高中数学必修二:各章章末检测(含解析)
人教A版高中数学必修二第9章章末检测(含答案)

第九章章末检测(时间:120分钟,满分150分)一、选择题(本大题共8小题,每小题5分,共40分.)1.某防疫站对学生进行身体健康调查,欲采用分层随机抽样的方法抽取样本.某中学共有学生2 000名,从中抽取了一个样本量为200的样本,其中男生103名,则该中学共有女生为( )A .1 030名B .97名C .950名D .970名【答案】D 【解析】由题意,知该中学共有女生2 000×200-103200=970(名).故选D .2.(2020年北京期末)艺术体操比赛共有7位评委分别给出某选手的原始评分,评定该选手的成绩时,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差【答案】A 【解析】根据题意,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分,与7个原始评分相比,不变的中位数.故选A .3.(2020年河北月考)已知某校高一、高二年级学生人数均为600人,参加社团的高一和高二的人数比为2∶3,现从参加社团的同学中按分层抽样的方式抽取45人,则抽取的高二学生人数为( )A .9B .18C .27D .36【答案】C 【解析】由分层抽样的性质可得,抽取的高二学生人数为45×32+3=27.故选C .4.(2020年永州月考)在样本频率分布直方图中,共有5个小长方形,已知中间小长方形的面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本量是( )A .20B .30C .40D .50【答案】C 【解析】所有长方形的面积和为1,因为中间小长方形的面积是其余4个小长方形面积之和的13,所以中间的面积为14,又中间一组的频数为10,所以样本容量为10÷14=40.故选C .5.(2019年惠州期末)某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为( )A .7和53B .8和83C .7和1D .8和23【答案】A 【解析】由题意,六天最低气温的平均数x =16×(9+8+7+6+5+7)=7,方差s 2=16×[(9-7)2+(8-7)2+(7-7)2+(6-7)2+(5-7)2+(7-7)2]=53.故选A .6.假设从高一年级全体同学(500人)中随机抽出60人参加一项活动,利用随机数法抽取样本时,先将500名同学按000,001,…,499进行编号,如果从随机数表第8行第11列的数开始,按三位数连续向右读取,最先抽出的4名同学的号码是(下面摘取了此随机数表第7行和第8行)( )84421 75331 57245 50688 77047 44767 21763 35025 63016 37859 16955 56719 98105 07175 12867 35807 A .455 068 047 447 B .169 105 071 286 C .050 358 074 439 D .447 176 335 025【答案】B 【解析】由随机数表法的随机抽样的过程可知最先抽出的4名同学的号码为169,105,071,286.7.(2020年阜阳期末)某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则去年的水费开支占总开支的百分比为( )图1图2A .6.25%B .7.5%C .10.25%D .31.25%【答案】A 【解析】由拆线图知去年水、电、交通支出占总支出的百分比为20%,由条形图得去年水、电、交通支出合计为250+450+100=800(万元),其中水费支出250(万元),∴去年的水费开支占总开支的百分比为250800×20%=6.25%.故选A .8.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3【答案】D 【解析】A 中,中位数为4,可能存在大于7的数;同理,在C 中也有可能;B 中的总体方差大于0,叙述不明确,如果方差太大,也有可能存在大于7的数;D 中,因为平均数为2,根据方差公式,如果有大于7的数存在,那么方差不可能为3.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列叙述正确的是( )A .极差与方差都反映了数据的集中程度B .方差是没有单位的统计量C .标准差比较小时,数据比较分散D .只有两个数据时,极差是标准差的2倍【答案】AD 【解析】由极差与方差的定义可知A 正确;方差是有单位的,其单位是原始数据单位的平方,B 错误;标准差较小时,数据比较集中,C 错误;只有两个数据x 1,x 2时,极差等于|x 2-x 1|,平均数为x 1+x 22,所以方差s 2=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1-x 1+x 222+⎝ ⎛⎭⎪⎫x 2-x 1+x 222=14(x 1-x 2)2,则标准差s 2=12|x 2-x 1|,D 正确.故选AD .10.某学校为了调查学生在一周生活方面的支出情况,抽出了一个样本量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的学生有60人,则下列说法正确的是( )A .样本中支出在[50,60)元的频率为0.03B .样本中支出不少于40元的人数有132C .n 的值为200D .若该校有2 000名学生,则一定有600人支出在[50,60)元【答案】BC 【解析】A 中,样本中支出在[50,60)元的频率为1-(0.01+0.024+0.036)×10=0.3,故A 错误;B 中,样本中支出不少于40元的人数有0.0360.03×60+60=132,故B 正确;C 中,n =600.3=200,故C 正确;D 中,若该校有2 000名学生,则可能有600人支出在[50,60)元,故D 错误.故选BC .11.某地某所高中2019年的高考考生人数是2016年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如下柱状图:则下列结论正确的是()A.与2016年相比,2019年一本达线人数有所增加B.与2016年相比,2019年二本达线人数增加了0.5倍C.与2016年相比,2019年艺体达线人数相同D.与2016年相比,2019年不上线的人数有所增加【答案】AD【解析】依题意,设2016年高考考生人数为x,则2019年高考考生人数为1.5x,由24%·1.5x-28%·x=8%·x>0,故选项A正确;由(40%·1.5x-32%·x)÷32%·x =0.875,故选项B不正确;由8%·1.5x-8%·x=4%·x>0,故选项C不正确;由28%·1.5x -32%·x=10%·x>0,故选项D正确.故选AD.12.给出三幅统计图如图所示:A.从折线统计图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C .2050年亚洲人口比其他各洲人口的总和还要多D .从1957年到2050年各洲中北美洲人口增长速度最慢【答案】AC 【解析】从折线统计图能看出世界人口的变化情况,故A 正确;从条形统计图中可知2050年非洲人口大约将大于15亿,故B 错误;从扇形统计图中可知2050年亚洲人口比其他各洲人口的总和还要多,故C 正确;由题中三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故D 错误.故选AC .三、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个样本量为21的样本,则抽取男运动员的人数为________.【答案】12 【解析】抽取的男运动员的人数为2148+36×48=12. 14.将样本量为100的某个样本数据拆分为10组,若前七组的频率之和为0.79,而剩下的三组的频率依次相差0.05,则剩下的三组中频率最高的一组的频率为________.【答案】0.12 【解析】设剩下的三组中频率最高的一组的频率为x ,则另两组的频率分别为x -0.05,x -0.1.因为频率总和为1,所以0.79+(x -0.05)+(x -0.1)+x =1,解得x =0.12.15.12,13,25,26,28,31,32,40的25%分位数为________.【答案】19 【解析】因为8×25%=2,8×80%=6.4,所以25%分位数为x 2+x 32=13+252=19.16.下图是根据某中学为地震灾区捐款的情况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款为________元.【答案】37 770 【解析】由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人.由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、10元,所以共捐款15×960+13×990+10×1 050=37 770(元).四、解答题(本大题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(2020年辽宁学业考试)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图).已知上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x的值;(2)如果上学所需时间在[60,100]的学生可申请在学校住宿,请估计该校800名新生中有多少名学生可以申请住宿.解:(1)由直方图可得到20x+0.025×20+0.006 5×20+0.003×2×20=1,解得x=0.012 5.(2)由直方图可知,新生上学所需时间在[60,100]的频率为0.003×2×20=0.12,所以800×0.12=96(名).所以800名新生中估计有96名学生可以申请住宿.19.某汽车制造厂分别从A,B两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1 000 km):轮胎A96112971081001038698轮胎B10810194105969397106(1)分别计算(2)分别计算A,B两种轮胎行驶的最远里程的极差、方差;(3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?解:(1)A 轮胎行驶的最远里程的平均数为18×(96+112+97+108+100+103+86+98)=100,中位数为12×(100+98)=99.B 轮胎行驶的最远里程的平均数为18×(108+101+94+105+96+93+97+106)=100,中位数为12×(101+97)=99.(2)A 轮胎行驶的最远里程的极差为112-86=26,方差为18×[(-4)2+122+(-3)2+82+02+32+(-14)2+(-2)2]=55.25,B 轮胎行驶的最远里程的极差为108-93=15,方差为18×[82+12+(-6)2+52+(-4)2+(-7)2+(-3)2+62]=29.5,(3)根据以上数据,A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和方差相对于A 轮胎较小,所以B 轮胎性能更加稳定.20.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x 的值;(2)已知样本中身高小于100厘米的人数是36,求出总样本量N 的数值;(3)根据频率分布直方图提供的数据及(2)中的条件,求出样本中身高位于[98,104)的人数.解:(1)由题意(0.050+0.100+0.150+0.125+x )×2=1,解得x =0.075. (2)设样本中身高小于100厘米的频率为p 1,则p 1=(0.050+0.100)×2=0.300. 而p 1=36N ,∴N =36p 1=360.300=120.(3)样本中身高位于[98,104)的频率p 2=(0.100+0.150+0.125)×2=0.750,∴身高位于[98,104)的人数n =p 2N =0.750×120=90.21.为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100] 合计—(1)填充频率分布表中的空格;(2)如图,不具体计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成绩(结果保留整数,同一组中的数据用该组区间的中点值作代表).解:(1)40.08=50,即样本量为50.第5组的频数为50-4-8-10-16=12,从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)设第一个小长方形的高为h 1,第二个小长方形的高为h 2,第五个小长方形的高为h 5,则h 1h 2=48=12,h 1h 5=412=13. 补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成绩为x =4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).所以估计这900名学生竞赛的平均成绩约为80分.22.共享单车入驻泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段、使用频率、满意度等三个方面的信息,在全市范围内发放5 000份调查问卷,回收到有效问卷3 125份,现从中随机抽取80份,分别对使用者的年龄段、26~35岁使用者的使用频率、26~35岁使用者的满意度进行汇总,得到如下三个表格:表(一)使用者年龄段25岁以下26岁~35岁36岁~45岁45岁以上人数2040 1010表(二)使用频率 0~6次/月7~14次/月15~22次/月23~31次/月人数510 205表(三)满意度 非常满意(9~10)满意(8~9)一般(7~8)不满意(6~7)人数1510105(1)依据上述表格完成下列三个统计图形:(2)某城区现有常住人口30万,请用样本估计总体的思想,试估计年龄在26岁~35岁之间,每月使用共享单车在7~14次的人数.解:(1)(2)由表(一)可知年龄在26岁~35岁之间的有40人,占总抽取人数的12,所以30万人口中年龄在26岁~35岁之间的约有30×12=15(万人).由表(二)可知,年龄在26岁~35岁之间每月使用共享单车在7~14次之间的有10人,占总抽取人数的14,所以年龄在26岁~35岁之间的15万人中,每月使用共享单车在7~14次之间的约有15×14=154(万人).。
2019—2020年苏教版高中数学必修二章末质量评估1及答案解析.docx

