高中数学直线与方程习题及解析
高中直线与方程练习题及讲解

高中直线与方程练习题及讲解### 高中直线与方程练习题及讲解题目一:直线方程的求解题目描述:已知点A(2,3)和点B(-1,-2),求经过这两点的直线方程。
解题步骤:1. 首先,我们需要找到直线的斜率。
斜率公式为 \( k = \frac{y_2- y_1}{x_2 - x_1} \)。
2. 将点A和点B的坐标代入公式,得到 \( k = \frac{-2 - 3}{-1 - 2} = \frac{-5}{-3} = \frac{5}{3} \)。
3. 有了斜率,我们可以使用点斜式方程 \( y - y_1 = k(x - x_1) \) 来写出直线方程。
选择点A代入,得到 \( y - 3 = \frac{5}{3}(x - 2) \)。
4. 最后,将方程化为一般形式 \( Ax + By + C = 0 \),得到 \( 5x - 3y + 1 = 0 \)。
题目二:直线的平行与垂直题目描述:已知直线 \( l_1: 3x - 4y + 5 = 0 \),求与 \( l_1 \) 平行且与直线 \( 2x + y - 7 = 0 \) 垂直的直线方程。
解题步骤:1. 平行直线的斜率相同,所以 \( l_1 \) 的斜率为 \( k =\frac{3}{4} \)。
2. 垂直直线的斜率互为相反数的倒数,因此 \( l_1 \) 垂直的直线斜率为 \( -\frac{4}{3} \)。
3. 利用点斜式方程,我们可以选择直线 \( l_1 \) 上的一点,比如\( (0, 5/4) \),代入 \( y - y_1 = k(x - x_1) \),得到 \( y - \frac{5}{4} = -\frac{4}{3}(x - 0) \)。
4. 将方程化为一般形式,得到 \( 4x + 3y - 15 = 0 \)。
题目三:直线的交点题目描述:求直线 \( l_1: 2x + 3y - 6 = 0 \) 与直线 \( l_2: x - y + 1 = 0 \) 的交点坐标。
(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析1.直线和直线的交点为,则过两点,的直线方程为_____________.【答案】【解析】两直线和的交点为, 所以是直线上的点,将点的坐标代入直线方程,得到整理一下,则可看成而分别可由代入因为,即为相异的两点.两点确定一条直线,所以可以认为为所求直线方程.【考点】直线的方程.2.已知直线l经过点P(-2,1)(1)若直线l的方向向量为(-2,-1),求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求此时直线l的方程.【答案】(Ⅰ)(Ⅱ)或x+y+1=0【解析】(1)已知直线的方向向量利用方向向量设方程时可设为:,然后根据直线过点P(-2,1)来得直线方程.(2)可先设直线的斜率,然后表示直线方程;根据直线方程来表示直线在两坐标轴上的截距,根据截距相等列出方程即可.试题解析:(1)直线斜率为得(2)或x+y+1=0.【考点】函数及其性质的应用.3.已知直线经过点.(1)若直线的方向向量为,求直线的方程;(2)若直线在两坐标轴上的截距相等,求此时直线的方程.【答案】(1)(2)或【解析】(1)由直线的方向向量可得直线的斜率,根据点斜式可得直线方程。
(2)注意讨论截距是否为0,当截距均为0时,直线过原点,设直线方程为,将点代入即可求得,当截距不为0时可设直线为,同样将点代入即可求得。
(1)由的方向向量为,得斜率为,所以直线的方程为:(6分)(2)当直线在两坐标轴上的截距为0时,直线的方程为;(9分)当直线在两坐标轴上的截距不为0时,设为代入点得直线的方程为.【考点】1直线的方向向量;2直线方程的点斜式和截距式。
4.(本小题满分13分)已知抛物线的焦点为,是抛物线上横坐标为4、且位于轴上方的点,到抛物线的准线的距离为5,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)过作,垂足为,求点的坐标.【答案】(1);(2).【解析】(1)根据抛物线的标准方程,先写出抛物线的准线方程,进而由抛物线的定义得到,进而可确定,从而可写出抛物线的方程;(2)由(1)先确定,,随之确定,进而写出直线的方程,进而由得到,进而写出直线的方程,最后联立直线、的方程即可求得交点的坐标.试题解析:(1)抛物线的准线为,于量,所以∴抛物线方程为(2)由(1)可得点的坐标是,由题意得又∵,∴,由可得则的方程为,的方程为解方程组,所以.【考点】1.抛物线的标准方程及其几何性质;2.直线的方程;3.两直线的交点问题.5.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.【答案】(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).【解析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.试题解析:(1)将圆C配方得:(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得:y=(2±)x.②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切得:x+y+1=0或x+y-3=0.故切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)由|PO|=|PM|,得:=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l.∴直线OP的方程为:2x+y=0.解方程组得P点坐标为.【考点】直线和圆的方程的应用.6.已知的顶点,的平分线所在直线方程为,边上的高所在直线方程为.(1)求顶点的坐标;(2)求的面积.【答案】(1)点C的坐标为;(2)..【解析】(1)因为直线,求出,进而求出直线AC的方程,直线AC与CD联立即可求出顶点的坐标;(2)由(1)可求出,再求出B点的坐标,由点到直线的距离公式可求出的高,进而可以求出的面积.试题解析:(1)直线,则,直线AC的方程为, 2分由所以点C的坐标.. 4分(2),所以直线BC的方程为, 5分,即.. 7分, 8分点B到直线AC:的距离为. 9分则.. 10分【考点】点到直线的距离、直线方程.7.