直线与方程典型基础练习题
直线与方程单元测试基础试题

直线与方程单元测试姓名 成绩注意:考试时间120分钟一、选择题.(50分)1.若直线过点(1,2),(4,2),则此直线的倾斜角是( )(A )30° (B )45° (C )60° (D ) 0°2直线2y x =-的倾斜角大小为( )(A ) 45 (B )135 (C )120 (D )903.点P (-1,2)到直线x=1的距离为( )(A )2 (B )21 (C )1 (D )27 4.已知过点A (-2,m )和点B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A )m =-8 (B )m =0 (C )m =2 (D )m =105.以A(1,3),B(-5,1)为端点的终点坐标是( )(A )(-4,4) (B )(-2,2) (C )(6,2) (D )(-6,-2)6.直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )(A )(-2,1) (B )(2,1) (C )(1,-2) (D )(1,2)7.直线0202=++=++n y x m y x 和的位置关系是( )(A )平行 (B )垂直(C )相交但不垂直 (D )不能确定8.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )(A ) k 1<k 3<k 2 (B ) k 3<k 1<k 2(C ) k 1<k 2<k 3 (D ) k 3<k 2<k 19.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=010.如果直线L 经过两直线2x-3y+1=0和3x-y-2=0的交点,且与直线y=x 垂直,则原点到直线L 的距离为() (A )2 (B )1 (C )2 (D )22二、填空题.(25分)11.过点(3,4)A -且斜率为-1的直线方程为 .12.点(2,1)A -到直线3410x y --=距离为 .13.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为14.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .15.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .三、解答题.16.(Ⅰ)求过点(1,2)A -且平行于直线3x+4y-12=0直线的方程.(Ⅱ)求垂直于直线x+3y-5=0,且过点P(-1,0)的直线的方程.17.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m 的值.18.求过直线x-2y+1=0和x+3y-1=0的交点且与直线x=y 3垂直的直线方程.19.已知A (7,8),B (10,4),C (2,-4)三点,求ABC ∆的面积.20.直线5x+4y=2a+1与直线2x+3y=a的交点位于第四象限,求实数a的取值范围.21.直线L与直线x-3y+10=0及2x-y+8=0分别交于M、N两点,如果 MN的中点坐标是(0,1),求直线L的方程.。
(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线的方程基础练习题

一、 直线方程的四种表示形式1、下列四个命题中,真命题是()A .经过定点000(,)P x y 的直线都可以用方程00()y y k x x -=-表示B .经过任意两个不同的点111(,)P x y ,222(,)P x y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示C .不经过原点的直线都可以用方程1x y a b+=表示 D . 经过定点的直线都可以用方程y kx b =+表示2、二元一次方程0Ax By C ++=表示为直线方程,下列不正确叙述是()A .实数AB ,必须不全为零. B .220A B +≠.C .所有的直线均可用220(0)Ax By C A B ++=+≠表示.D . 确定直线方程0Ax By C ++=须要三个点坐标待定A B C ,,三个变量. 3、已知直线0Ax By C ++=,⑴系数满足什么关系时,方程表示通过原点的直线;⑵系数满足什么关系时与坐标轴都相交;⑶系数满足什么条件时只与x 轴相交;⑷设()00P x y ,为直线0Ax By C ++=上一点,证明:这条直线的方程可以写成()()000A x x B y y -+-=.二、 选择适当形式求解直线方程1、过点(1,3),斜率为1的直线方程是()A . 20x y -+=B .20x y --=C .40x y +-=D .40x y -+=2、 一条直线过点(52),,且在x 轴,y 轴上截距相等,则这直线方程为() A .70x y +-= B .250x y -=B . 70x y +-=或250x y -= D .70x y ++=或250y x -=3、已知直线经过点(6,4),斜率为43-,则直线的方程.4、直线l 经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等,求直线l 的方程.5、 直线l 经过点(3,2),且在两坐标轴上的截距相等,求直线l 的方程.6、 已知:ABC ∆的三个顶点是(03)A ,,(33)B ,,(20)C ,,直线:l x a =将ABC ∆分割成面积相等的两部分,求a 的值.7、 若ABC ∆的顶点(34)A ,,(60)B ,,(52)C --,,求A ∠的平分线AT 所在的直线的方程.8、 在直角坐标系中,过直线230x y --=与直线2320x y --=的交点作一直线,使它与两坐标轴相交所成三角形的面积为5平方单位,求:这条直线的方程.9、 已知直线l 过点(12),,并且与点(2.3)A ,和(05)B -,的距离相等,求直线l 的方程.10、 已知两条直线1:3120l x y -+=,2:340l x y +-=,过定点(1,2)P -作一条直线l ,分别与直线12l l 、交于M N 、两点,若点P 恰好是MN 的中点,求直线l 的方程.11、 求过点(5,4)P --且分别满足下列条件的直线方程:⑴ 与两坐标轴围成的三角形面积为5;⑵ 与x 轴和y 轴分别交于A 、B 两点,且:3:5AP BP =.12、 已知抛物线212y x =-与过点(0,1)M -的直线l 相交于,A B 两点,且直线OA 与OB 的斜率之和为1,求直线l 的方程.13、 过点(14)P ,引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线方程.14、 已知ABC △的三个顶点分别为(30)A -,,(21)B ,,(23)C -,, ⑴求B 、C 所在直线的方程;⑵求BC 边上的中线AD 所在直线的方程.15、 求斜率为34且与两坐标轴围成的三角形的周长是12的直线l 的方程.16、 直线l 过点(86)P ,,且与两坐标轴围成等腰直角三角形,求直线l 的方程.17、 一直线过点(),0a -()0a >,分割第二象限得一三角形区域,此三角形面积为T ,则直线方程是.。
直线方程练习题