(新课标)2018-2019学年苏教版高中数学必修二章末质量评估(一)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.直线l与平面α所成角为30°,l∩α=A,m⊂α,A∉m,则m与l所成角的取值范围是________.解析直线l与平面α所成的30°的角为m与l所成角的最小值,当m在α内适当旋转就可以得到l⊥m,即m与l所成角的最大值为90°.答案[30°,90°]2.以△ABC的三条中位线DE,EF,FD为折痕将△ADF,△BDE,△CEF 折起,使A,B,C三点重合并记为P,构成三棱锥P-DEF,则在下列给出的图形中:①等腰三角形;②等边三角形;③锐角三角形;④直角三角形;⑤钝角三角形.△ABC不可能是________.解析∵等边三角形折叠起来是一个正三棱锥,∴等腰三角形、等边三角形、锐角三角形都可能按照上述方法折成三棱锥,而直角三角形、钝角三角形折叠的时候不能使得短边与长边同时重合,不能实现上述折叠.答案④⑤3.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是__________.解析 若题中所指两直线是相交直线则平面平行,若两直线是平行直线,则两平面相交或平行.答案 平行或相交4.如图,正方体的棱长为1,C 、D 是两棱中点,A 、B 、M 是顶点,则点M 到截面ABCD 的距离是________.解析 作MN ⊥AB 于点N ,取DC 的中点P ,则AB ⊥平面MNP .作MH ⊥NP 于点H ,则MH ⊥平面ABCD ,即MH 为所求.由V M -ABC =V A -BCM ,得d =23.答案 235.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种即可,不必考虑所有可能的情形).解析 ∵AC ⊥BD ,∴A 1C 1⊥B 1D 1.又∵CC 1⊥B 1D 1,A 1C 1∩CC 1=C 1,∴B 1D 1⊥平面A 1C 1C ,∴B 1D 1⊥A 1C .答案 AC ⊥BD (答案不唯一)6.轴截面是正方形的圆柱的侧面积为S ,那么圆柱的体积为________. 解析 设圆柱底面直径为x ,则高为x ,因此有πx ·x =S .而V 圆柱=π⎝ ⎛⎭⎪⎪⎫x 22·x=π4x 3=S 4Sπ.答案S 4S π7.如图,P 点是四边形ABCD 所在平面外一点,O 是AC 与BD 的交点,且PO ⊥平面ABCD ,当四边形ABCD 具有条件________时,点P 到四边形ABCD 四条边的距离相等.(填上你认为正确的一种情况即可)解析 只需考虑O 到四边形四边的距离相等即可. 答案 正方形(或圆的外切四边形等)8.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.解析 圆柱的侧面积S 侧=6π×4π=24π2.(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr =4π,即r =2.所以S 底=4π,所以S 表=24π2+8π.(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr =6,即r =3.所以S 底=9π,所以S 表=24π2+18π.答案 24π2+8π或24π2+18π9.在△ABC 中,∠BAC =90°,P 为△ABC 所在平面外一点,且PA =PB =PC ,则平面PBC 与平面ABC 的关系是________.解析 如右图所示,取BC 的中点O ,连接AO ,PO . ∵PB =PC ,∴PO ⊥BC .又△ABC 是以A 为直角顶点的直角三角形, ∴OA =OB ,且PA =PB , ∴Rt △POB ≌Rt △POA ,∴∠POA =∠POB =90°,即PO ⊥OA , 而OA ∩BC =O ,∴PO ⊥平面ABC ,而PO ⊂平面PBC , ∴平面PBC ⊥平面ABC . 答案 垂直10.已知各顶点都在一个球面上的正四棱柱的高为2,这个球的的表面积为12π,则这个正四棱柱的体积为________.解析 设正四棱柱的底面边长为a ,则球的直径2R =22+2a 2,所以S 表=4πR 2=4π⎝ ⎛⎭⎪⎪⎫22+2a 24=12π, 解得a =2,所以正四棱柱的体积V =2a 2=8. 答案 811.考察下列三个命题,在“________”处都缺少一个条件,补上这个条件使其成为真命题(其中l 、m 为直线,α、β为平面),则此条件为________.⎭⎪⎬⎪⎫①m ⊂α l ∥m⇒l ∥α⎭⎪⎬⎪⎫②l ∥m m ∥α⇒l ∥α;⎭⎪⎬⎪⎫③l ⊥β α⊥β⇒l ∥α. 解析 ①体现的是线面平行的判定定理,缺的条件是“l ⊄α”,它同样适合②和③.答案 l ⊄α12.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为________.解析 作等体积变换:13×34×(d 1+d 2+d 3+d 4)=13×34×h ,而h =63.答案 6313.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且AS =8,BS =9,CD =34,则CS =________.解析 根据题意易得AS SB =SC SD .当点S 在α,β之间时,有89=CS34-CS,即CS=16;当点S 在α,β之外时,有817=SCSC +34,即SC =2729.答案 16或272914.设正三角形ABC 的边长为a ,PA ⊥平面ABC ,PA =AB ,E 为BC 中点,在平面PAE 内过点A 作AF ⊥PE ,垂足为F ,则AF 的长为________.解析 如右图所示,知AE ⊥BC ,又∵BC ⊥PA ,∴BC ⊥平面PAE . ∴平面PAE ⊥平面PBC .∵AF ⊥PE ,垂足为F ,∴AF ⊥平面PBC .则AF =PA ·AE PE =217a .答案 217a二、解答题(本大题共6小题,共90分)15.(本小题满分14分)如图,在正方体ABCD -A 1B 1C 1D 中,E ,F ,G 分别是AB ,AD ,C 1D 1的中点.求证:平面D 1EF ∥平面BDG . 解 ∵E ,F 分别是AB ,AD 的中点,∴EF∥BD.又∵EF⊄平面BDG,BD⊂平面BDG,∴EF∥平面BDG.∵D1G綉EB,∴四边形D1GBE为平行四边形,∴D1E∥GB.又∵D1E⊄平面BDG,GB⊂平面BDG,∴D1E∥平面BDG.又∵EF∩D1E=E,∴平面D1EF∥平面BDG.16.(本小题满分14分)如图(1),在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD1.(1)证明由正方体ABCD-A1B1C1D1,可得AD⊥面D1DCC1.∵D1F⊂面D1DCC1,∴AD⊥D1F.(2)解如图(2),取AB的中点G,则易证得A1G∥D1F.又正方形A1ABB1中,E、G分别是对应边的中点,∴A1G⊥AE.∴D1F⊥AE.∴AE与D1F所成的角为90°.(3)证明由正方体可知A1D1⊥面A1ABB1,∴A1D1⊥AE.又由(2)已证D1F⊥AE.∵A1D1∩D1F=D1,∴AE⊥平面A1FD1.又AE⊂平面AED,∴平面AED⊥平面A1FD1.17.(本小题满分14分)已知四边形ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.(1)求证:DE⊥平面PAE;(2)求直线DP与平面PAE所成的角的大小.(1)证明取AD中点F,连结EF,则ABEF与EFDC都是正方形,∴∠EAD=∠ADE=45°,∴AE⊥DE.∵PA⊥平面ABCD,DE⊂平面ABCD,∴PA⊥DE.又∵PA∩AE=A,∴DE⊥平面PAE.(2)解由(1)知∠DPE即为DP与平面PAE所成的角.在Rt△PAD中,PD=4 2.在Rt△DCE中,DE=2 2.则在Rt△DEP中,PD=2DE,∴∠DPE=30°.即直线DP与平面PAE所成的角为30°.18.(本小题满分16分)如图,在四棱锥P-ABCD中,底面ABCD是∠DAB =60°且边长为a的菱形,侧面PAD是等边三角形,且侧面PAD⊥底面ABCD,G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)求二面角ABCP的大小.(1)证明连结BD,则△ABD为等边三角形.∵G为AD的中点,∴BG⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BG⊥平面PAD.(2)证明:连结PG.∵△PAD是等边三角形且G为AD的中点,∴AD⊥PG.又∵AD⊥BG,PG∩BG=G,∴AD⊥平面PBG.∵PB⊂平面PBG,∴AD⊥PB.(3)解∵AD⊥PB,AD∥BC,∴BC⊥PB.又∵BG⊥AD,AD∥BC,∴BG⊥BC,∴∠PBG为二面角ABCP的平面角.在Rt△PBG中,PG=BG,∴∠PBG=45°.19.(本小题满分16分)如图,矩形ABCD中,AB=6,BC=23,沿对角线BD将△ABD折起,使点A移至点P,且P在平面BCD内的射影为O,且O 在DC上.(1)求证:PD⊥PC;(2)求二面角P-DB-C的平面角的余弦值.(1)证明∵PO⊥平面BCD,BC⊂平面BCD,∴PO⊥BC.∵BC⊥CD,CD∩PO=O,∴BC⊥平面PCD.∵DP⊂平面PCD,∴BC⊥DP.又∵DP⊥PB,PB∩BC=B,∴DP⊥平面PBC.而PC⊂平面PBC,∴PD⊥PC.(2)解 △PBD 在平面BCD 内的射影为△OBD ,且S △PBD =12×6×23=63,S △OBD =S △CBD -S △BOC =63-12×23×OC .在Rt △DPC 中,PC 2=24.设OC =x ,则OD =6-x ,∴PC 2-OC 2=DP 2-DO 2,即24-x 2=12-(6-x )2.解得x =4.∴S △BOD =63-43=2 3.过点P 作PQ ⊥DB ,连结OQ ,则DB ⊥平面OPQ ,∴∠OQP 即为二面角P -DB -C 的平面角,∴cos ∠OQP =S △BOD S △PBD =2363=13.20.(本小题满分16分)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.解 (1)由已知MA ⊥平面ABCD ,PD ∥MA ,所以PD ⊥平面ABCD .又BC ⊂平面ABCD ,所以PD ⊥BC .因为四边形ABCD 为正方形,所以BC ⊥DC .又PD ∩DC =D ,因此BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点,所以GF ∥BC ,因此GF ⊥平面PDC .又GF ⊂平面EFG ,所以平面EFG ⊥平面PDC .(2)因为PD ⊥平面ABCD ,四边形ABCD 为正方形,不妨设MA =1,则PD =AD =2,所以V P -ABCD =13S 正方形ABCD ·PD =83. 由于DA ⊥平面MAB ,且PD ∥MA ,所以DA 即为点P 到平面MAB 的距离,三棱锥V P -MAB =13S △MAB ·DA =13×12×1×2×2=23, 所以V P -MAB ∶V P -ABCD =1∶4.。
高中数学人教A版必修二 章末综合测评4 Word版含答案

圆与方程一、选择题1.(2016·葫芦岛高一检测)过点(21)的直线中被圆x 2+y 2-2x +4y =0截得的最长弦所在的直线方程为( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +1=0【解析】 依题意知所求直线通过圆心(1-2)由直线的两点式方程得y +21+2=x -12-1即3x -y -5=0故选A 【答案】 A2.已知点M (ab )在圆O :x 2+y 2=1外则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定【解析】 由题意知点在圆外则a 2+b 2>1圆心到直线的距离d =1a 2+b2<1故直线与圆相交.【答案】 B3.若P (2-1)为圆C :(x -1)2+y 2=25的弦AB 的中点则直线AB 的方程是( ) A .2x -y -5=0 B .2x +y -3=0 C .x +y -1=0D .x -y -3=0【解析】 圆心C (10)k PC =0-(-1)1-2=-1则k AB =1AB 的方程为y +1=x -2 即x -y -3=0故选D 【答案】 D4.圆心在x 轴上半径为1且过点(21)的圆的方程是( ) A .(x -2)2+y 2=1 B .(x +2)2+y 2=1C.(x-1)2+(y-3)2=1D.x2+(y-2)2=1【解析】设圆心坐标为(a0)则由题意可知(a-2)2+(1-0)2=1解得a=2故所求圆的方程是(x-2)2+y2=1【答案】 A8.(2016·泰安高一检测)圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()【09960151】A.36 B.18C.6 2 D.5 2【解析】圆x2+y2-4x-4y-10=0的圆心为(22)半径为32圆心到直线x+y-14=0的距离为|2+2-14|2=52>32圆上的点到直线的最大距离与最小距离的差是2R=6 2【答案】 C9.过点P(-24)作圆O:(x-2)2+(y-1)2=25的切线l直线m:ax-3y=0与直线l平行则直线l与m的距离为()A.4 B.2C 85D125【解析】P为圆上一点则有k OP·k l=-1而k OP=4-1-2-2=-34∴k l=43∴a=4∴m:4x-3y=0l:4x-3y+20=0∴l与m的距离为|20|42+(-3)2=4【答案】 A10.一个几何体的三视图如图1所示正视图和侧视图都是等边三角形该几何体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(000)(200)(220)(020)则第五个顶点的坐标可能是()图1A .(111)B .(112)C .(113)D .(223)【解析】 由三视图知该几何体为正四棱锥正四棱锥的顶点在底面的射影是底面正方形的中心高为3则第五个顶点的坐标为(113).故选C【答案】 C11.已知圆C 1:(x +2)2+(y -2)2=2圆C 2与圆C 1关于直线x -y -1=0对称则圆C 2的方程为( )A .(x +3)2+(y -3)2=2B .(x -1)2+(y +1)2=2C .(x -2)2+(y +2)2=2D .(x -3)2+(y +3)2=2【解析】 设点(-22)关于直线x -y -1=0的对称点为Q (mn )则⎩⎪⎨⎪⎧n -2m +2×1=-1,m -22-n +22-1=0,解得m =3n =-3所以圆C 2的圆心坐标为(3-3)所以圆C 2的方程为(x -3)2+(y +3)2=2故选D【答案】 D12.(2016·台州高二检测)已知圆O :x 2+y 2-4=0圆C :x 2+y 2+2x -15=0若圆O 的切线l 交圆C 于AB 两点则△OAB 面积的取值范围是( )图2 A.[27215] B.[278] C.[23215] D.[238]【解析】S△OAB =12|AB|·2=|AB|设C到AB的距离为d则|AB|=242-d2又d∈[13]7≤42-d2≤15所以S△OAB=|AB|∈[27215].【答案】 A二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上) 13.已知A(123)B(56-7)则线段AB中点D的坐标为________.【解析】设D(xyz)由中点坐标公式可得x=1+52=3y=2+62=4z=3-72=-2所以D(34-2).【答案】(34-2)14.以原点O为圆心且截直线3x+4y+15=0所得弦长为8的圆的方程是________.【解析】原点O到直线的距离d=1532+42=3设圆的半径为r∴r2=32+42=25∴圆的方程是x2+y2=25【答案】x2+y2=2515.(2015·重庆高考)若点P(12)在以坐标原点为圆心的圆上则该圆在点P处的切线方程为________.【解析】∵以原点O为圆心的圆过点P(12)∴圆的方程为x2+y2=5∵k OP=2∴切线的斜率k=-1 2由点斜式可得切线方程为y -2=-12(x -1) 即x +2y -5=0 【答案】 x +2y -5=016.若xy ∈R 且x =1-y 2则y +2x +1的取值范围是________.【解析】x =1-y 2⇔x 2+y 2=1(x ≥0)此方程表示半圆如图设P (xy )是半圆上的点则y +2x +1表示过点P (xy )Q (-1-2)两点直线的斜率.设切线QA 的斜率为k 则它的方程为y +2=k (x +1).从而由|k -2|k 2+1=1解得k =34又k BQ=3∴所求范围是⎣⎢⎡⎦⎥⎤34,3 【答案】 ⎣⎢⎡⎦⎥⎤34,3三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)求经过两点A (-14)B (32)且圆心在y 轴上的圆的方程. 【解】 法一:∵圆心在y 轴上 设圆的标准方程是x 2+(y -b )2=r 2 ∵该圆经过A 、B 两点∴⎩⎨⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2,∴⎩⎨⎧b =1,r 2=10. 