直线与两坐标轴围成的三角形面积等于__________.【答案】【解析】令,则,令,则,所以【考点】求直线的横纵截距8.光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.【答案】直线方程为:;.【解析】试题分析:先求出点关于轴的对称点,然后根据直线两点式方程求出的直线方程为.试题解析:点关于轴的对称点.因为点在直线上,,所以的直线方程为:.化简后得到的直线方程为:.【考点】直线方程.9.过点(-1,3)且垂直于直线x-2y+3=0的直线方程是()A.x-2y+7=0B.2x+y-1=0C.x-2y-5=0D.2x+y-5=0【答案】B【解析】由两直线垂直的性质可知,所求的直线的斜率k=-2,所求直线的方程为y-3=-2(x+1)即2x+y-1=0,故选B【考点】本题考查了直线的方程及位置关系点评:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是10.(本小题满分12分)矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:,若点在直线AD上.(1)求点A的坐标及矩形ABCD外接圆的方程;(2)过点的直线与ABCD外接圆相交于A、B两点,若,求直线m的方程.【答案】(1) ;(2)或。
高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析1.求垂直于直线并且与曲线相切的直线方程.【答案】.【解析】先根据所求直线与直线垂直求出所求直线的斜率,然后设出切点,由,计算出的值,接着计算出的值,最后可写出切线的方程:,并化成一般方程即可.试题解析:因为直线的斜率为,所以垂直于直线并且与曲线相切的直线的斜率为设切点为,函数的导数为所以切线的斜率,得代入到得,即∴所求切线的方程为即.【考点】1.两直线垂直的判定与性质;2.导数的几何意义.2.已知直线,,则它们的图像可能为( )【答案】D【解析】由直线l1:ax-y+b=0,l2:bx-y-a=0,可得直线l1:y=ax+b,l2:y=bx-a.分类讨论:a>0,b>0;a<0,b>0;a>0,b<0;a<0,b<0.根据斜率和截距的意义即可得出.【考点】直线的一般方程.3.过两直线和的交点且与直线平行的直线方程为。
【答案】【解析】联立和,即可解得交点P.设过点P且与直线3x+y-1=0平行的直线方程为3x+y+m=0.把点P代入可得m即可.【考点】直线的一般方程和平行关系.4. .若<α<2π,则直线+=1必不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】判断出cos α>0,sinα<0,由直线方程截距式知直线过一、三、四象限.故选B.【考点】根据角的象限判断三角函数符号,直线的图像问题5.点(a,b)关于直线x+y=0对称的点的坐标是【答案】【解析】设对称点为,则有,解得,所以所求点为【考点】点关于线的对称点6.已知直线经过直线2x+y-2=0与x-2y+1=0的交点,且与直线的夹角为,求直线的方程.【答案】,或【解析】属于点斜式求直线方程,先求交点即直线经过的点,在求其斜率。
由直线可知这条直线斜率为故此求这条直线的倾斜角,从而求出所求直线的倾斜角,再根据斜率的定义求斜率,最后根据点斜式写出直线方程即可。
高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。
高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.在平面直角坐标系中,定义为两点,之间的“折线距离”.则坐标原点与直线上一点的“折线距离”的最小值是;圆上一点与直线上一点的“折线距离”的最小值是 .【答案】,【解析】直线上的点可以表示成,那么原点到它的折线距离为,所以只需求的最小值,而,画出图象可以看当时取到最小值同理,设圆上的点为,所以所求即为的最小值,而所以最小值为.【考点】本小题主要考查新定义下分段函数求最值问题,考查学生对新定义的理解和利用能力以及运算求解能力和对问题的转化能力.点评:第二问求解时也可以按照分段函数讨论,但比较麻烦,用绝对值的性质可以简化运算.2. p点在直线3x+y-5=0上,且p到直线x-y-1=0的距离等于,则点p坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,-1)D.(2,1)或(-1,2)【答案】C【解析】依题意可得P点是直线和与直线平行且距离为的平行直线的交点。
设与直线平行且距离为的平行直线方程为,由平行直线距离公式可得,解得或。
当时平行直线方程为,与直线联立可得P点坐标为。
当时平行直线方程为,与直线联立可得P点坐标为。
故选C3.点p(m-n,-m)到直线的距离等于()A.B.C.D.【答案】A【解析】直线方程化为由点到直线的距离公式得:故选A4.已知正方形的中心为直线x-y+1=0和2x+y+2=0的交点,正方形一边所在直线方程为x+3y -2=0,求其它三边方程。
【答案】其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=0【解析】解:由将正方形的中心化为p(-1,0),由已知可设正方形相邻两边方程为x+3y+m=0和3x-y+n=0 ,∵p点到各边的距离相等,∴和,∴ m=4或m=-2和n=6或n=0∴其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=05.若点(4,a)到直线4x-3y=0的距离不大于3,则a的取值范围是()A.(0,10)B.[3,4]C.[,]D.(-,0)【答案】C【解析】依题意可得,解得,故选C6.坐标平面内一点到两个坐标轴和直线x+y=2的距离都相等,则该点的横坐标是( )A.B.1C.D.不确定【答案】D【解析】设该点坐标为。
直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 解 设P (x,0),则k P A =3-0
-1-x =-3x +1,k PB =1-03-x =13-x
,依题意, 由光的反射定律得k P A =-k PB ,
即3x +1=13-x
,解得x =2,即P (2,0). 2.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,
求边AB 与AC 所在直线的斜率.