直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。
A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。
A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。
2. 直线方程y=2x+3与x轴的交点坐标为______。
3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。
4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。
5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。
三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。
2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。
3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。
4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。
5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。
四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
直线与方程单元基础卷PDF版带答案

解得 xB =
7. k+2
因为 P (0, 1) 是 AB 的中点,则
7 3k − 1
+
7 k+2
=
0,解得
k
=
−
1 4
.
故所求直线 l 的方程为 y = − 1 x + 1,即 x + 4y − 4 = 0.
4
22.
(1) (2)
2(−√11,3−.2).
(3) 2x + y + 4 = 0.
所以 m = 6,
所以两条平行线的距离为 √|5 + 6| = 11 . 62 + 82 10
11. 令 P 可得
(P3P, 4′)的,中设点对称( 点3 +Pa′
,的4坐+标b 为) 在(a直, b线),x
−
y
+
6
=
0
上,
2
2
故可得 3 + a − 4 + b + 6 = 0. · · · · · · ①
2 2a c
4
13. 4
14. 15.
x√+ 5
6y − 16 =√0 解析: x2
+ y2
表示直线
2x
+
y
+
5
=
0
上的点与原点的距离,其最小值就是原点到直线
2x + y + 5 = 0 的距离 |0√+ 0 + 5| = √5. 4+1
16.
−
2 3
解析:由题意,可设直线 l 的方程为 y = k (x − 1) − 1(易知直线 l 的斜率存在),
直线与方程基础练习题