所以圆的方程是x 2+(y -1)2=10 法二:线段AB 的中点为(13) k AB =2-43-(-1)=-12∴弦AB 的垂直平分线方程为y -3=2(x -1) 即y =2x +1由⎩⎨⎧y =2x +1,x =0,得(01)为所求圆的圆心. 由两点间距离公式得圆半径r 为 (0+1)2+(1-4)2=10∴所求圆的方程为x 2+(y -1)2=1018.(本小题满分12分)如图3所示BC =4原点O 是BC 的中点点A 的坐标是⎝ ⎛⎭⎪⎫32,12,0点D 在平面yOz 上且∠BDC =90°∠DCB =30°求AD 的长度.图3【解】 由题意得B (0-20)C (020)设D (0yz )在Rt △BDC 中∠DCB =30° ∴|BD |=2|CD |=23∴z =32-y =3 ∴y =-1∴D (0-13). 又∵A ⎝ ⎛⎭⎪⎫32,12,0∴|AD |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12+12+()-32= 619.(本小题满分12分)已知圆C :(x -1)2+(y -2)2=25直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 为何值时直线和圆恒相交于两点; (2)求直线l 被圆C 截得的弦长最小时的方程. 【解】 (1)证明:由(2m +1)x +(m +1)y -7m -4=0 得(2x +y -7)m +x +y -4=0 解⎩⎨⎧ 2x +y -7=0,x +y -4=0,得⎩⎨⎧x =3,y =1,∴直线l 恒过定点A (31).又∵(3-1)2+(1-2)2=5<25 ∴(31)在圆C 的内部故直线l 与圆C 恒有两个公共点.(2)当直线l被圆C截得的弦长最小时有l⊥AC由k AC=-12得l的方程为y-1=2(x-3)即2x-y-5=020.(本小题满分12分)点A(02)是圆x2+y2=16内的定点BC是这个圆上的两个动点若BA⊥CA求BC中点M的轨迹方程并说明它的轨迹是什么曲线.【解】设点M(xy)因为M是弦BC的中点故OM⊥BC又∵∠BAC=90°∴|MA|=12|BC|=|MB|∵|MB|2=|OB|2-|OM|2∴|OB|2=|MO|2+|MA|2即42=(x2+y2)+[(x-0)2+(y-2)2]化简为x2+y2-2y-6=0即x2+(y-1)2=7∴所求轨迹为以(01)为圆心以7为半径的圆.21.(本小题满分12分)如图4所示平行四边形ABCD的对角线AC与BD交于E点定点AC的坐标分别是A(-23)C(21).图4(1)求以线段AC为直径的圆E的方程;(2)若B点的坐标为(-2-2)求直线BC截圆E所得的弦长.【解】(1)AC的中点E(02)即为圆心半径r=12|AC|=1242+(-2)2= 5所以圆E的方程为x2+(y-2)2=5(2)直线BC的斜率k=1-(-2)2-(-2)=34其方程为y-1=34(x-2)即3x-4y-2=0点E到直线BC的距离为d=|-8-2|5=2所以BC截圆E所得的弦长为25-22=222(本小题满分12分)如图5已知圆C:x2+y2+10x+10y=0点A(06).(1)求圆心在直线y=x上经过点A且与圆C相外切的圆N的方程;(2)若过点A的直线m与圆C交于PQ两点且圆弧PQ恰为圆C周长的14求直线m的方程.【09960152】图5【解】(1)由x2+y2+10x+10y=0化为标准方程:(x+5)2+(y+5)2=50所以圆C的圆心坐标为C(-5-5)又圆N的圆心在直线y=x上所以当两圆外切时切点为O设圆N的圆心坐标为(aa) 则有(a-0)2+(a-6)2=(a-0)2+(a-0)2解得a=3所以圆N的圆心坐标为(33)半径r=3 2故圆N的方程为(x-3)2+(y-3)2=18(2)因为圆弧PQ恰为圆C周长的14所以CP⊥CQ所以点C到直线m的距离为5当直线m的斜率不存在时点C到y轴的距离为5直线m即为y轴所以此时直线m的方程为x=0当直线m的斜率存在时设直线m的方程为y=kx+6即kx-y+6=0所以|-5k+5+6|1+k2=5解得k=4855所以此时直线m的方程为4855x-y+6=0即48x-55y+330=0故所求直线m的方程为x=0或48x-55y+330=0。
2019—2020年苏教版高中数学必修二章末质量评估2及答案解析.docx

(新课标)2018-2019学年苏教版高中数学必修二章末质量评估(二)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.与y轴垂直的直线L,它的倾斜角是________.解析画出直线L,它与x轴平行或就是x轴,故倾斜角为0°.答案0°2.下列命题:①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大.其中错误的有________(填序号).解析①当倾斜角为90°时,斜率不存在;故①是错误的.②当倾斜角由锐角增大为钝角时,斜率由正数变化为负数;故②也是错误的.答案①,②3.已知过P(-2,m)和Q(m,4)两点的直线斜率等于1,那么m的值为________.解析由直线的斜率定义得k=4-mm-(-2)=1,解得m=1.答案 14.过点(3,1)在两坐标轴上的截距相等的直线方程是________.解析(1)若截距为0,设直线方程为y=kx.∵直线过点(3,1),∴1=k ×3.∴k =13,∴直线方程为y =13x ;(2)若截距不为0,设在x 轴上截距为a ,则在y 轴上截距也为a ,直线方程为x a +ya=1,∵直线过点(3,1),∴3a +1a=1,解得a =4,∴直线方程为y =-x +4;综上,所求直线方程为y =x3或y =-x +4.答案 y =x3或y =-x +45.若直线x +ay -a =0与直线ax -(2a -3)y -1=0垂直,则a 的值为________.解析 由A 1A 2+B 1B 2=0得, 1×a +a [-(2a -3)]=0 得a =2或a =0. 答案 2或06.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________.解析(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离,而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b2=a 2+b 2.答案a 2+b 27.当圆x 2+y 2+2x +ky +k 2=0的面积最大时,圆心坐标是________. 解析 r 2=4+k 2-4k 24=1-34k 2,∴当k =0时,r 2最大,从而圆的面积最大.此时圆心坐标为(-1,0).答案 (-1,0)8.圆x 2+y 2-8x +6y +16=0与圆x 2+y 2=64的位置关系是________. 解析 圆x 2+y 2-8x +6y +16=0即为(x -4)+(y +3)2=9,故圆心为(4,-3),半径为3,而圆x 2+y 2=64的圆心为(0,0),半径为8;故两圆的圆心距为d =42+32=5,半径之差为R -r =5,故圆心距d =R -r ,所以两圆内切.答案 内切9.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为________.解析 依题意,设直线l 的方程是y =k (x -4),即kx -y -4k =0,因此由题意得圆心(2,0)到直线l 的距离不超过该圆的半径,即有|2k -4k |k 2+1≤1,由此解得-33≤k ≤33. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-33,33 10.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.解析 ∵圆C :x 2+y 2+2x +ay -3=0(a 为实数)的圆心为C ⎝ ⎛⎭⎪⎪⎫-1,-a 2,且圆C 上任意一点关于直线l 的对称点都在圆C 上,∴点C ⎝ ⎛⎭⎪⎪⎫-1,-a 2在直线l 上.∴-1+a 2+2=0,解得a =-2.答案 -211.已知点P (-1,1)和点Q (2,2),若直线l :x +my +m =0与线段PQ 不相交,则实数m 的取值范围是________.解析 如图,因为直线l :x +my +m =0斜率为-1m,且恒过点A (0,-1),直线l 与线段PQ 不相交,即将图中的直线AQ 顺时针旋转到AP 位置,这个过程中的所有直线都是符合条件的直线l ;故符合条件的直线l 的斜率范围是(k AP ,k AQ ),即k AP <-1m <k AQ ,而k AP =1-(-1)-1-0=-2,k AQ =2-(-1)2-0=32,故-2<-1m <32,解得实数m 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎪⎫12,+∞12.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于两点A 、B ,弦AB 的中点为(0,1),则直线l 的方程为________.解析 由已知条件得圆心坐标为(-1,2),圆心与AB 中点连线的斜率k 1=2-1-1-0=-1,连线与AB 垂直,故直线L 的斜率k 满足k ·k 1=-1,即k =1,故L 的方程为y -1=1·(x -0),即为x -y +1=0.答案 x -y +1=013.已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是________.解析 设圆心坐标为(a,0)(a >0),由直线3x +4y +4=0与圆相切,可得圆心到直线3x +4y +4=0的距离d =|3a +4|32+42=|3a +4|5=2,解得a =2或a =-143(舍去),故所求的圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0. 答案 x 2+y 2-4x =014.若直线y =kx +1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为________.解析 如图所示,过O 作OS ⊥PQ 于S ,由∠POQ =120°,结合图形可求得圆心O 到直线y =kx +1的距离OS =12,再由点到直线的距离公式,得1k 2+1=12,解得k =± 3.答案 -3或 3二、解答题(本大题共6小题,共90分)15.(本小题满分14分)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,直线l 1与l 2:(1)相交;(2)平行;(3)垂直. 解 由A 1B 2=A 2B 1得 1×3=m (m -2) 解之:m =-1 m =3当m =-1时,⎩⎪⎨⎪⎧直线l 1:x -y +6=0直线l 2:3x -3y +2=0∴l 1∥l 2当m =3时,⎩⎪⎨⎪⎧直线l 1:x +3y +6=0直线l 2:x +3y +6=0∴l 1与l 2重合.因此,当m ≠-1且m ≠3时,l 1与l 2相交, 又因A 1A 2+B 1B 2=0得, 1×(m -2)+m ×3=0 ∴m =12.∴当m =12时,直线l 1与l 2垂直.16.(本小题满分14分)一圆过点(1,3),且在x 轴上的截距之和为2,在y 轴上的截距之积为-2,求此圆方程.解 设此圆方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), ∵圆过点(1,3),∴1+9+D +3E +F =0①∵圆在x 轴上的截距之和为2,∴令y =0得方程x 2+Dx +F =0的两根之和为2, 即-D =2;②∵圆在y 轴上的截距之积为-2,∴令x =0得方程y 2+Ey +F =0的两根之积为-2,即F =-2;③ 由①②③解得D =-2,E =-2,F =-2; ∴此圆方程为x 2+y 2-2x -2y -2=0.17.(本小题满分14分)直线l 经过点P (-5,-4),且与两坐标轴围成的三角形面积为5,求直线l 的方程.解 设所求直线l 的方程为x a +yb=1∵直线l 过点P (-5,-4),∴-5a +-4b=1,即4a +5b =-ab .又由已知有12|a ||b |=5,即|ab |=10,解方程组⎩⎪⎨⎪⎧4a +5b =-ab ,|ab |=10,得⎩⎪⎨⎪⎧a =-52,b =4,或⎩⎪⎨⎪⎧a =5,b =-2,故所求直线l 的方程为:x -52+y 4=1,或x5+y-2=1;即为8x -5y +20=0,或2x -5y -10=0.18.(本小题满分16分)已知直线(m +2)x -(2m -1)y -3(m -4)=0.(1)求证:不论m 怎样变化,直线恒过定点; (2)求原点(0,0)到直线的距离的最大值.(1)证明 直线方程变形为m (x -2y -3)+2x +y +12=0,则由⎩⎪⎨⎪⎧x -2y -3=0,2x +y +12=0,解得⎩⎪⎨⎪⎧x =-215,y =-185,∴不论m 怎样变化,直线恒过定点⎝ ⎛⎭⎪⎪⎫-215,-185.(2)解 原点(0,0)到直线距离的最大值,即为原点(0,0)到直线所恒过的定点⎝⎛⎭⎪⎪⎫-215,-185的距离d .而d =⎝ ⎛⎭⎪⎪⎫2152+⎝ ⎛⎭⎪⎪⎫1852=3855,所以原点(0,0)到直线距离的最大值为3855. 19.(本小题满分16分)已知:以点C ⎝ ⎛⎭⎪⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 解 (1)∵圆C 过原点O ,∴OC 2=t 2+4t 2.设圆C 的方程是(x -t )2+⎝⎛⎭⎪⎪⎫y -2t 2=t 2+4t 2令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t∴S △OAB =12OA ×OB =12×⎪⎪⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,k OC =12∴直线OC 的方程是y =12x .∴2t =12t ,解得:t =2或t =-2 当t =2时,圆心C 的坐标为(2,1),OC =5,此时C 到直线y =-2x +4的距离d =95<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交,∴t =-2不符合题意舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.20.(本小题满分16分)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三点的圆记为C .(1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过定点(其坐标与b 无关)?请证明你的结论.解 (1)显然b ≠0,否则,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0)(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1. 所以b 的取值范围是(-∞,0)∪(0,1). (2)由方程x 2+2x +b =0,得x =-1±1-b .于是二次函数f (x )的图象与坐标轴的交点是(-1-1-b ,0),(-1+1+b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0.因圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得⎩⎨⎧(-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧D =2,E =-(b +1),F =b .所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 过定点.证明如下:设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 20+y 20+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式,得x 20+y 20+2x 0-y 0=0.解得⎩⎪⎨⎪⎧ x 0=0,y 0=1或⎩⎪⎨⎪⎧ x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上.所以圆C 过定点.。
