预应力张拉伸长量计算
预应力张拉实际伸长量计算公式的含义

预应力张拉实际伸长量计算公式的含义
预应力张拉实际伸长量计算公式是用于计算预应力成材的实际伸长量的公式。
预应力张拉是在混凝土或金属中施加引拉力的过程,使材料在施加压力时形成压缩应力,从而增加材料的强度和刚度。
预应力张拉实际伸长量是指在预应力张拉过程中,由于应力的引入而引起的材料实际伸长的量。
预应力张拉实际伸长量的计算公式一般为:
ΔL = F * L / (A * E)
其中,ΔL表示实际伸长量,单位为米;
F表示施加的张拉力,单位为牛顿;
L表示张拉的长度,单位为米;
A表示材料的横截面积,单位为平方米;
E表示材料的弹性模量,单位为帕斯卡。
这个公式的含义是在预应力施加过程中,预应力张拉力和材料的横截面积、材料的弹性模量以及预应力材料长度之间存在一定的线性关系。
通过这个公式,可以计算在给定预应力力值、长度和材料特性的情况下,材料在预应力张拉过程中实际发生的伸长量。
t梁预应力张拉伸长量计算

t梁预应力张拉伸长量计算梁是建筑和土木工程中常见的结构元素,其承载着重要的荷载和力学性能要求。
为了增强梁的承载能力和抗震性能,预应力技术被广泛应用于梁的设计和施工中。
预应力张拉伸长量计算是预应力梁设计中的重要一环,本文将详细介绍该计算方法。
预应力张拉伸长量是指在预应力张拉过程中,钢束或钢丝的伸长量。
在预应力梁的设计中,通常需要根据预定的预应力水平和设计要求计算出钢束或钢丝的张拉伸长量,以确保梁在使用过程中的性能和安全。
预应力张拉伸长量的计算需要考虑多个因素,包括预应力钢束的特性、混凝土的材料特性以及梁的几何参数等。
其中,预应力钢束的特性包括钢束的弹性模量、钢束的截面面积以及钢束的预应力水平等。
混凝土的材料特性包括混凝土的弹性模量、混凝土的收缩和蠕变特性等。
梁的几何参数包括梁的截面尺寸、梁的跨度以及梁的受荷情况等。
在进行预应力张拉伸长量计算时,首先需要确定预应力钢束的预应力水平。
预应力水平的确定通常需要考虑梁的设计要求和结构安全要求。
根据预应力水平和钢束的特性,可以计算出钢束在张拉过程中的应变量。
应变量与钢束的伸长量之间存在一定的线性关系,通过线性关系可以计算出钢束的伸长量。
在计算钢束的伸长量时,还需要考虑混凝土的收缩和蠕变效应。
混凝土的收缩和蠕变是混凝土在负荷作用下发生的一种变形现象,会导致混凝土的体积缩小和变形。
在预应力梁中,混凝土的收缩和蠕变会对钢束的伸长量产生影响,需要进行相应的修正计算。
在进行预应力张拉伸长量计算时,还需要考虑梁的几何参数。
梁的几何参数不仅会影响梁的刚度和变形特性,也会对钢束的伸长量产生影响。
通过考虑梁的几何参数,可以计算出钢束的有效伸长量。
预应力张拉伸长量计算是预应力梁设计中的重要一环。
通过考虑预应力钢束的特性、混凝土的材料特性以及梁的几何参数,可以计算出钢束的伸长量。
预应力张拉伸长量计算的准确性对于梁的设计和施工具有重要意义,能够确保梁在使用过程中的性能和安全。
因此,在预应力梁设计中,需要严格按照相关规范和标准进行预应力张拉伸长量的计算,以确保梁的质量和使用效果。
预应力张拉伸长量最简单的计算公式

预应力张拉伸长量最简单的计算公式
预应力张拉伸长量是计算预应力的重要参数之一。
它反映了预应力杆件在张拉过程中的伸长变化量,也是评价预应力施工质量的关键指标。
在计算预应力张拉伸长量时,可以使用以下简单的公式:
ΔL = F × L / A × E
其中,ΔL代表预应力张拉伸长量,F代表预应力的施加力,L代表预应力杆件的长度,A代表预应力杆件的截面积,E代表预应力杆件的弹性模量。
通过这个公式,我们可以计算出预应力杆件在施加预应力力后的伸长变化量。
这个伸长量可以直接影响到预应力的传递效果和杆件的受力性能。
需要注意的是,公式中的参数需要准确的数值来进行计算。
预应力施工过程中,需要使用专业的设备和工具来控制施加力的大小和施加位置,以确保计算结果的准确性。
在实际应用中,预应力张拉伸长量的计算是预应力施工的重要一环。
通过合理的计算和控制,可以保证预应力杆件的受力效果和工程的安全可靠性。
因此,工程师在预应力施工过程中,需要充分了解预应力张拉伸长量的计算原理和方法,并严格按照规范要求进行操作,
以确保工程质量和安全。
预应力张拉计算说明