直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 2.已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+ D. 47y x =+ 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( ) A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限 D. 直线不经过第四象限5.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.072=+-y xB.012=-+y x C .250x y --= D .052=-+y x 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =A. 31-B .31C . -3D .37.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D . 8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =A .2B .3C .5D .19.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( )A 、0B 、2C 、-2D 、0或-210.已知直线αsin :1x y l =和直线c x y l +=2:2,则直线1l 与2l ( )。
A.通过平移可以重合B.不可能垂直C.可能与x 轴围成等腰直角三角形 D.通过1l 上某一点旋转可以重合11.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( )A.(–2, –3)B.(2, 3)C.(2, 1)D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13.如果直线220ax y -+=与直线320x y --=平行,那么系数a 等于( ).A . 6B .-3CD 14.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( )A.1-或B.1或或1- 1 15.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、1 16.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ,)A .3B .7C .10D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18在y 轴上的截距是( )A B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 (A)-2 (B)2 (C)-8 (D)-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值范围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是A.(1,0)B.(0,3)-C.(6,3)- 24.过点P (4,-1)且与直线3x-4y+6=0垂直的直线方程是A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=0 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 27.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --= 29.过点(1-,3)且垂直于直线032=+-y x 的直线的方程为A .2x +y -1=0B .2x +y -5=0C .x +2y -5=0D .x -2y +7=030.已知过点A (-2,m )和B (m ,4)的直线与直线012=-+y x 垂直,则m 的值为 A. -8 B. 0 C. 10 D. 231. 过点(1,0)且与直线022=--y x 平行的直线方程是A. 012=--y xB. 012=+-y xC. 022=-+y xD. 012=-+y x32.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y x C 、052=-+y x D 、072=+-y x 33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=035.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 (A. B. C. D.40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 41..已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 A.4x +2y =5 B.4x -2y =5 C.x +2y =5 D.x -2y =5 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-= 43.过点(-1,3)且平行于直线032=+-y x 的方程是( )A .052=+-y xB .052=-+y x .012=-+y x D .072=+-y x 44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为 ( )A .2 ,7B .0,8C .-1,2D .0,-845.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .1046.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 .直线与方程基础练习题(二)参考答案1.D 【解析】试题分析:因为所求直线与直线220x y --=平行,所以,设为20x y c -+=, 将(1,0)代入得c=1-,故过点(1,0)且与直线220x y --=平行的直线方程是210x y --=,选D 。
直线与方程典型题

直线与方程典型题1、光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程2、在等腰直角三角形ABC 中,AB=AC=4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到点P (如图).若光线QR 经过△ABC 的重心(三角形三条中线的交点),则AP=______3、点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:4、5、已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.6、78、(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.9、已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.10、11、已知函数x a x x f +=)(的定义域为),0(∞+,且222)2(+=f . 设点P 是函数图象上的任意一点,过点P 分别作直线x y =和y 轴的垂线,垂足分别为N M 、. (1)求a 的值;(2)问:||||PN PM ⋅是否为定值?若是,则求出该定值,若不是,则说明理由; (3)设O 为原点,若四边形OMPN 面积为求P 点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程练习题 一、选择题1. 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )
A. 1=+b a
B. 1=-b a
C. 0=+b a
D. 0=-b a 2. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y x B. 052=-+y x C. 052=-+y x D. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A. 0 B. 8- C. 2 D. 10
4. 已知0,0ab bc <<,则直线ax by c +=通过( )A. 第一、二、三象限
B. 第一、二、四象限
C. 第一、三、四象限
D. 第二、三、四象限
5.点P (-1,2)到直线8x-6y+15=0的距离为( )
A 2
B 21
C 1
D 2
7 6. 直线mx-y+2m+1=0经过一定点,则该点的坐标是
A (-2,1)
B (2,1)
C (1,-2)
D (1,2)
7. 直线0202=++=++n y x m y x 和的位置关系是 A 平行 B 垂直 C 相交但不垂直 D 不能确定
8.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )
A x+5y-15=0
B x=3
C x-y+1=0
D y-3=0
9.若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k 的取值范围是( )
A.(-∞,-1)
B.(-∞,-1]
C.(1,+∞)
D.[1,+∞)
10.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足
A. 0≠m
B. 23-≠m
C. 1≠m
D. 1≠m ,2
3-≠m ,0≠m 11.将直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为
A.y=3131+-x
B.y=13
1+-x C.y=3x-3 D.y=13
1+x
12.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则满足点P 的集合为
A .360x y +-=
B .320x y -+=
C .320x y +-=
D .320x y -+= 二、填空题13.点(1,1)P -到直线10x y -+=的距离是________________.
14.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________
15.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .
16.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .
17.原点O在直线l 上的射影为点H(-2,1),则直线l 的方程
18.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________.
为 .
三、解答题
19.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.
20. ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程; ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是105
3的直线的方程.
21.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m 的值.
22.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
23. 已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=
上,求22PB PA +取得最小值时P 点的坐标。