苏教版高中数学必修2章末综合测评2 Word版含解析

章末综合测评(二) 平面解析几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.直线l:x-3y+1=0的倾斜角为________.【解析】l:y=33x+33,k=33,∴α=30°.【答案】30°2.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为________.【解析】直线方程为y=3x, 圆的方程化为x2+(y-2)2=22,∴r=2,圆心(0,2)到直线y=3x的距离为d=1,∴半弦长为22-1=3,∴弦长为2 3.【答案】2 33.(2016·常州高一检测)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=1的位置关系是__________.【解析】圆心(0,1)到直线l的距离d=|-1-m+1|m2+1=|m|m2+1<1=r.故直线l与圆C相交.【答案】相交4.关于x的方程4-x2=12(x-2)+3解的个数为________个. 【导学号:60420097】【解析】作出y=4-x2和y=12(x-2)+3=12x+2的图象.可看出直线与半圆有两个公共点.【答案】 25.若直线l与直线3x+y-1=0垂直,且它在x轴上的截距为-2,则直线l的方程为________.【解析】因为直线3x+y-1=0的斜率为-3,所以直线l的斜率为13.又直线在x轴上的截距为-2,即直线l与x轴的交点为(-2,0),所以直线l的方程为y-0=13(x+2),即x-3y+2=0.【答案】x-3y+2=06.(2016·南京高一检测)若曲线(x-1)2+(y-2)2=4上相异两点P,Q关于直线kx-y-2=0对称,则k的值为__________.【解析】依题意得,圆心(1,2)在直线kx-y-2=0上,于是有k-4=0,解得k=4.【答案】 47.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为________.【解析】a2+b2的最小值为原点到直线3x+4y=15的距离:d=|0+0-15|32+42=3.【答案】 38.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为86,则x 的值为________.【解析】(x+3)2+(-1-4)2+(6-0)2=86,解得x=2或-8.【答案】2或-89.直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.【解析】依题意,不妨设直线y=x+a与单位圆相交于A,B两点,则∠AOB=90°.如图,此时a=1,b=-1.满足题意,所以a2+b2=2.【答案】 210.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.【解析】设平面上的点为P,易知ABCD为凸四边形,设对角线AC与BD 的交点为P′,则|PA|+|PC|≥|AC|=|AP′|+|P′C|,|PB|+|PD|≥|BD|=|BP′|+|P′D|,当且仅当P与P′重合时,上面两式等号同时成立,由AC和BD的方程解得P′(2,4).【答案】(2,4)11.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0平行,则l1与l2距离为________.【解析】由l1∥l2可知a2=3a+1≠11,解得a=-3或a=2(舍),∴a =-3.∴l 1:-3x +3y +1=0,即x -y -13=0,l 2:2x -2y +1=0,即x -y +12=0, ∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪-13-122=5212.【答案】521212.若圆O :x 2+y 2=4与圆C :x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是__________.【解析】 由圆C 的方程x 2+y 2+4x -4y +4=0可得圆心C (-2,2),由题意知直线l 过OC 的中点(-1,1),又直线OC 的斜率为-1,故直线l 的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0.【答案】 x -y +2=013.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为________.【解析】 设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形PACB 的外接圆方程为(x -2)2+⎝⎛⎭⎪⎫y -122=54,①圆C :(x -1)2+y 2=1,②①-②得2x +y -3=0,此即为直线AB 的方程. 【答案】 2x +y -3=014.设集合A ={(x ,y )|x 2+y 2≤4},B ={(x ,y )|(x -1)2+(y -1)2≤r 2(r >0)},当A∩B=B时,r的取值范围是________.【解析】∵A={(x,y)|x2+y2≤4},B={(x,y)|(x-1)2+(y-1)2≤r2(r>0)}均表示圆及其内部的点,由A∩B=B可知两圆内含或内切.∴2≤2-r,即0<r≤2- 2.【答案】(0,2-2]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知圆C的方程为:x2+y2-2x-4y+m=0,(1)求m的取值范围;(2)若直线x-2y-1=0与圆C相切,求m的值.【解】(1)由圆的方程的要求可得,22+42-4m>0,∴m<5.(2)圆心(1,2),半径r=5-m,因为圆和直线相切,所以有|1-4-1|12+-2=5-m,所以m=9 5 .16.(本小题满分14分) 直线l在两坐标轴上的截距相等,且P(4,3)到直线l的距离为32,求直线l的方程.【解】若l在两坐标轴上截距为0,设l:y=kx,即kx-y=0,则|4k-3|1+k2=3 2.解得k=-6±3214.此时l的方程为y=⎝⎛⎭⎪⎫-6±3214x;若l在两坐标轴上截距不为0,设l :x a +y a=1,即x +y -a =0,则|4+3-a |12+12=3 2.解得a =1或13.此时l 的方程为x +y -1=0或x +y -13=0.综上,直线l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x 或x +y -1=0或x +y -13=0.17.(本小题满分14分)一个长方体的8个顶点坐标分别为(0,0,0),(0,1,0),(3,0,0),(3,1,0),(3,1,9),(3,0,9),(0,0,9),(0,1,9).(1)在空间直角坐标系中画出这个长方体; (2)求这个长方体外接球的球心坐标; (3)求这个长方体外接球的体积. 【解】 (1)如图.(2)因为长方体的体对角线长是其外接球的直径, 所以球心坐标为⎝ ⎛⎭⎪⎫3+02,0+12,0+92,即⎝ ⎛⎭⎪⎫32,12,92. (3)因为长方体的体对角线长d =-2+12+92=91,所以其外接球的半径r =d 2=912.所以其外接球的体积V 球=43πr 3=43π⎝ ⎛⎭⎪⎫9123=91π691.18.(本小题满分16分)已知圆C 的圆心与P (0,1)关于直线y =x +1对称,直线3x +4y +1=0与圆C 相交于E ,F 两点,且|AB |=4.(1)求圆C 的标准方程;(2)设直线l :mx -y +1-m =0(m ∈R )与圆C 的交点A ,B ,求弦AB 的中点M 的轨迹方程.【解】 (1)点P (0,1)是关于直线y =x +1的对称点,即圆心C 的坐标为(0,1),圆心C 到直线3x +4y +1=0的距离为d =|0+4+1|5=1. 所以r 2=12+22=5,得圆C 的方程为x 2+(y -1)2=5. (2)联立得⎩⎨⎧y =m x -+1,x 2+y -2=5,消去y ,得(1+m 2)x 2-2m 2x +m 2-5=0.由于Δ=4m 4-4(1+m 2)(m 2-5)=16m 2+20>0,故l 与圆C 必交于两点.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎨⎧x 0=x 1+x 22=m 21+m 2,y 0=mx 0-+1.消去m ,得⎝ ⎛⎭⎪⎫x 0-122+(y 0-1)2=14.∴M 点的轨迹方程为⎝⎛⎭⎪⎫x -122+(y -1)2=14.19.(本小题满分16分)(2016·盐城月考)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 【解】 (1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.又|QC |=[2--2+-2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2. (2)因为n -3m +2表示直线MQ 的斜率, 所以设直线MQ 的方程为y -3=k (x +2)⎝ ⎛⎭⎪⎫k =n -3m +2, 即kx -y +2k +3=0.由题意知直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22,解得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 20.(本小题满分16分)如图1,已知△ABC 中A (-8,2),AB 边上的中线CE 所在直线的方程为x +2y -5=0,AC 边上的中线BD 所在直线的方程为2x -5y +8=0,求直线BC 的方程.图1【解】 设B (x 0,y 0),则AB 中点E 的坐标为⎝⎛⎭⎪⎫x 0-82,y 0+22,由条件可得:⎩⎨⎧2x 0-5y 0+8=0,x 0-82+2·y 0+22-5=0,得⎩⎨⎧2x 0-5y 0+8=0,x 0+2y 0-14=0,解得⎩⎨⎧x 0=6,y 0=4,即B (6,4),同理可求得C 点的坐标为(5,0). 故所求直线BC 的方程为y -04-0=x -56-5,即4x -y -20=0.。
2020年高中数学人教A版必修二 章末综合测评4 Word版含答案

章末综合测评(四) 圆与方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在空间直角坐标系中,点A (-3,4,0)与点B (2,-1,6)的距离是( ) A .243 B .221 C .9D.86【解析】 由空间直角坐标系中两点间距离公式得: |AB |=(-3-2)2+(4+1)2+(0-6)2=86. 【答案】 D2.当圆x 2+y 2+2x +ky +k 2=0的面积最大时,圆心坐标是( ) A .(0,-1) B .(-1,0) C .(1,-1)D .(-1,1)【解析】 圆的标准方程得:(x +1)2+⎝ ⎛⎭⎪⎫y +k 22=1-3k 24,当半径的平方1-3k 24取最大值为1时,圆的面积最大.∴k =0,即圆心为(-1,0).【答案】 B3.圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0的位置关系是( )A .相交B .相离C .内含D .内切【解析】 把圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0分别化为标准式为(x -2)2+(y -3)2=1和(x -4)2+(y -3)2=9,两圆心间的距离d =(4-2)2+(3-3)2=2=|r 1-r 2|,所以两圆的位置关系为内切,故选D.【答案】 D4.(2016·葫芦岛高一检测)过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的最长弦所在的直线方程为( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +1=0【解析】依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+21+2=x-12-1,即3x-y-5=0,故选A.【答案】 A5.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定【解析】由题意知点在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.【答案】 B6.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.2x-y-5=0 B.2x+y-3=0C.x+y-1=0 D.x-y-3=0【解析】圆心C(1,0),k PC=0-(-1)1-2=-1,则k AB=1,AB的方程为y+1=x-2,即x-y-3=0,故选D.【答案】 D7.圆心在x轴上,半径为1,且过点(2,1)的圆的方程是()A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-1)2+(y-3)2=1D.x2+(y-2)2=1【解析】设圆心坐标为(a,0),则由题意可知(a-2)2+(1-0)2=1,解得a=2.故所求圆的方程是(x-2)2+y2=1.【答案】 A8.(2016·泰安高一检测)圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()【导学号:09960151】A.36 B.18C.6 2 D.5 2【解析】圆x2+y2-4x-4y-10=0的圆心为(2,2),半径为32,圆心到直线x+y-14=0的距离为|2+2-14|2=52>32,圆上的点到直线的最大距离与最小距离的差是2R=6 2.【答案】 C9.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85 D.125【解析】P为圆上一点,则有k OP·k l=-1,而k OP=4-1-2-2=-34,∴k l=43.∴a=4,∴m:4x-3y=0,l:4x-3y+20=0.∴l与m的距离为|20|42+(-3)2=4.【答案】 A10.一个几何体的三视图如图1所示,正视图和侧视图都是等边三角形,该几何体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能是()图1A.(1,1,1) B.(1,1,2)C .(1,1,3)D .(2,2,3)【解析】 由三视图知,该几何体为正四棱锥,正四棱锥的顶点在底面的射影是底面正方形的中心,高为3,则第五个顶点的坐标为(1,1,3).故选C.【答案】 C11.已知圆C 1:(x +2)2+(y -2)2=2,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +3)2+(y -3)2=2B .(x -1)2+(y +1)2=2C .(x -2)2+(y +2)2=2D .(x -3)2+(y +3)2=2【解析】 设点(-2,2)关于直线x -y -1=0的对称点为Q (m ,n ),则⎩⎪⎨⎪⎧n -2m +2×1=-1,m -22-n +22-1=0,解得m =3,n =-3,所以圆C 2的圆心坐标为(3,-3),所以圆C 2的方程为(x -3)2+(y +3)2=2,故选D.【答案】 D12.(2016·台州高二检测)已知圆O :x 2+y 2-4=0,圆C :x 2+y 2+2x -15=0,若圆O 的切线l 交圆C 于A ,B 两点,则△OAB 面积的取值范围是( )图2A .[27,215]B .