预应力张拉计算说明预应力张拉计算及现场操作说明本合同段梁板均为先张梁板,根据台座设置长度,实际钢绞线下料长度为89米。
一、理论伸长量计算由公式ΔL=(Nk*L)/EA计算可得理论伸长量。
公式ΔL=(Nk*L)/E g A g中ΔL:理论伸长量Nk:作用于钢绞线的张拉力(控制应力σk= 1395Mp)L:钢绞线下料长度(89m)E g:钢绞线弹性模量(1.95X105 Mp)A g:钢绞线截面面积(140mm2)由公式计算得ΔL=(1395*140*89)/(195700*140)=0.63441m=634.41mm现场张拉采取五级张拉分别为10%σk,20%σk,40%σk,8 0%σk,100%σk;对应理论伸长量分别为L1,L2,L3,L4,L5,L6。
由公式计算得L1=63.44 mm(10%ΔL)L2=126.88 mm(20%ΔL)L3=253.76mm(40%ΔL)L4=507.52mm(80%ΔL)L5=634.41 mm(100%ΔL)二、现场张拉实测(一)现场张拉操作现场张拉采取六级张拉分别为10%σk,20%σk,40%σk , 8 0%σk,100%σk;对应伸长量分别为A,B,C,D,E。
张拉顺序:1、先张拉左侧锚端,用3#千斤顶张拉N1筋,张拉到10%σk,记录此时伸长量A1,再张拉到20%σk,记录此时伸长量B1;后依次张拉N2-N9,对称张拉,分别记录各自伸长量:A2,B2 (9)B9;锚固好左侧。
2、张拉右侧锚端,用1#、2#千斤顶同时同步张拉,张拉到40%σk,记录此时伸长量C,锚固后继续张拉到80%σk,记录此时伸长量D,继续张拉到100%σk,记录下各自伸长量为E。
C、D、E值均为两千斤顶伸长的平均值。
(二)数据处理N1实际伸长量L n1=E+C或L n1=E+2(B1-A1)N2实际伸长量L n1=E+C或L n1=E+2(B2-A2)N3实际伸长量L n1=E+C或L n1=E+2(B3-A3)N4实际伸长量L n1=E+C或L n1=E+2(B4-A4)N5实际伸长量L n1=E+C或L n1=E+2(B5-A5)N6实际伸长量L n1=E+C或L n1=E+2(B6-A6)N7实际伸长量L n1=E+C或L n1=E+2(B7-A7)N8实际伸长量L n1=E+C或L n1=E+2(B8-A8)N9实际伸长量L n1=E+C或L n1=E+2(B9-A9)三、现场张拉注意要点1、现场张拉伸长值与理论伸长值必须随时比对,不得超过理论伸长值的±6%(即38.06mm);2、张拉时应匀速缓慢张拉,并在每级处持荷5min后读数;3、张拉时注意观察钢绞线断丝数,超过规定值必须替换,从新张拉;4、钢绞线张拉8小时后,才可进行下步钢筋施工。
预应力张拉伸长值简易计算与量测方法(全文)

预应力张拉伸长值简易计算与量测方法(全文)范本1(风格:简洁明了)正文:1. 张拉伸长值的定义1.1 张拉伸长值是指在预应力混凝土结构中,由于张拉作用导致钢筋伸长的数值。
1.2 预应力张拉伸长值的计算非常重要,能够直接影响到结构的设计和施工质量。
2. 预应力张拉伸长值的简易计算方法2.1 根据施工图纸中给出的预应力钢筋的设计张拉力和压力,可采用以下公式计算张拉伸长值:张拉伸长值 = 张拉力 / 钢筋的弹性模量2.2 根据钢筋的弹性模量表,可以得到钢筋的弹性模量。
2.3 根据实际的预应力张拉作业情况,可以确定张拉力的数值。
3. 预应力张拉伸长值的量测方法3.1 预应力张拉伸长值的量测可以采用伸长计进行。
3.2 伸长计应放置在钢筋上,并确保与钢筋紧密接触。
3.3 在张拉伸长阶段,通过读取伸长计上的刻度,可以得到张拉伸长值的数值。
注释:1. 附件:本文档涉及的附件包括:- 钢筋的弹性模量表- 张拉伸长值的计算表2. 法律名词及注释:本文档所涉及的法律名词及其注释包括:- 预应力混凝土结构:指采用预应力钢筋进行加固和增强的混凝土结构,具有较高的承载能力和抗震能力。
范本2(风格:详细解析)正文:1. 预应力张拉伸长值的定义和意义1.1 预应力张拉伸长值是指在预应力混凝土结构中,由于预应力钢筋的张拉作用而引起的钢筋伸长的数值。
预应力张拉伸长值的大小直接影响着结构的受力和变形性能。
1.2 在预应力混凝土结构中,预应力钢筋经过张拉作用后,通过锚固装置形成预应力,使混凝土结构具有较高的抗弯强度和抗剪强度。
1.3 准确计算和量测预应力张拉伸长值,对于确保结构安全和质量具有重要意义。
