.B.±C.D.【答案】D【解析】设点A(3,5)关于直线l:y=kx的对称点为B(x,0),依题意得解得k=.14.经过直线x+2y-3=0与2x-y-1=0的交点且和点(0,1)的距离等于1的直线方程为.【答案】x-1=0【解析】设所求直线的方程为(x+2y-3)+λ(2x-y-1)=0,即(1+2λ)x+(2-λ)y-3-λ=0,由于点(0,1)到该直线的距离为1,即1==,所以|2λ+1|=,解得λ=2.故所求直线方程为(x+2y-3)+2(2x-y-1)=0,即x-1=0.15.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.【答案】2==2,解得a=2.【解析】依题意得kAB16.设A、B是x轴上的两点,点P的横坐标为2,且.若直线PA的方程为,则直线PB的方程是()A. B.C. D.【答案】B【解析】点P的横坐标为2,设纵坐标为y,直线PA的方程为,∴P(2,3)∵|PA|="|PB|," ∴∠PAB=∠PBA, 又直线PA的斜率=1,∴直线PB的斜率=-1∴直线PB的方程为y-3=-(x-2)===>x+y=5.17.已知直线与圆有交点,且交点为“整点”,则满足条件的有序实数对()的个数为()A.6B.8C.10D.12【答案】B【解析】由圆的方程得到圆心即原点,半径,而圆上的“整点”有四个,分别是:,如图所示:根据图形得到可以为:直线有序实数对可以为:,共8个,故选B18.如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动。

高一数学直线与方程相关习题及答案

高一数学直线与方程相关习题及答案

直线与方程一、选择题1.若A -2,3,B 3,-2,C ),21(m 三点共线,则m 的值为A.B .-C .-2D .22.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是3.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是A.B.C. D. 4.直线l 1:3-ax +2a -1y +7=0与直线l 2:2a +1x +a +5y -6=0互相垂直,则a 的值是A .-B.C. D.5.直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点A .0,0B .0,1C .3,1D .2,16.已知A 2,4与B 3,3直线l 对称,则直线l 的方程为A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=07.已知直线l 过点1,2,且在x 轴上的截距是在y 轴上的截距的2倍,则直线l 的方程为A .x +2y -5=0B .x +2y +5=0C .2x -y =0或x +2y -5=0D .2x -y =0或x -2y +3=08.直线y =x +3k -2与直线y =-x +1的交点在第一象限,则k 的取值范围是 A.)1,32(- B.)0,32(-C .)1,0( D.⎥⎦⎤⎢⎣⎡-1,32 9.经过点2,1的直线l 到A 1,1、B 3,5两点的距离相等,则直线l 的方程A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对10.直线l 过点P 1,3,且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0二、填空题11.直线l 方程为y -a =a -1x +2,且l 在y 轴上的截距为6,则a =________.12.已知点m,3到直线x +y -4=0的距离等于,则m 的值为________.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.14.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为)10,0(aP ,则线段AB 的长为________. 三、解答题15.已知两条直线l 1:x +m 2y +6=0,l 2:m -2x +3my +2m =0,当m 为何值时,l 1与l 2 1相交;2平行;3重合.16.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线为l ,求l 的方程.17.在平面直角坐标系xOy 中,已知直线l 的方程为2x +k -3y -2k +6=0,k ∈R . 1若直线l 在x 轴、y 轴上的截距之和为1,求坐标原点O 到直线l 的距离; 2若直线l 与直线l 1:2x -y -2=0和l 2:x +y +3=0分别相交于A ,B 两点,点P 0,2到A 、B 两点的距离相等,求k 的值.18.已知△ABC 的顶点B -1,-3,AB 边上高线CE 所在直线的方程为x -3y -1=0,BC 边上中线AD 所在的直线方程为8x +9y -3=0.1求点A 的坐标;2求直线AC 的方程.直线与方程答案1—5:ACCBC6-10:DCACA11:12:-1或313:2x+3y-2=014:1015:解当m=0时,l1:x+6=0,l2:x=0,∴l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,∴l1与l2相交.当m≠0且m≠2时,由=,得m=-1或m=3,由=,得m=3.故1当m≠-1且m≠3且m≠0时,l1与l2相交.2当m=-1或m=0时,l1∥l2.3当m=3时,l1与l2重合.16:解直线x-2y+5=0与x轴交点为P-5,0,反射光线经过点P.又入射角等于反射角,可知两直线倾斜角互补.∵k1=,∴所求直线斜率k2=-,故所求方程为y-0=-x+5,即x+2y+5=0.17:解1令x=0时,纵截距y0=2;令y=0时,横截距x0=k-3;则有k-3+2=1k=2,所以直线方程为2x-y+2=0,所以原点O到直线l的距离d==.2由于点P0,2在直线l上,点P到A、B的距离相等,所以点P为线段AB的中点.设直线l与2x-y-2=0的交点为Ax,y,则直线l与x+y+3=0的交点B-x,4-y,由方程组解得即A3,4,又点A在直线l上,所以有2×3+k-3×4-2×k+6=0,即k=0.18:解1设点Ax,y,则解得故点A的坐标为-3,3.2设点Cm,n,则解得m=4,n=1,故C4,1,又因为A-3,3,所以直线AC的方程为=,即2x+7y-15=0.。