解 如右图,由题意知∠BAO =∠OAC =30°,
∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,
∴k AB =tan 150°=-
33, k AC =tan 30°=33. 3.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c
的大小. 解 画出函数的草图如图,f (x )x
可视为过原点直线的斜率. 由图象可知:f (c )c >f (b )b >f (a )a
.
4.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD .
(2)已知直线l 1的斜率k 1=34
,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值.
(1)证明 由斜率公式得:
k AB =6-3
10-5=35, k CD =11-(-4)-6-3
=-53, 则k AB ·k CD =-1,∴AB ⊥CD .
(2)解 ∵l 1⊥l 2,∴k 1·k 2=-1,
即34×a 2+1-(-2)0-3a
=-1,解得a =1或a =3.
5. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状.
解 由斜率公式得k OP =t -01-0=t , k QR =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0
=-1t , k PQ =2+t -t
1-2t -1=2-2t
=-1t . ∴k OP =k QR ,k OR =k PQ ,从而OP ∥QR ,OR ∥PQ .
∴四边形OPQR 为平行四边形.
又k OP ·k OR =-1,∴OP ⊥OR ,
故四边形OPQR 为矩形.
6.已知四边形ABCD 的顶点A (m ,n ),B (5,-1),C (4,2),D (2,2),求m 和n 的值,使
四边形ABCD 为直角梯形.
解 ∵四边形ABCD 是直角梯形,
∴有2种情形:
(1)AB ∥CD ,AB ⊥AD ,
由图可知:A (2,-1).
(2)AD ∥BC ,AD ⊥AB , ⎩⎪⎨⎪⎧
k AD =k BC k AD ·k AB =-1 ⇒⎩⎪⎨⎪⎧ n -2m -2=3-1n -2m -2·n +1m -5=-1
∴⎩⎨⎧ m =165n =-85.
综上⎩⎪⎨⎪⎧ m =2n =-1或⎩⎨⎧ m =165n =-85.
7.已知直线l 1与l 2的方程分别为7x +8y +9=0,7x +8y -3=0.直线l 平行于l 1,直线l 与l 1
的距离为d 1,与l 2的距离为d 2,且d 1∶d 2=1∶2,求直线l 的方程.
解 因为直线l 平行l 1,设直线l 的方程为7x +8y +C =0,则d 1=
|C -9|72+82,d 2=|C -(-3)|72+8
2. 又2d 1=d 2,∴2|C -9|=|C +3|.
解得C =21或C =5.
故所求直线l 的方程为7x +8y +21=0或7x +8y +5=0
8.△ABC 中,D 是BC 边上任意一点(D 与B ,C 不重合),且|AB |2=|AD |2+|BD |·|DC |.求证:
△ABC 为等腰三角形.
证明 作AO ⊥BC ,垂足为O ,以BC 所在直线为x 轴,以OA 所在直线为y 轴,建立直角坐标系(如右图所示).
设A (0,a ),B (b,0),C (c,0),D (d,0).
因为|AB |2=|AD |2+|BD |·|DC |,所以,由距离公式可得
b 2+a 2=d 2+a 2+(d -b )(
c -
d ),
即-(d -b )(b +d )=(d -b )(c -d ).
又d -b ≠0,故-b -d =c -d ,即-b =c .
所以|AB |=|AC |,即△ABC 为等腰三角形.
9.一束平行光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反
射光线与直线l 的交点坐标.
解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上
得
⎩⎨⎧ b a ·⎝⎛⎭⎫-43=-18×a 2+6×b 2=25,解得⎩⎪⎨⎪⎧
a =4
b =3, ∴A 的坐标为(4,3).
∵反射光线的反向延长线过A (4,3),
又由反射光线过P (-4,3),两点纵坐标相等,故反射光线所在直线方程为y =3.
由方程组⎩⎪⎨⎪⎧ y =38x +6y =25,解得⎩⎪⎨⎪⎧
x =78y =3, ∴反射光线与直线l 的交点坐标为⎝⎛⎭⎫78,3.。