[27,8]C .[23,215]D .[23,8]【解析】 S △OAB =12|AB |·2=|AB |, 设C 到AB 的距离为d ,则|AB|=242-d2,又d∈[1,3],7≤42-d2≤15,所以S△OAB=|AB|∈[27,215].【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知A(1,2,3),B(5,6,-7),则线段AB中点D的坐标为________.【解析】设D(x,y,z),由中点坐标公式可得x=1+52=3,y=2+62=4,z=3-72=-2,所以D(3,4,-2).【答案】(3,4,-2)14.以原点O为圆心且截直线3x+4y+15=0所得弦长为8的圆的方程是________.【解析】原点O到直线的距离d=1532+42=3,设圆的半径为r,∴r2=32+42=25,∴圆的方程是x2+y2=25.【答案】x2+y2=2515.(2015·重庆高考)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.【解析】∵以原点O为圆心的圆过点P(1,2),∴圆的方程为x2+y2=5.∵k OP=2,∴切线的斜率k=-1 2.由点斜式可得切线方程为y-2=-12(x-1),即x+2y-5=0.【答案】x+2y-5=016.若x,y∈R,且x=1-y2,则y+2x+1的取值范围是________.【解析】x =1-y 2⇔x 2+y 2=1(x ≥0),此方程表示半圆,如图,设P (x ,y )是半圆上的点,则y +2x +1表示过点P (x ,y ),Q (-1,-2)两点直线的斜率.设切线QA 的斜率为k ,则它的方程为y +2=k (x +1).从而由|k -2|k 2+1=1,解得k =34.又k BQ =3,∴所求范围是⎣⎢⎡⎦⎥⎤34,3.【答案】 ⎣⎢⎡⎦⎥⎤34,3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程.【解】 法一:∵圆心在y 轴上, 设圆的标准方程是x 2+(y -b )2=r 2. ∵该圆经过A 、B 两点,∴⎩⎨⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2,∴⎩⎨⎧b =1,r 2=10. 所以圆的方程是x 2+(y -1)2=10. 法二:线段AB 的中点为(1,3), k AB =2-43-(-1)=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.由⎩⎨⎧y =2x +1,x =0,得(0,1)为所求圆的圆心. 由两点间距离公式得圆半径r 为 (0+1)2+(1-4)2=10,∴所求圆的方程为x 2+(y -1)2=10.18.(本小题满分12分)如图3所示,BC =4,原点O 是BC 的中点,点A 的坐标是⎝ ⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°,求AD 的长度.图3【解】 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),在Rt △BDC 中,∠DCB =30°,∴|BD |=2,|CD |=23,∴z =3,2-y =3, ∴y =-1,∴D (0,-1,3). 又∵A ⎝ ⎛⎭⎪⎫32,12,0,∴|AD |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12+12+()-32= 6.19.(本小题满分12分)已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 为何值时,直线和圆恒相交于两点; (2)求直线l 被圆C 截得的弦长最小时的方程. 【解】 (1)证明:由(2m +1)x +(m +1)y -7m -4=0, 得(2x +y -7)m +x +y -4=0. 解⎩⎨⎧ 2x +y -7=0,x +y -4=0,得⎩⎨⎧x =3,y =1,∴直线l 恒过定点A (3,1).又∵(3-1)2+(1-2)2=5<25, ∴(3,1)在圆C 的内部,故直线l 与圆C 恒有两个公共点.(2)当直线l 被圆C 截得的弦长最小时,有l ⊥AC ,由k AC =-12,得l 的方程为y -1=2(x -3),即2x -y -5=0.20.(本小题满分12分)点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.【解】设点M(x,y),因为M是弦BC的中点,故OM⊥BC.又∵∠BAC=90°,∴|MA|=12|BC|=|MB|.∵|MB|2=|OB|2-|OM|2,∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,即x2+(y-1)2=7.∴所求轨迹为以(0,1)为圆心,以7为半径的圆.21.(本小题满分12分)如图4所示,平行四边形ABCD的对角线AC与BD交于E点,定点A,C的坐标分别是A(-2,3),C(2,1).图4(1)求以线段AC为直径的圆E的方程;(2)若B点的坐标为(-2,-2),求直线BC截圆E所得的弦长.【解】(1)AC的中点E(0,2)即为圆心,半径r=12|AC|=1242+(-2)2=5,所以圆E的方程为x2+(y-2)2=5.(2)直线BC的斜率k=1-(-2)2-(-2)=34,其方程为y-1=34(x-2),即3x-4y-2=0.点E到直线BC的距离为d=|-8-2|5=2,所以BC截圆E所得的弦长为25-22=2.22.(本小题满分12分)如图5,已知圆C:x2+y2+10x+10y=0,点A(0,6).(1)求圆心在直线y=x上,经过点A,且与圆C相外切的圆N的方程;(2)若过点A的直线m与圆C交于P,Q两点,且圆弧PQ恰为圆C周长的1 4,求直线m的方程.【导学号:09960152】图5【解】(1)由x2+y2+10x+10y=0,化为标准方程:(x+5)2+(y+5)2=50.所以圆C的圆心坐标为C(-5,-5),又圆N的圆心在直线y=x上,所以当两圆外切时,切点为O,设圆N的圆心坐标为(a,a),则有(a-0)2+(a-6)2=(a-0)2+(a-0)2,解得a=3,所以圆N的圆心坐标为(3,3),半径r=32,故圆N的方程为(x-3)2+(y-3)2=18.(2)因为圆弧PQ恰为圆C周长的14,所以CP⊥CQ.所以点C到直线m的距离为5.当直线m的斜率不存在时,点C到y轴的距离为5,直线m即为y轴,所以此时直线m的方程为x=0.当直线m的斜率存在时,设直线m的方程为y=kx+6,即kx-y+6=0.所以|-5k+5+6|1+k2=5,解得k=4855.所以此时直线m的方程为4855x-y+6=0,即48x-55y+330=0,故所求直线m的方程为x=0或48x-55y+330=0......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载文库精品本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
高中数学必修二 第六章 章末小结 练习(含答案)

第六章 综合检测题一、选择题1.向量AB MB BO BC OM ++++=( ) A .AC B .ABC .BCD .AM【答案】A【解析】向量AB MB BO BC OM AB BO OM MB BC AC ++++=++++=. 故选:A.2.【2019年5月10日《每日一题》必修4向量数乘运算及其几何意义】在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,则四边形ABCD 的形状是 A .长方形 B .平行四边形C .菱形D .梯形【答案】D【解析】由题意,因为2AB a b =+,4BC a b =--,53CD a b =--, ∴AD AB =+BC +24532CD a b a b a b BC =+----=, ∴AD ∥BC ,且AD≠BC ,∴四边形ABCD 为梯形,故选D .3.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( ) A .2 B .3C .4D .5【答案】D【解析】因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB+A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .4.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A.5.在ABC ∆中,若3AB =,BC =4AC =,则AC 边上的高为 ( )A B C .32D .【答案】B【解析】由题意可知,222341cos 2342A +-==⨯⨯,sin A ∴=又1··2ABC S AB AC ∆= 1sin ?·,2A AC h h =∴=.故选B.6.若平面向量a ⃗与b ⃗⃗的夹角为60°,|b ⃗⃗|=4,(a ⃗+2b ⃗⃗)•(a ⃗−3b ⃗⃗)=−72,则向量a ⃗的模为( ) A .2 B .4 C .6 D .12 【答案】C【解析】∵(a ⃗+2b ⃗⃗)·(a ⃗−3b ⃗⃗)=−72,∴|a ⃗|2−a ⃗·b ⃗⃗−6|b ⃗⃗|2=−72,又∵a ⃗·b ⃗⃗=|a ⃗|·|b ⃗⃗|cos60∘,∴|a ⃗|2−2|a ⃗|−24=0,则|a ⃗|=6,故选C7.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=( )A .43B .53C .158D .2【答案】B【解析】以A 为坐标原点建立平面直角坐标系,设正方形边长为1, 由此,()()11,1,1,,1,12AC AM BD ⎛⎫===- ⎪⎝⎭,故11,12λμλμ=-=+, 解得415,,333λμλμ==+=.故选B. 8.已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-= A .4 B .3 C .2 D .0【答案】B【解析】因为22(2)22||(1)213,a a b a a b a ⋅-=-⋅=--=+= 所以选B.9.(多选题)设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( ) A.a ·c -b ·c =(a -b )·c ; B.(b ·c )·a -(c ·a )·b 不与c 垂直; C.|a |-|b |<|a -b |; D.(3a +2b )·(3a -2b )=9|a |2-4|b |2. 【答案】A ,C ,D【解析】根据向量积的分配律知A 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0,∴(b ·c )·a -(c ·a )·b 与c 垂直,B 错误;因为a ,b 不共线,所以|a |,|b |,|a -b |组成三角形三边,∴|a |-|b |<|a -b |成立,C 正确;D 正确.故正确命题的序号是A ,C ,D.10.(多选题)给出下列四个命题,其中正确的选项有( ) A.非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30° B.若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C.若单位向量a ,b 的夹角为120°,则当|2a +xb |(x ∈R )取最小值时x =1D.若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34. 【答案】A ,B ,C【解析】A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB .∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确. B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形.故B 正确.C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故③正确.D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12.故D 不正确.故选A ,B ,C. 11.(多选题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列结论不正确的是( ) A .a 2=b 2+c 2﹣2bc cos A B sin a B .=sin b A C .a =sin cos b C c B + D .cos cos sin a B b A C += 【答案】A ,B ,C【解析】由在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,知: 在A 中,由余弦定理得:a 2=b 2+c 2﹣2bc cos A ,故A 正确; 在B 中,由正弦定理得:,∴a sin B =b sin A ,故B 正确;在C 中,∵a =sin cos b C c B +,∴由余弦定理得:a =b ×+c ×,整理,得2a 2=2a 2,故C 正确;在D 中,由余弦定理得a cos B +b cos A =a ×+b ×=+=c ≠sin C ,故D 错误.故选A ,B ,C.12.(多选题)在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =4,B =45° C .a =6,b =3,B =60°D .a =20,b =30,A =30°【解析】B ,C【解析】对于A ,∵b =7,c =3,C =30°,∴由正弦定理可得:sin B ===>1,无解;对于B ,b =5,c =4,B =45°,∴由正弦定理可得sin C ===<1,且c <b ,有一解;对于C ,∵a =6,b =3,B =60°,∴由正弦定理可得:sin A ===1,A =90°,此时C =30°,有一解;对于D ,∵a =20,b =30,A =30°,∴由正弦定理可得:sin B ===<1,且b >a ,∴B 有两个可能值,本选项符合题意.故选B ,C . 二、填空题13.【贵州省贵阳市第一中学2020届高三上学期第三次月考数学(理)试题】已知()1,3a =,()0,1b =-,则a b b a b ⎛⎫⎪+⋅= ⎪⎝⎭________. 【答案】1 【解析】2a =,1b =,所以()13,,0,122ab ab⎛⎫==- ⎪ ⎪⎝⎭, 所以13,122a bab ⎛⎫+=- ⎪ ⎪⎝⎭,所以()10111||222||a b b a b ⎛⎫⎛⎫+⋅=⨯+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:1. 14.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、.若2,a b ==sin cos B B +=,,则角A 的大小为____________________. 【答案】6π【解析】由sin cos )4B B B π+=+=sin()14B π+=,所以4B π=由正弦定理sin sin a b A B=得sin 14sin 22a B Ab π===,所以A=6π或56π(舍去)、 15.如图,在ABC 中,12021BAC AB AC ∠=︒==,,,D 是边BC 上一点,2DC BD =,则AD BC = .【答案】83-【解析】由图及题意得 , =∴ =()()= +== .16.设1e ,2e 是两个不共线的向量, a =31e +42e ,b =1e -22e .若以a ,b 为基底表示向量1e +22e ,即1e +22e =λa +μb ,则λ= ,μ= 。
高中数学必修二 第七章 复 章末测试(提升)(含答案)