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.在平面直角坐标系中,定义为两点,之间的“折线距离”.则坐标原点与直线上一点的“折线距离”的最小值是;圆上一点与直线上一点的“折线距离”的最小值是 .【答案】,【解析】直线上的点可以表示成,那么原点到它的折线距离为,所以只需求的最小值,而,画出图象可以看当时取到最小值同理,设圆上的点为,所以所求即为的最小值,而所以最小值为.【考点】本小题主要考查新定义下分段函数求最值问题,考查学生对新定义的理解和利用能力以及运算求解能力和对问题的转化能力.点评:第二问求解时也可以按照分段函数讨论,但比较麻烦,用绝对值的性质可以简化运算.2. p点在直线3x+y-5=0上,且p到直线x-y-1=0的距离等于,则点p坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,-1)D.(2,1)或(-1,2)【答案】C【解析】依题意可得P点是直线和与直线平行且距离为的平行直线的交点。

设与直线平行且距离为的平行直线方程为,由平行直线距离公式可得,解得或。

当时平行直线方程为,与直线联立可得P点坐标为。

当时平行直线方程为,与直线联立可得P点坐标为。

故选C3.点p(m-n,-m)到直线的距离等于()A.B.C.D.【答案】A【解析】直线方程化为由点到直线的距离公式得:故选A4.已知正方形的中心为直线x-y+1=0和2x+y+2=0的交点,正方形一边所在直线方程为x+3y -2=0,求其它三边方程。

【答案】其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=0【解析】解:由将正方形的中心化为p(-1,0),由已知可设正方形相邻两边方程为x+3y+m=0和3x-y+n=0 ,∵p点到各边的距离相等,∴和,∴ m=4或m=-2和n=6或n=0∴其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=05.若点(4,a)到直线4x-3y=0的距离不大于3,则a的取值范围是()A.(0,10)B.[3,4]C.[,]D.(-,0)【答案】C【解析】依题意可得,解得,故选C6.坐标平面内一点到两个坐标轴和直线x+y=2的距离都相等,则该点的横坐标是( )A.B.1C.D.不确定【答案】D【解析】设该点坐标为。

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。

解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。

代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。

得到方程:\( y - 4 = -2(x - 3) \)。

### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。

解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。

代入已知值:\( m = 3 \),\( b = -5 \)。

得到方程:\( y = 3x - 5 \)。

### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。

解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。

代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。

化简得到:\( 7(y - 6) = -5(x + 1) \)。

### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。

解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。

代入截距:\( a = 4 \),\( b = -3 \)。

得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。

### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.两平行直线y=kx+b1与y=kx+b2之间的距离是()A.b1-b2B.C.D.【答案】B【解析】略2.已知直线L:Ax+By+C=0,(A,B不同时为0)。

若点(1,1)到L的距离为1,则A,B,C应满足的关系式是----------------------。

【答案】(A+B+C)2=A2+B2【解析】根据点到直线距离公式可得,整理可得3.的三个顶点坐标分别为A(2,6),B(-4,3),C(2,-3),则BC边上的高线的长为--------------。

【答案】【解析】所在直线的斜率为,则所在直线方程为,即。

而高经过点,所以边上的高线的长等于点到直线的距离4.已知M(sinα, cosα), N(cosα, sinα),直线l: xcosα+ysinα+p="0" (p<–1),若M, N到l的距离分别为m, n,则A.m≥n B.m≤n C.m≠n D.以上都不对【答案】A【解析】点到直线的距离,点到直线的距离。

因为,所以,则,故选A5.已知A, B, C为三角形的三个内角,它们的对边长分别为a, b, c,已知直线xsinA+ysinB+sinC=0到原点的距离大于1,则此三角形为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】因为直线到原点的距离大于1,所以,则。

由正弦定理可得,则。

再由余弦定理有,即为钝角,所以此三角形为钝角三角形,故选C6.与直线2x+3y–6=0关于点(1, –1)对称的直线是A.3x–2y+2=0B.2x+3y+7=0C.3x–2y–12=0D.2x+3y+8=0【答案】D【解析】设是所求直线上任一点,P关于点(1,-1)的对称点为则又点Q在直线2x+3y–6=0上,。