2. 预应力张拉伸长值的计算方法2.1 计算预应力张拉伸长值的基本公式为:张拉伸长值 = 张拉力 / 钢筋的弹性模量2.2 需要根据施工图纸中给出的预应力钢筋的设计张拉力和压力来确定张拉力的数值。
2.3 钢筋的弹性模量需要通过弹性模量表来获得。
预应力张拉伸长量计算

后张法预应力张拉伸长 量计算与测定分析一、理论伸长量计算 1、理论公式: 1根据公路桥涵施工技术规范JTJ041—2000,钢绞线理论伸长量计算公式如下: PP P E A LP L =∆ ①()()μθμθ+-=+-kx e P P kx P 1 ②式中:P P ——预应力筋的平均张拉力N,直线筋取张拉端的拉力,曲线筋计算方法见②式;L ——预应力筋的长度;A P ——预应力筋的截面面积mm 2;E P ——预应力筋的弹性模量N/mm 2;P ——预应力筋张拉端的张拉力N ;x ——从张拉端至计算截面的孔道长度m ;θ——从张拉端至计算截面的孔道部分切线的夹角之和rad ;k ——孔道每米局部偏差对摩擦的影响系数;μ——预应力筋与孔道壁的摩擦系数;2计算理论伸长值,要先确定预应力筋的工作长度和线型段落的划分;后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,然后累加;于是上式中: i L L L L ∆+∆+∆=∆ 21PP i p i E A L P L i =∆P p 值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“Pp i ”更为合适; 3计算时也可采取应力计算方法,各点应力公式如下:()()()()111--+--⨯=i i kx i i eμθσσ各点平均应力公式为:()()ii kx i pikx e iiμθσσμθ+-=+-1 各点伸长值计算公式为:pip i E x L iσ=∆ 2、根据规范中理论伸长值的公式,举例说明计算方法:某后张预应力连续箱梁,其中425米联内既有单端张拉,也有两端张拉;箱梁中预应力钢束采用高强度低松弛钢绞线Φ,极限抗拉强度f p =1860Mpa,锚下控制应力б0==1395Mpa;K 取m,µ=;1单端张拉预应力筋理论伸长值计算:预应力筋分布图12两端非对称张拉计算:预应力筋分布图2伸长值计算如下表:若预应力钢筋为两端对称张拉,则只需计算出一半预应力筋的伸长值,然后乘以2即得总的伸长量;注:由于采用1500KN千斤顶张拉,根据实测伸长值为量测大缸外露长度的方法,则计算理论伸长值时应加缸内长度约500mm;而锚固端长约470mm,应在计算理论伸长值时扣除;由于两数对于伸长值的计算相差甚微,可以抵消,因此在计算中未记入;二、实测伸长值的测定1、预应力钢筋张拉时的实际伸长值△L,应在建立初应力后开始量测,测得的伸长值还应加上初应力以下的推算伸长值;即:△L=△L1+△L2式中:△L1——从初应力到最大张拉应力间的实测伸长值m ;△L2——初应力以下的推算伸长值m ;关于初应力的取值,根据公路规的规定,一般可取张拉控制应力的10%~25%;初应力钢筋的实际伸长值,应以实际伸长值与实测应力之间的关系线为依据,也可采用相邻级的伸长值;2、钢绞线实测伸长值的经验公式:L实=L b—L a/—L无阻 1L实=L b—L a+L a—L c—L无阻 2L实——钢绞线实际伸长量L a——张拉应力为20%б0时,梁段两端千斤顶活塞行程之和;L b——张拉应力为100%б0时,梁段两端千斤顶活塞行程之和;L c——张拉应力为10%б0时,梁段两端千斤顶活塞行程之和;L无阻——梁段两端千斤顶内钢绞线的无阻伸长量,即:L无阻=PL/E P A P对于以上公式,当钢绞线较短,角度较小时,用2式计算更接近设计伸长量;当钢绞线较长,角度较大时,用1式计算更接近设计伸长量;这是由于预应力筋的长度及弯起角度决定实测伸长量的计算公式,钢绞线较短、弯起角度较小时,摩阻力所引起的预应力损失也较小,10%~20%Σ控钢绞线的伸长量基本上反映了真实变化,0~10%的伸长量可按相邻级别10%~20%推算;钢绞线较长、弯起角度较大时,摩阻力所引起的预应力损失也较大,故初应力采用20%Σ控用20%~100%推算0~10%的伸长量更准确;3、在施工过程中直接测量张拉端千斤顶活塞伸出量的方法存在一定误差,这是因为工具锚端夹片张拉前经张拉操作人员用钢管敲紧后,在张拉到约10%б0开始到100%б0时,因钢绞线受力,夹片会向内滑动,这样通过测量千斤顶的伸长量而得到的量比钢绞线的实际伸长量偏大;因此,我们采用了量测钢绞线绝对伸长值的方法,测得的伸长值须考虑工具锚处钢绞线回缩及夹片滑移等影响,测量方法如下图3所示:4、现以图2所示的预应力钢绞线为列介绍实际伸长值计算方法:对于多束群锚式钢绞线我们采用分级群张法,图2中钢绞线为7束,采用1500KN 