第七章 复数 章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·贵州·贵阳一中)复数z 满足(3)(2i)5z --=(i 为虚数单位),则z 的共轭复数z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】535i 2iz =+=+-,则5i z =-,故选:C. 2.(2021·广东顺德)已知复数53i1iz +=-,则下列说法正确的是( ) A .z 的虚部为4i B .z 的共轭复数为1﹣4iC .|z |=5D .z 在复平面内对应的点在第二象限【答案】B 【解析】∵()()()()53i 1i 53i 28i14i 1i 1i 1i 2z ++++====+--+,∴ z 的虚部为4, z 的共轭复数为1﹣4i ,|z |=z 在复平面内对应的点在第一象限. 故选:B3.(2021·湖南·武冈市第二中学 )已知复数z 满足()()i 2i 62i z -+=-,则z =( )A B .2C D【答案】C【解析】因为()()i 2i 62i z -+=-,所以()()()()62i 2i 62ii=i 2i 2i 2i z ---=++++-,=22i+i=2i --,所以|z =故选:C.4.(2021·全国·高一课时练习)已知复数z 满足1-i-2z =1+i,则在复平面内,复数z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】∵1-i-2z =1+i,∴z-2=21-i (1-i)1i (1i)(1-i)=++=-i,∴z=2-i,∴z 的对应点为(2,-1)故选:D .5.(2021·全国)设复数z 在复平面上对应的点为(),x y 且满足1z -=,则( )A .()221x y ++B .()2212x y -+=C .()221x y ++D .()2212x y +-=【答案】B【解析】因为1z -i 1(1)i x y x y +-∴-+()2212x y -+=.故选:B 6.(2021·全国·课时练习)已知复数z 满足11i zz-=-,则z =( ) A .21i 55-+B .21i 55--C .21i 55+D .21i 55-【答案】D 【解析】因为11i z z-=-,所以,()()12i 21i 2i 2i 2i 55z +===+--+,因此,21i 55z =-. 故选:D.7.(2021·重庆市育才中学高一期中)已知复数()()cos sin 1i k k k z R θθθ=++∈对应复平面内的动点为()1,2k Z k =,模为1的纯虚数3z 对应复平面内的点为3Z ,若313212Z Z Z Z =,则12z z -=( )A .1BCD .3【答案】B【解析】设cos sin 1x y θθ=⎧⎨=+⎩(R θ∈),则()2211x y +-=,即12,z z 所对应点在以0,1为圆心,1为半径的圆上, 设该圆与y 轴交点()0,2A ,因为模为1的纯虚数3z 对应复平面内的点为3Z ,即3i z =±, 若313212Z Z Z Z =,则1Z 为23,Z Z 的中点,故3i z =对应的点0,1不合题意,舍去, 因此3i z =-,由圆的切割线定理可得132333Z Z Z O A Z Z Z ⋅=⋅,设3312,2Z m Z Z Z m ==,则132m m ⨯=⋅,则=m 12z z -=.故选:B.8.(2021·江苏如皋·高一月考)1748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式i e cos isin x x x =+(e 是自然对数的底,i 是虚数单位),这个公式在复变论中占有非常重要的地位,被普为“数学中的天桥”.下列说法正确的是( )A .i e 10x +=B .3112⎛⎫= ⎪ ⎪⎝⎭C .i i e e cos 2x xx -+=D .i i e e sin 2x xx --=【答案】C【解析】对于A ,当2x π=时,因为i2e cosisini 22πππ=+=,所以i 2e 1i 10π+=+≠,故i e 10x +=不一定成立,选项A 错误;对于B ,333i i 31cos isin e e cos isin 1233ππππππ⎛⎫⎛⎫⎛⎫+=+===+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以B 错误; 对于C ,由i e cos isin xx x =+,i e cos()isin()cos isin xx x x -=-+-=-,所以i i e e2cos xxx -+=,得出i i e e cos 2x xx -+=,选项C 正确;对于D ,由C 选项的分析得i i e e 2isin xxx -=-,得出i i e e sin i 2x xx ---=,选项D 错误. 故选:C.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分) 9.(2021·河北武强中学)已知复数()i ,z x y x y R =+∈,则( )A .20zB .z =C .若12i z =+,则1x =,2y =D .z 的虚部是i y【答案】BC【解析】()i ,z x y x y R =+∈, 2222i z x y xy ∴=-+,故不能推出20z ,A 不正确;由复数模的定义z =B 正确;根据复数相等知,12z i =+时1x =,2y =正确,故C 正确; 由虚部的定义知,z 的虚部是y ,故D 不正确. 故选:BC10.(2021·江苏·丰县宋楼中学)已知12,z z 是复数,下列结论中不正确的是( )A .若22120z z +>,则2212z z >-B .12z z -=C .22121200z z z z +=⇔== D .2211z z =【答案】ABC【解析】对于选项A :取12i z =+,22i z =-,()2212i 34i z =+=+,()2222i 34i z =-=-,满足221260z z +=>,但21z 与22z 是两个复数,不能比较大小,故选项A 不正确; 对于选项B :取12i z =+,22i z =-,12||2i 2z z -==,B 不正确;对于选项C :取11z =,2i z =,则22120z z +=,但是10z ≠,20z ≠,故选项C 不正确; 对于选项D :设1i z a b =+,(),a b R ∈,则()22221i 2i z a b a b ab =+=-+2221z a b +,1i z a b =-,1z =2221z a b =+,所以2211z z =,故选项D 正确.故选:ABC.11.(2021·福建省连江县第五中学 )设1z ,2z ,3z 为复数,10z ≠.下列命题中正确的是( ) A .若23z z =,则23z z =± B .若1213z z z z =,则23z z = C .若23z z =,则1213z z z z = D .若2121z z z =,则12z z =【答案】BC【解析】对于A :取23i 1z z ==,,满足23z z =,但是23z z =±不成立,故A 错误; 对于B :当1213z z z z =时,有()1230z z z -=,又10z ≠,所以23z z =,故B 正确;对于C :当23z z =时,则23=z z ,所以()()()()2212131212111212131333=0=z z z z z z z z z z z z z z z z z z z z -=--,故C 正确; 对于D :当2121z z z =时,则212111z z z z z ==,可得()1211121==0z z z z z z z --. 因为10z ≠,所以12=z z .故D 错误 故选:BC12.(2021·重庆第二外国语学校高一月考)下列命题为真命题的是( ) A .若12,z z 互为共轭复数,则12z z 为实数 B .若i 为虚数单位,n 为正整数,则43i i n +=C .复数4i1ia ++(i 为虚数单位,a 为实数)为纯虚数,则4a =- D .若m 为实数,i 为虚数单位,则“213m <<”是“复数(3i)(2i)m +-+在复平面内对应的点位于第四象限”的充要条件 【答案】ACD【解析】A 选项,12i,i z a b z a b =+=-互为共轭复数,则()()22i i a b a b a b +-=+,即12z z 为实数,A 选项正确.B 选项,433i i i n +==-,B 选项错误.C 选项,()()()()()4i 1i 44i4i 1i 1i 1i 2a a a a +-++-+==++-为纯虚数,所以404a a +=⇒=-,C 正确. D 选项,()(3i)(2i)321i m m m +-+=-+-在第四象限,所以32021103m m m ->⎧⇒<<⎨-<⎩,所以D 选项正确. 故选:ACD三、填空题(每题5分,共20分)13.(2021·全国·高一课时练习)2012⎛⎫⎪ ⎪⎝⎭÷(3i )=_____.【答案】1i 6【解析】原式20cos isin 3cos isin 3322ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-÷+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2020cos isin [3cos isin 3322ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=-+-÷+ ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎦44cos isin 3cos isin 3322ππππ⎡⎤⎛⎫⎛⎫=+÷+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦144155cos isin cos isin 33232366ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111i i 326⎛⎫== ⎪ ⎪⎝⎭,故答案为:1i 614.(2021·上海市南洋模范中学 )设复数1z =-在复平面上对应的向量为OZ ,将OZ 绕原点O 逆时针旋转n 个56π角后得到向量()*1OZ n N ∈,向量1OZ 所对应的复数为1z ,若10<z ,则自然数n 的最小数值为___________ 【答案】4【解析】因为155122cos2isin233zππ⎛⎫===+⎪⎪⎝⎭,将OZ绕原点O逆时针旋转n个56π角后得到向量()*1OZ n N∈,向量1OZ所对应的复数为1z,则155552cos2isin3636n nzππππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭,因为10<z,所以,55cos13655sin036nnππππ⎧⎛⎫+=-⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩,所以,()()5226nk k Nπππ*+=+∈,所以,1245kn-=,当2k=时,n取得最小值4.故答案为:4.15.(2021·江苏启东 )已知复数z满足12i3z≤-≤,则在复平面内复数z对应的点Z所在区域的面积为___________.【答案】8π【解析】设iz x y=+,,Rx y∈,因为12i3z≤-≤,所以()12i3x y≤+-≤所以()22129x y≤+-≤,所以复平面内复数z对应的点Z所在区域的是以()0,2为圆心,半径为1的圆外和以()0,2为圆心,半径为3的圆内部分,即圆环面,故所求区域面积()2231π8πS=-=.故答案为:8π.16.(2021·上海·曹杨二中 )为求方程510x-=的虚根,可以把原方程变形为()()()221110x x ax x bx-++++=,由此可得原方程的一个虚根的实部为_____.【解析】()()()()()()()22432111121x x ax x bx x x a b x ab x a b x-++++=-+++++++⎡⎤⎣⎦,对比系数得121a b ab +=⎧⎨+=⎩,解得a =b =四、解答题(17题10分,其余每题12分,共70分)17.(2021·江苏·扬州大学附属中学东部分校高一期中)已知m R ∈,复数()2223318i 3m m z m m m +-=+--+.(1)当m 为何值时,复数z 为实数? (2)当m 为何值时,复数z 为虚数? (3)当m 为何值时,复数z 为纯虚数?【答案】(1)6m =;(2)3m ≠-且6m ≠;(3)1m =或32m =-.【解析】(1)要使()2223318i 3m m z m m m +-=+--+为实数,只需2303180m m m +≠⎧⎨--=⎩,解得:m =6;(2)要使()2223318i 3m m z m m m +-=+--+为虚数,只需2303180m m m +≠⎧⎨--≠⎩,解得:3m ≠-且6m ≠;(3)要使()2223318i 3m m z m m m +-=+--+为纯虚数,只需22302303180m m m m m +≠⎧⎪+-=⎨⎪--≠⎩,解得:1m =或32m =-.18.(2021·河南 )已知复数()17i z a a =+-,()2531i z a =++(R a ∈,i 是虚数单位). (1)若2z 的实部与1z 的模相等,求实数a 的值;(2)若复数12z z +在复平面上的对应点在第四象限,求实数a 的取值范围.【答案】(1)3a =或4a =;(2)()5,4--.【解析】(1)依题意,1||z因为2z 的实部与1z5,整理得27120a a -+=,解得3a =或4a =, 所以3a =或4a =;(2)因()()12528i z z a a +=+++,而12z z +在复平面上对应点在第四象限,于是得50280a a +>⎧⎨+<⎩,解得54a -<<-,所以实数a 的取值范围是()5,4--.19.(2021·江苏·无锡市第一中学 )在①2210(0)z z a =>;②复平面上表示12z z 的点在直线20x y +=上;③1(i)0z a ->这三个条件中任选一个,补充在下面问题中的横线上,并解答:已知复数121i 3i z z a =+=+,;(i 为虚数单位),满足 . (1)若1211z z z =+,求复数z 以及||z ; (2)若2z 是实系数一元二次方程2430x mx m ++-=的根,求实数m 的值 【答案】(1)34i 155z z =-=,;(2)m=-2 【解析】选条件①:2210(0)z z a =>.因为121i 3i z z a =+=+,,所以222910z z a =+=, 解得21a =,又0a >,所以1a =;选条件②:复平面上表示12z z 的点在直线20x y +=上.因为121i 3i z z a =+=+,, 所以12221i 33=i 3i 99z a a z a a a ++-=++++,其表示的点为2233()99a a a a +-++,, 有22332099a a a a +-+⨯=++,解得1a =; 选条件③:1(i)0z a ->.因为11i z =+,所以1(i)(1i)(i)(+1)+(1)i 0z a a a a -=+-=->,所以1010a a +>⎧⎨-=⎩,解得1a =.(1)12111134i 1i 13i 55z z z =+=+=-++,1z =; (2)2z 是实系数一元二次方程2430x mx m ++-=的根, 则2z 也是该方程的根,所以m =-(2z +2z )=(13i+1-3i)=-2-+.20.(2021·河北·邯山区 )在①z 在复平面上对应的点在直线0x y -=上,②0z >,③z 为纯虚数这三个条件中任选一个,补充在下面问题中并作答.已知复数()()()22569i z m m m m =-++-∈R .(1)若______,求m 的值.(2)若053z z m =+-,且0z =()()0sin icos z θθθ-+∈R 的最大值. 【答案】(1)答案见解析;(2)1.