即故选D7.方程2x2+9xy+10y2–7x–15y+k=0表示两条直线,则过这两直线的交点且与x–y+2=0垂直的直线方程是A.x+y–1=0B.x+y–2=0C.x+y+1=0D.x+y+2=0【答案】D【解析】设方程表示直线和直线,其中都是整数,则有,即,所以,可得。

高中直线与方程练习题及答案详解

高中直线与方程练习题及答案详解

高中直线与方程练习题及答案详解1.高中直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=√2/2B.a-b=√2/2C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.2C.10D.无法确定4.已知ab0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠1B.m≠-1/2C.m≠1/2D.m≠0二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x。

三、解答题1.已知直线Ax+By+C=0。

1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程变为Ax+By=0,解得y=-A/B*x,即过原点且斜率为-A/B的直线。

2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都相交。

3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。

4)系数满足什么条件时是x轴;当A=0且B≠0且C=0时,直线是x轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程复习A一、选择题1.设直线0ax by c ++=的倾斜角为α,且s i n c o s 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

三、解答题1.已知直线Ax By C ++=0,(1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x 轴相交; (4)系数满足什么条件时是x 轴;2.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

3.经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。

4.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.第三章 直线与方程B一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 3.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 二、填空题1.方程1=+y x 所表示的图形的面积为_________。

2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。

3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。

5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

2.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。

4.直线1y x =+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值。

(数学2必修)第三章 直线与方程 [提高训练C 组] 一、选择题1.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后, 又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .3 2.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m -+12D . a c m -+123.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23- 4.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示6.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 二、填空题1.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.2.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是 .3.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________.4.若方程02222=++-y x my x 表示两条直线,则m 的取值是 .5.当210<<k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 三、解答题1.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么?2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程 3.已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得 最小值时P 点的坐标。

4.求函数()f x =的最小值。

第三章 直线和方程 [基础训练A 组] 一、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-= 2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在 6.C 2223,m m m m +--不能同时为0 二、填空题1.2 1d ==2. 234:23,:23,:23,l y x l y x l x y =-+=--=+3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5. 23y x =平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代入Ax By C ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠ (5)证明:()00P x y ,在直线Ax By C ++=0上00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。

2.解:由23503230x y x y +-=⎧⎨--=⎩,得1913913x y ⎧=⎪⎪⎨⎪=⎪⎩,再设20x y c ++=,则4713c =-472013x y +-=为所求。

3.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;当截距不为0时,设1,x y a a +=或1,x y a a+=-过点(1,2)A , 则得3a =,或1a =-,即30x y +-=,或10x y -+= 这样的直线有3条:2y x =,30x y +-=,或10x y -+=。

4. 解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -, 14165545,4025102S k k k k=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+=解得2,5k =或 85k = 25100x y ∴--=,或85200x y -+=为所求。

第三章 直线和方程 [综合训练B 组]一、选择题1.B 线段AB 的中点为3(2,),2垂直平分线的2k =,32(2),42502y x x y -=---= 2.A 2321,,132232AB BC m k k m --+===+-3.B 令0,x =则2y b =-4.C 由13kx y k -+=得(3)1k x y -=-对于任何k R ∈都成立,则3010x y -=⎧⎨-=⎩5.B cos sin sin (cos )0θθθθ⋅+⋅-=6.D 把330x y +-=变化为6260x y +-=,则d ==7.C 32,,4PA PB l PA l PB k k k k k k ==≥≤,或 二、填空题1.2 方程1=+y x2.724700x y ++=,或724800x y +-=设直线为7240,3,70,80x y c d c ++====-或3.3 22b a +的最小值为原点到直线1543=+y x 的距离:155d =4.445点(0,2)与点(4,0)关于12(2)y x -=-对称,则点(7,3)与点(,)m n 也关于12(2)y x -=-对称,则3712(2)223172n m n m ++⎧-=-⎪⎪⎨-⎪=-⎪-⎩,得235215m n ⎧=⎪⎪⎨⎪=⎪⎩5.11(,)k k1=+b y a x 变化为()1,()10,ax k a y a x y ky +-=-+-=对于任何a R ∈都成立,则010x y ky -=⎧⎨-=⎩三、解答题1.解:设直线为2(2),y k x -=+交x 轴于点2(2,0)k--,交y 轴于点(0,22)k +,1222221,4212S k k k k=⨯+⨯+=++= 得22320k k ++=,或22520k k ++= 解得1,2k =-或 2k =-320x y ∴+-=,或220x y ++=为所求。

相关文档
最新文档