千斤顶,根据不同应力下实测伸长值的量测,最后得出总伸长值及与设计伸长值的偏差如下表,并且用与设计伸长值的偏差是否在±6%之内来校核;预应力钢筋编号理论伸长值mm左端右端左端右端实测伸长值mm伸长值偏差% 20%б控/50%б控б控50%б控/б控11 605 69/94 54/183 195 21/24412 605 67/97 61/179 199 19/26613 605 63/91 58/181 197 18/23914 605 65/98 51/178 198 22/238 595注:由于钢绞线右端伸长值大于200mm,千斤顶需要倒一次顶才能完成张拉,因此右端出现了在50%б控时的两个读数,分别表示在从初应力张拉到50%б控时的读数和千斤顶倒顶后张拉到50%б控时的读数;三、问题与思考经张拉实践发现,预应力钢筋的实际伸长值与理论伸长值之间有一定的误差,究其原因,主要有:预应力钢筋的实际弹性模量与计算时的取值不一致;千斤顶的拉力不准确;孔道的摩擦损失计算与实际不符;量测误差等;特别是弹性模量的取值是否正确,对伸长值的计算影响较大;必要时,预应力钢筋的弹性模量、锚圈口及孔道摩阻损失应通过试验测定,计算时予以调整;。
预应力张拉伸长量计算

后张法预应力张拉伸长量计算与测定分析一、理论伸长量计算1、理论公式:(1)根据《公路桥涵施工技术规范》(JTJ041— 2000),钢绞线理论伸长量计算公式如下:P P L力筋的工作长度和线型段落的划分。
后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,然后累加。
于是上式中:L L1 L2 L iA p E式中:P P——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,曲线筋计算方法见②式;L――预应力筋的长度;A P---- 预应力筋的截面面积(mm);E P――预应力筋的弹性模量(N/mm2);P――预应力筋张拉端的张拉力(N);x――从张拉端至计算截面的孔道长度(m);――从张拉端至计算截面的孔道部分切线的夹角之和(rad);k――孔道每米局部偏差对摩擦的影响系数;――预应力筋与孔道壁的摩擦系数。
(2)计算理论伸长值,要先确定预应P p值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“ Pp ”更为合适;(3)计算时也可采取应力计算方法,各点应力公式如下:i 1 kx i 1各点平均应力公式为:kxi 1 e "kx i各点伸长值计算公式为:X iP i2、根据规范中理论伸长值的公式,举例说明计算方法:某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端张拉。
箱梁中预应力钢束采用高强度低松弛钢绞线(①15.24),极限抗拉强度f p=1860Mpa,锚下控制应力6 o=0.75f p=1395Mpa。
K 取0.0015/m, 尸0.25。
P pe kxkxL iP p L iA p E pPiL i(1)单端张拉预应力筋理论伸长值计算:预应力筋分布图(1) 伸长值计算如下表:(2)两端非对称张拉计算:预应力筋分布图(2)伸长值计算如下表:若预应力钢筋为两端对称张拉,则只需计算出一半预应力筋的伸长值,然后乘以2即得总的伸长量。
箱梁预应力张拉力和理论伸长量计算