【解析】1)选择①,z 在复平面上对应的点在直线0x y -=上, 则22569m m m -+=-,解得3m =.选择②,0z >,则2290560m m m ⎧-=⎨-+>⎩,解得3m =-.选择③,z 为纯虚数,则2290560m m m ⎧-≠⎨-+=⎩,解得2m =.(2)因为()()2205339i z z m m m =+-=++-,且0z =所以()()22223972m m ++-=,得23m =,所以066i z =-. 因为sin icos 1θθ+=,所以sin icos θθ+在复平面对应的点在以坐标原点为圆心,1为半径的单位圆上, 所以()0sin icos z θθ-+表示在复平面上的点()6,6-与单位圆上的点的距离,故最大值为1.21.(2021·上海·曹杨二中高二月考)已知关于x 的方程2()0x x m m R ++=∈的两根为α,β. (1)若5αβ-=,求m 的值;(2)若2αβ+=,求m 的值; (3)求αβ+的值.【答案】(1)6m =-或132m =;(2)34m =-或1m =;(3)11,0,4(,0)1,4m m m αβ⎧⎡⎤∈⎪⎢⎥⎣⎦+=∈-∞⎛⎫⎪∈+∞ ⎪⎪⎝⎭⎩.【解析】(1)若α,β为实数,则140m ∆=-≥且1αβ+=-,m ,所以5αβ-=,解得6m =-, 若α,β为虚数,则140m ∆=-<且1αβ+=-,m ,设i a b α=+,()i ,a b a b R β=-∈,则21a αβ+==-,且25b αβ-==,所以12a =-,52b =±,所以22132m a b αβ==+=, 综上,6m =-或132m =. (2)若α,β为实数,则140m ∆=-≥,所以14m ≤, 若10,4m ⎡⎤∈⎢⎥⎣⎦,则α,β均为负数,所以2αβαβ+=+=,矛盾,若(,0)m ∈-∞,则α,β符号相反,所以2αβαβ+=-=,解得34m =-,若α,β为虚数,则140m ∆=-<,且2αβ+===, 解得1m =,综上,34m =-或1m =.(3)若α,β为实数,则140m ∆=-≥,所以14m ≤, 若10,4m ⎡⎤∈⎢⎥⎣⎦,则α,β均为负数,所以1αβαβ+=+=,若(,0)m ∈-∞,则α,β符号相反,所以αβαβ+=-= 若α,β为虚数,则140m ∆=-<,所以14m >,所以αβ+=综上,11,0,4(,0)1,4m m m αβ⎧⎡⎤∈⎪⎢⎥⎣⎦+=∈-∞⎛⎫⎪∈+∞ ⎪⎪⎝⎭⎩.22.(2021·安徽池州·高一期中)已知复数()1i =+∈z m m m R ,()()()2sin cos sin 2i ,=++-∈z R θθλθλθ.(1)当3m =时,求复数119z z +的模; (2)若12z z =,求λ的取值范围.【答案】(2)5,14⎡-⎢⎣. 【解析】(1)当3m =时133i =+z ,11999333i i 33i 22+=++=++z z ,则11993i 22+=+===z z (2)因为12z z =,即sin cos sin 2m m θθλθ=+⎧⎨=-⎩,即sin cos sin 2λθθθ=++,令sin cos 4t πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,则2sin 21t θ=-, 则21t t λ=+-,t ⎡∈⎣, 当12t =-时,min 54λ=-,当tmax 1λ=故5,14λ⎡∈-+⎢⎣, 所以λ的取值范围为5,14⎡-⎢⎣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( ) A.棱柱B.棱台C.棱柱与棱锥组合体D.无法确定1 题图2 题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不.可.能.为:①长方形;②正方形;③圆.其中正确的是( ) A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN则四边形D1MBN 在正方体各个面上的正投影图形中,不可能出现的是( )4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC 的AB、AD、AC 三条线段中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC4 题图5 题图5.具有如图所示直观图的平面图形ABCD 是( ) A.等腰梯形B.直角梯形C.任意四边形D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是( )A .1B .2C .3D .47. 如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .188. 平面α截球 O 的球面所得圆的半径为 1,球心 O 到平面α的距离为 2,则此球的体积为() B .4 3πC .4 6πD .6 3π9. 如图所示,则这个几何体的体积等于()A .4B .6C .8D .1210. 将正三棱柱截去三个角(如图 1 所示,A ,B ,C 分别是△GHI 三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图为选项图中的()11. 圆锥的表面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角为( )A .120°B .150°C .180°D .240°12. 已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A. 6πA.26二、填空题B.36 C.23 D.2213.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的1,则油桶直立时,油的高度与桶的高度的比值是.4三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2 的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD 的长;(2)容器的容积.= 答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π 16.1- 1 4 2π17.解 由三视图可知:该几何体的下半部分是棱长为 2 m 的正方体,上半部分是半径为 1 m 的半球.(1) 几何体的表面积为 S 1× 24π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为 V =23+1×4×π×13=8+2π(m 3).2 3 318.解 (1)直观图如图.(2) 这个几何体是一个四棱锥. 它的底面边长为 2,高为 3,所以体积 V =1×22× 3=4 3.3 319.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2=(4 2+60)π.V =V 圆台-V 圆锥 =1π(r 2+r r +r 2)h -12 ′1 12 2 3πr 1h3 =1π(25+10+4)×4-1π×4×2 3 3 148 π. 320.解 (1)设圆台上、下底面半径分别为 r 、R ,AD =x ,则 OD =72-x ,由题意得2πR =60·π×72 180 72-x =3R即 AD 应取 36 cm.R =12,∴ .x =36 (2)∵2πr =π·OD =π·36,3 3 ∴r =6 cm ,圆台的高 h = x 2-(R -r )2= 362-(12-6)2=6 35. ∴V =1 2+Rr +r 2)=1π·6 35·(122+12×6+62)=504 35π(cm 3).πh (R 3 3=章末检测一、选择题1.下列推理错误的是( ) A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉α D.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1 中,异面直线AB,A1D1 所成的角等于( ) A.30°B.45°C.60°D.90°3.下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD 的边AB,BC,CD,DA 上分别取E、F、G、H 四点,如果EF,GH 交于一点P,则( )A.P 一定在直线BD 上B.P 一定在直线AC 上C.P 一定在直线AC 或BD 上D.P 既不在直线AC 上,也不在直线BD 上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.② 和④ 6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3 中,E,F 分别是G1G2 及G2G3 的中点,D 是EF 的中点,现在沿SE,SF 及EF 把这个正方形折成一个四面体,使G1,G2,G3 三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG 中必有( )A.SG⊥△EFG 所在平面B.SD⊥△EFG 所在平面C.GF⊥△SEF 所在平面D.GD⊥△SEF 所在平面8.如图所示,在正方体ABCD—A1B1C1D1 中,若E 是A1C1 的中点,则直线CE 垂直于( )A.AC B.BD C.A1D D.A1D18 题图9 题图9.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B′AC=60°,那么这个二面角大小是( ) A.90°B.60°C.45°D.30°10.如图,ABCD-A1B1C1D1 为正方体,下面结论错误的是( )A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD 与CB1 所成的角为60°10 题图11 题图11.如图所示,在长方体ABCD—A1B1C1D1 中,AB=BC=2,AA1=1,则BC1 与平面BB1D1D所成角的正弦值为( )A. 63B.2 65C. 155D. 10512.已知正四棱柱ABCD-A1B1C1D1 中,AB=2,CC1=2 2,E 为CC1 的中点,则直线AC1与平面BED 的距离为( )A.2二、填空题D.113.设平面α∥平面β,A、C∈α,B、D∈β,直线AB 与CD 交于点S,且点S 位于平面α,β之间,AS=8,BS=6,CS=12,则SD=.14.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,则B. 3C. 2a 平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.其中正确命题的序号是.15.如图所示,在直四棱柱ABCD—A1B1C1D1 中,当底面四边形A1B1C1D1 满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).15 题图16 题图16.如图所示,已知矩形ABCD 中,AB=3,BC=a,若PA⊥平面AC,在BC 边上取点E,使PE⊥DE,则满足条件的E 点有两个时,a 的取值范围是.三、解答题17.如图所示,长方体ABCD-A1B1C1D1 中,M、N 分别为AB、A1D1 的中点,判断MN 与平面A1BC1 的位置关系,为什么?18.ABCD 与ABEF 是两个全等正方形,AM=FN,其中M∈AC,N∈BF.求证:MN∥平面BCE.19.如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD,E 是PC 的中点.已知AB=2,AD=2 2,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.20.如图所示,ABCD 是正方形,O 是正方形的中心,PO⊥底面ABCD,底面边长为a,E 是PC 的中点.(1)求证:PA∥面BDE;(2)求证:平面PAC⊥平面BDE;(3)若二面角E-BD-C 为30°,求四棱锥P-ABCD 的体积.21.如图,四棱锥P-ABCD 中,底面ABCD 为菱形,PA⊥底面ABCDAC=2 2,PA=2,E 是PC 上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C 为90°,求PD 与平面PBC 所成角的大小.答案1.C 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.A 10.D 11.D 12.D 13.914.④15.B1D1⊥A1C1(答案不唯一)16.a>617.解直线MN∥平面A1BC1,M 为AB 的中点,证明如下:∵MD/∈平面A1BC1,ND/∈平面A1BC1.∴MN⊄平面A1BC1.如图,取A1C1 的中点O1,连接NO1、BO1.∵NO1 綊1D1C1,MB 綊1D1C1,2 2∴NO1 綊MB.∴四边形NO1BM 为平行四边形.∴MN∥BO1.又∵BO1⊂平面A1BC1,∴MN∥平面A1BC1.18.证明如图所示,连接AN,延长交BE 的延长线于P,连接CP.∵BE∥AF,∴FN=AN,NB NP由AC=BF,AM=FN 得MC=NB.∴FN=AM. NB MC∴AM=AN,MC NP∴MN∥PC,又PC⊂平面BCE.AC ∴MN ∥平面 BCE .19. 解 (1)因为 PA ⊥底面 ABCD ,所以 PA ⊥CD .又 AD ⊥CD ,所以 CD ⊥平面 PAD ,从而 CD ⊥PD . 因 为 PD = 22+(2 2)2=2 3,CD =2,所以三角形 PCD 的面积为1×2×2 3=2 3.2(2)如图,取 PB 中点 F ,连接 EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与 AE 所成的角.在△AEF 中,由 EF = 2,AF = 2,AE =2 知△AEF 是等腰直角三角形, 所以∠AEF =45°.因此,异面直线 BC 与 AE 所成的角的大小是 45°. 20.(1)证明 连接 OE ,如图所示.∵O 、E 分别为 AC 、PC 的中点,∴OE ∥P A. ∵OE ⊂面 BDE ,PA ⊄面 BDE , ∴PA ∥面 BDE .(2) 证明 ∵PO ⊥面 ABCD ,∴PO ⊥BD .在正方形 ABCD 中,BD ⊥AC , 又∵PO ∩AC =O , ∴BD ⊥面 PAC . 又∵BD ⊂面 BDE , ∴面 PAC ⊥面 BDE .(3) 解 取 OC 中点 F ,连接 EF .∵E 为 PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥面 ABCD ,∴EF ⊥面 ABCD . ∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角 E -BD -C 的平面角,∴∠EOF =30°.在 Rt △OEF 中,OF =1OC =1 = 2a ,∴EF =OF ·tan 30°= 6a ,2 4 4 12 ∴OP =2EF = 6a .62 3 ∴V P1 6 6-ABCD= ×a × = . 361821.(1)证明 因为底面 ABCD 为菱形, 所以 BD ⊥AC .又 PA ⊥底面 ABCD ,所以 PC ⊥BD . 如图,设 AC ∩BD =F ,连接 EF .因为 AC =2 2,PA =2,PE =2EC ,故 PC =2 3,EC =2 3,FC = 2,3从而PC= 6,FC AC= 6. EC因为PC =AC,∠FCE =∠PCA ,FC EC所以△FCE ∽△PCA ,∠FEC =∠PAC =90°.由此知 PC ⊥EF . 因为 PC 与平面 BED 内两条相交直线 BD ,EF 都垂直, 所以 PC ⊥平面 BED .(2)解 在平面 PAB 内过点 A 作 AG ⊥PB ,G 为垂足. 因为二面角 A -PB -C 为 90°, 所以平面 PAB ⊥平面 PBC . 又平面 PAB ∩平面 PBC =PB , 故 AG ⊥平面 PBC ,AG ⊥BC .