25m箱梁预应力张拉和理论伸长量计算一、张拉力计算〔校核图纸〕1、钢绞线参数Øj钢绞线截面积:A=140mm2,标准强度:R b y=1860Mpa,弹性模量E y=1.95×105Mpa2、张拉力计算a、单根钢绞线张拉力P=5 R b y×A=5×1860×106×140×10-6Knb、每束张拉力(中跨梁)N1~N2〔4索〕:P总=1×4=Kn〔标准〕*1.02= KnN3~N4〔3索〕:P总=1×3=Kn〔标准〕= Knc、每束张拉力(边跨梁)N1~N4〔4索〕:P总=1×4=Kn〔标准〕Kn二、设计图纸中钢绞线中有直线和曲线分布,且有故P≠P P(1)中跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕〔2〕、边跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕备注:以上终点力P P〔KN〕、ΔL〔mm〕伸长量根据以下公式计算P〔1- e-(kx+μθ)〕〔1〕、P P= kx+μθP P L〔2〕、ΔL= A P E P35m箱梁预应力张拉和理论伸长量计算一、张拉力计算〔校核图纸〕1、钢绞线参数Øj钢绞线截面积:A=140mm2,标准强度:R b y=1860Mpa,弹性模量E y=1.95×105Mpa2、张拉力计算a、单根钢绞线张拉力P=5 R b y×A=5×1860×106×140×10-6Knb、每束张拉力(中跨梁)N1~N5〔4索〕:P总=1×4=Kn〔标准〕*1.02= Knc、每束张拉力(边跨梁)N1、N5〔4索〕:P总=1×4=Kn〔标准〕*1.02= KnN2~N4〔5索〕:P总=1×5=Kn〔标准〕*1.02= Kn二、设计图纸中钢绞线中有直线和曲线分布,且有故P≠P P〔1〕、中跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕1.5:N5钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N5:理论计算值〔根据设计〕〔2〕、边跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N3:理论计算值〔根据设计〕1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕1.5:N5钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N5:理论计算值〔根据设计〕备注:以上终点力P P〔KN〕、ΔL〔mm〕伸长量根据以下公式计算P〔1- e-(kx+μθ)〕〔1〕、P P= kx+μθP P L〔2〕、ΔL= A P E P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后张法预应力张拉伸长 量计算与测定分析
一、理论伸长量计算 1、理论公式: (1)根据《公路桥涵施工技术规范》(JTJ041—2000),钢绞线理论伸长量计算公式如下: P
P P E A L
P L =∆ ①
()()
μθ
μθ+-=+-kx e P P kx P 1 ②
式中:P P ——预应力筋的平均张拉力
(N ),直线筋取张拉端的拉力,曲线筋计算方法见②式;
L ——预应力筋的长度;
A P ——预应力筋的截面面积
(mm 2);
E P ——预应力筋的弹性模量(N/mm 2);
P ——预应力筋张拉端的张拉力(N );
x ——从张拉端至计算截面的孔道长度(m);
θ——从张拉端至计算截面的孔道部分切线的夹角之和(rad);
k ——孔道每米局部偏差对摩擦的影响系数;
μ——预应力筋与孔道壁的摩擦
系数。
(2)计算理论伸长值,要先确定预应
力筋的工作长度和线型段落的划分。
后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,
然后累加。
于是上式中: i L L L L ∆+∆+∆=∆ 21
P
P i p i E A L P L i =
∆
P p 值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“Pp i ”更为合适; (3)计算时也可采取应力计算方法,各点应力公式如下:
()()()()
111--+--⨯=i i kx i i e
μθσσ
各点平均应力公式为:
()()i
i kx i pi
kx e i
i
μθσσμθ+-=
+-1 各点伸长值计算公式为:
p
i
p i E x L i
σ=∆ 2、根据规范中理论伸长值的公式,举例说明计算方法:
某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端张拉。
箱梁中预应力钢束采用高强度低松弛钢绞线(Φ),极限抗拉强度f p =1860Mpa ,锚下控制应力б0==1395Mpa 。
K 取m ,µ=。
(1)单端张拉预应力筋理论伸长值计算:
预应力筋分布图(1)
(2)两端非对称张拉计算:
预应力筋分布图(2)伸长值计算如下表:
若预应力钢筋为两端对称张拉,则只需计算出一半预应力筋的伸长值,然后乘以2即得总的伸长量。
注:由于采用1500KN千斤顶张拉,根据实测伸长值为量测大缸外露长度的方法,则计算理论伸长值时应加缸内长度约500mm。
而锚固端长约470mm,应在计算理论伸长值时扣除。
由于两数对于伸长值的计算相差甚微,可以抵消,因此在计算中未记入。
二、实测伸长值的测定
1、预应力钢筋张拉时的实际伸长值△L,应在建立初应力后开始量测,测得的伸长值还应加上初应力以下的推算伸长值。
即:
△L=△L
1+△L
2
式中:△L
1
——从初应力到最大张拉应力间的实测伸长值(m );
△L
2——初应力以下的推算伸
长值(m )。
关于初应力的取值,根据《公路
规》的规定,一般可取张拉控制应力
的10%~25%。
初应力钢筋的实际伸长
值,应以实际伸长值与实测应力之间
的关系线为依据,也可采用相邻级的
伸长值。
2、钢绞线实测伸长值的经验公
式:
L实=(L b—L a)/—L无阻(1)
L实=[(L b—L a)+(L a—L c)] —L无阻(2)
L
实
——钢绞线实际伸长量
L
a
——张拉应力为20%б
时,梁段
两端千斤顶活塞行程之和;
L
b
——张拉应力为100%б
时,梁
段两端千斤顶活塞行程之和;
L
c
——张拉应力为10%б
时,梁段
两端千斤顶活塞行程之和;
L
无阻
——梁段两端千斤顶内钢绞
线的无阻伸长量,即:
L
无阻=PL/E
P
A
P
对于以上公式,当钢绞线较短,角度较小时,用(2)式计算更接近设计伸长量;当钢绞线较长,角度较大时,用(1)式计算更接近设计伸长量。
这是由于预应力筋的长度及弯起角度决定实测伸长量的计算公式,钢绞线较短、弯起角度较小时,摩阻力所引起的预应力损失也较小,10%~20%Σ
控钢绞线的伸长量基本上反映了真实变化,0~10%的伸长量可按相邻级别10%~20%推算。
钢绞线较长、弯起角度较大时,摩阻力所引起的预应力损失也较大,故初应力采用20%Σ
控
用
20%~100%推算0~10%的伸长量更准确。
3、在施工过程中直接测量张拉端千斤顶活塞伸出量的方法存在一定误差,这是因为工具锚端夹片张拉前经张拉操作人员用钢管敲紧后,在张拉
到约10%б
开始到100%б
时,因钢绞线受力,夹片会向内滑动,这样通过测量千斤顶的伸长量而得到的量比钢绞线的实际伸长量偏大。
因此,我们采用了量测钢绞线绝对伸长值的方法,测得的伸长值须考虑工具锚处钢绞线回缩及夹片滑移等影响,测量方法如下图(3)所示:
4、现以图(2)所示的预应力钢绞线为列介绍实际伸长值计算方法:
对于多束群锚式钢绞线我们采用分级群张法,图(2)中钢绞线为7束,采用1500KN 千斤顶,根据不同应力下实测伸长值的量测,最后得出总伸长值及与设计伸长值的偏差(如下表),并且用与设计伸长值的偏差是否在±6%之内来校核。
预应力钢筋编号理论伸长
值(mm)
左端右端左端右端实测伸长
值(mm)
伸长值偏
差(%)20%б控/50%б控б控50%б控/б控
1(1)60569/9454/18319521/244
1(2)60567/9761/17919919/266
1(3)60563/9158/18119718/239
1(4)60565/9851/17819822/238595
注:由于钢绞线右端伸长值大于200mm,千斤顶需要倒一次顶才能完成张拉,因此右端出现了在50%б控时的两个读数,分别表示在从初应力张拉到50%б控时的读数和千斤顶倒顶后张拉到50%б控时的读数。
三、问题与思考
经张拉实践发现,预应力钢筋的实际伸长值与理论伸长值之间有一定的误差,究其原因,主要有:预应力钢筋的实际弹性模量与计算时的取值不一致;千斤顶的拉力不准确;孔道的摩擦损失计算与实际不符;量测误差等。
特别是弹性模量的取值是否正确,对伸长值的计算影响较大。
必要时,预应力钢筋的弹性模量、锚圈口及孔道摩阻损失应通过试验测定,计算时予以调整。