因为 BC 与平面 PAB 内两条相交直线 PA ,AG 都垂直, 故 BC ⊥平面 PAB ,于是 BC ⊥AB , 所以底面 ABCD 为正方形,AD =2, PD = PA 2+AD 2=2 2. 设 D 到平面 PBC 的距离为 d .因为 AD ∥BC ,且 AD ⊄平面 PBC ,BC ⊂平面 PBC ,故 AD ∥平面 PBC ,A 、D 两点到平面 PBC 的距离相等,即 d =AG = 2. 设 PD 与平面 PBC 所成的角为α,则 sin α= d =1.PD 2 所以 PD 与平面 PBC 所成的角为 30°.章末检测一、选择题1.若直线过点(1,2),(4,2+ 3),则此直线的倾斜角是()A .30°B .45°C .60°D .90°2.如果直线 ax +2y +2=0 与直线 3x -y -2=0 平行,则系数 a 为 ( )A .-3B .-6C .-3 2 3.若经过点(3,a )、(-2,0)的直线与经过点(3,-4) 1D.2 3 a 的值为( )且斜率为 的直线垂直,则 2A.5 2B.2 5 C .10 D .-104.过点(1,0)且与直线 x -2y -2=0 平行的直线方程是 ( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=05.实数 x ,y 满足方程 x +y -4=0,则 x 2+y 2 的最小值为 A .4 B .6 C .8 ()D .126.点 M (1,2)与直线 l :2x -4y +3=0 的位置关系是 () A .M ∈l B .M ∉l C .重合 D .不确定7.直线 mx +ny -1=0 同时过第一、三、四象限的条件是()A .mn >0B .mn <0C .m >0,n <0D .m <0,n <08. 若点 A (-2,-3),B (-3,-2),直线 l 过点 P (1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是() A .k ≤3或 k ≥4B .k ≤-4或 k ≥-34 3 C.3≤k ≤4 3 4 D .-4≤k ≤-34 33 49.已知直线 l 1:ax +4y -2=0 与直线 l 2:2x -5y +b =0 互相垂直,垂足为(1,c ),则 a +b +c 的值为 ()A .-4B .20C .0D .2410.过点 P (0,1)且和 A (3,3),B (5,-1)距离相等的直线的方程是() A .y =1B .2x +y -1=0C .y =1 或 2x +y -1=0D .2x +y -1=0 或 2x +y +1=011. 直线 mx +ny +3=0 在 y 轴上的截距为-3,而且它的倾斜角是直线 3x -y =3 3倾斜角的 2 倍,则 ()A .m =- 3,n =1B .m =- 3,n =-3C .m = 3,n =-3D .m = 3,n =10,7 12. 过点A 3 与B (7,0)的直线 l 1 与过点(2,1),(3,k +1)的直线 l 2 和两坐标轴围成的四边 形内接于一个圆,则实数 k 等于 ()A .-3B .3C .-6D .6二、填空题13.若 O (0,0),A (4,-1)两点到直线 ax +a 2y +6=0 的距离相等,则实数 a =.14. 甲船在某港口的东 50 km ,北 30 km 处,乙船在同一港口的东 14 km ,南 18 km 处,那么甲、乙两船的距离是 .15. 已知直线 l 与直线 y =1,x -y -7=0 分别相交于 P 、Q 两点,线段 PQ 的中点坐标为(1, -1),那么直线 l 的斜率为.16. 已知实数 x ,y 满足 y =-2x +8,当 2≤x ≤3 时,则y的最大值为.x三、解答题17. 已知点 M 是直线 l : 3x -y +3=0 与 x 轴的交点,将直线 l 绕点 M 旋转 30°,求所得到的直线 l ′的方程.18. 求直线 l 1:2x +y -4=0 关于直线 l :3x +4y -1=0 对称的直线 l 2 的方程.19. 在△ABC 中,已知 A (5,-2)、B (7,3),且 AC 边的中点 M 在 y 轴上,BC 边的中点 N 在x 轴上,求:(1) 顶点 C 的坐标; (2) 直线 MN 的方程.20. 如图,已知△ABC 中 A (-8,2),AB 边上的中线 CE 所在直线的方程为x +2y -5=0,AC 边上的中线 BD 所在直线的方程为 2x -5y +8=0, 求直线 BC 的方程.21. 光线沿直线 l 1:x -2y +5=0 射入,遇直线 l :3x -2y +7=0 后反射,求反射光线所在的直线方程.22. 某房地产公司要在荒地 ABCDE (如图)上划出一块长方形地面(不改变方位)建一幢公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到 1 m 2).-5=0 答案1.A 2.B 3.D 4.A 5.C 6.B 7.C 8.C 9.A 10.C 11.D 12.B 13.-2 或 4 或 6 14.60 km15.-23 16.217.解 在 3x -y +3=0 中,令 y =0,得 x =- 3,即 M (- 3,0).∵直线 l 的斜率 k = 3,∴其倾斜角θ=60°.若直线 l 绕点 M 逆时针方向旋转 30°,则直线 l ′的倾斜角为 60°+30° =90°,此时斜率不存在,故其方程为 x =- 3.若直线 l 绕点 M 顺时针方向旋转 30°,则直线 l ′的倾斜角为 60°-30°=30°,此时斜率为 tan 30°= 3,故其方程为 y = 3(x + 3),3 3 即 x - 3y + 3=0.综上所述,所求直线方程为 x + 3=0 或 x - 3y + 3=0.18.解 设直线 l 2 上的动点 P (x ,y ),直线 l 1 上的点 Q (x 0,4-2x 0),且 P 、Q 两点关于直线 l :3x +4y -1=0 对称,则有|3x +4y -1| |3x 0+4(4-2x 0)-1|= , 5 5 y -(4-2x 0)=4.x -x 03 消去 x 0,得 2x +11y +16=0 或 2x +y -4=0(舍). ∴直线 l 2 的方程为 2x +11y +16=0.5+x 0,y 0-219.解 (1)设 C (x 0,y 0),则 AC 中点 M 2 2 ,7+x 0 y 0+3,BC 中点 N 2 2 .∵M 在 y 轴上,∴5+x 0=0,x 0=-5.2 ∵N 在 x 轴上,∴y 0+3=0,y 0=-3,即 C (-5,-3).2 (2)∵M 0,-52 ,N (1,0).∴直线 MN x y 的方程为 + 15=1. - 2 即 5x -2y -5=0.x 0-8y 0+2 ,20. 解 设 B (x 0,y 0),则 AB 中点 E 的坐标为 2 2 ,由条件可得:2x 0-5y 0+8=0x 0-8+2·y 0+2 , 2 2205y 0+8=0 得 , x 0+2y 0-14=0x 2 x 0=6 y 0=4,即 B (6,4),同理可求得 C 点的坐标为(5,0).故所求直线 BC 的方程为y -0=x -5,即 4x -y -20=0.4-0 6-521. 解 设直线 x -2y +5=0 上任意一点 P (x ,y )关于直线 l 的对称点为 P ′(x ,y ),则y 0-y=-2,30 0x +x 0,y +y 0x 0-x又 PP ′的中点 Q 2 2 在l 上, ∴3 x +x 0 y +y 0× -2× 2 2 +7=0,y 0-y =-2,x 0-x3 由 3×x +x 0-(y +y )+7=0.2 可得 P 点的坐标为x 0=-5x +12y -42,y 0=12x +5y +28,13 13代入方程 x -2y +5=0 中,化简得 29x -2y +33=0, ∴所求反射光线所在的直线方程为 29x -2y +33=0.22. 解 在线段 AB 上任取一点 P ,分别向 CD 、DE 作垂线划出一块长方形土地,以 BC ,EA的交点为原点,以 BC ,EA 所在的直线为 x 轴,y 轴,建立直角坐标系,则 AB 的方程为 x + y=1,30 20 x ,20-2x设 P 3 ,则长方形的面积20-2xS =(100-x ) 80- 3 (0≤x ≤30).化简得 S =-2x 2+20+6 000(0≤x ≤30).3 3 当 x =5,y 50= 时,S 最大,其最大值为 6 017 m .3章末检测一、选择题1.方程x2+y2+2ax+2by+a2+b2=0 表示的图形是( )A.以(a,b)为圆心的圆B.以(-a,-b)为圆心的圆C.点(a,b)D.点(-a,-b)2.点P(m,3)与圆(x-2)2+(y-1)2=2 的位置关系为( ) A.点在圆外B.点在圆内C.点在圆上D.与m 的值有关3.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为86,则x 的值为( )A.2 B.-8C.2 或-8 D.8 或-24.若直线x-y+1=0 与圆(x-a)2+y2=2 有公共点,则实数a 的取值范围是( )A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)5.设A、B 是直线3x+4y+2=0 与圆x2+y2+4y=0 的两个交点,则线段AB 的垂直平分线的方程是( ) A.4x-3y-2=0 B.4x-3y-6=0C.3x+4y+6=0 D.3x+4y+8=06.圆x2+y2-4x=0 过点P(1,3)的切线方程为( ) A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=07.对任意的实数k,直线y=kx+1 与圆x2+y2=2 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心8.已知圆O:x2+y2=5 和点A(1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A.5 B.10 C.252D.2549.将直线2x-y+λ=0 沿x 轴向左平移1 个单位,所得直线与圆x2+y2+2x-4y=0 相切,则实数λ的值为( )A.-3 或7 B.-2 或8 C.0 或10 D.1 或1110.已知圆C:x2+y2-4x=0,l 是过点P(3,0)的直线,则( ) A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能11.若直线mx+2ny-4=0(m、n∈R,n≠m)始终平分圆x2+y2-4x-2y-4=0 的周长,则mn 的取值范围是( )A.(0,1) B.(0,-1)C.(-∞,1) D.(-∞,-1)12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25 的切线l,直线m:ax-3y=0 与直线l 平行,则直线l 与m 的距离为( )A.4 B.2 C.85D.125二、填空题13.与直线2x+3y-6=0 关于点(1,-1)对称的直线方程为.14.过点P(-2,0)作直线l 交圆x2+y2=1 于A、B 两点,则|PA|·|PB|=.15.若垂直于直线2x+y=0,且与圆x2+y2=5 相切的切线方程为ax+2y+c=0,则ac 的值为.16.在平面直角坐标系xOy 中,圆C 的方程为x2+y2-8x+15=0,若直线y=kx-2 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三、解答题17.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x2+y2-4x-4y+7=0 相切,求光线l 所在直线的方程.18.已知圆x2+y2+x-6y+m=0 与直线x+2y-3=0 相交于P,Q 两点,O 为原点,若OP⊥OQ,求实数m 的值.19.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).(1)求证:不论m 为何值,圆心在同一直线l 上;(2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.20.如图,已知圆O:x2+y2=1 和定点A(2,1),由圆O 外一点P(a,b向圆O 引切线PQ,切点为Q,且有|PQ|=|PA|.(1)求a、b 间关系;(2)求|PQ|的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程.1+k 2答案章末检测1.D 2.A 3.C 4.C 5.B 6.D 7.C 8.D 9.A 10.A 11.C 12.A 13.2x +3y +8=0 14.3 15.±5 16.4 317. 解 如图所示,已知圆 C :x 2+y 2-4x -4y +7=0 关于 x 轴对称的圆为 C 1:(x -2)2+(y +2)2=1,其圆心 C 1 的坐标为(2,-2),半径为 1,由光的反射定律知,入射光线所在直线方程与圆 C 1 相切.设l 的方程为 y -3=k (x +3),即 kx -y +3+3k =0. 则|5k +5|=1,即 12k 2+25k +12=0.∴k 1=-4,k 2=-3.3 4则 l 的方程为 4x +3y +3=0 或 3x +4y -3=0.18. 解 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由 OP ⊥OQ 可得 x 1x 2+y 1y 2=0, x 2+y 2+x -6y +m =0, 由x +2y -3=0, 可得 5y 2-20y +12+m =0.①所以 y 1y 2=12+m,y 1+y 2=4.5 又 x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2=9-24+4(12+m ),5所以 x 1x 2+y 1y 2=9-24+4(12+m )+12+m =0,5 5 解得 m =3.将 m =3 代入方程①,可得Δ=202-4×5×15=100>0,可知 m =3 满足题意,即 3 为所求 m 的值.19.(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),x =3m 则 , y =m -1消去 m 得 x -3y -3=0,则圆心恒在直线 l :x -3y -3=0 上.10 22+12( (2) 解 设与 l 平行的直线是 l 1:x -3y +b =0,则圆心到直线 l 1 的距离为 d =|3m -3(m -1)+b | |3+b |∵圆的半径为 r =5,∴当 d <r ,即-5 10-3<b <5 10-3 时,直线与圆相交; 当 d =r ,即 b =±5 10-3 时,直线与圆相切;当 d >r ,即 b <-5 10-3 或 b >5 10-3 时,直线与圆相离.(3) 证明 对于任一条平行于 l 且与圆相交的直线 l 1:x -3y +b =0,由于圆心到直线 l 1 的距离 d |3+b |弦长=2 r 2-d 2且 r 和 d 均为常量.∴任何一条平行于 l 且与圆相交的直线被各圆截得的弦长相等. 20.解 (1)连接 OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以 a 2+b 2=1+(a -2)2+(b -1)2,故 2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =2 5.5 (3)以 P 为圆心的圆与圆 O 有公共点,半径最小时为与圆 O 相切的情形,而这些半径的最小值为圆 O 到直线 l 的距离减去圆 O 的半径,圆心 P 为过原点且与 l 垂直的直线 l ′与 l 的交点 P 0,所以 r = 3 -1=3 5-1,5 又 l ′:x -2y =0,联立 l :2x +y -3=0 得 P 0(6,3).5 5 所以所求圆的方程为(x -6)2+(y -3)2= 3 5-1)2.5 5 510 10= .= ,。