有理数的乘法(教师版+学生版)
有理数的乘除与乘方-讲义(学生版)

有理数的乘除与乘方一、课堂目标1.理解有理数的乘除运算法则,会用法则及运算律进行计算.2.理解有理数乘方的概念,会结合有理数的四则运算法则进行混合运算.二、知识引入小学我们学过正数和0之间的四则运算,比如我们会计算 、、、、、 等等这样的算式;进入初中,正负数的引入导致了数系的扩充、因此初中的计算要分为两部分——符号与绝对值——进行讨论,所有的运算都要先定符号、再定数值;当我们遇到正数与负数、负数与0的四则运算,比如 、 等等,该如何定号和定值呢?通过小学的学习我们知道可以理解为(即个相加),所以;也知道可以理解为的相反数;那么完成下面填空:=__________=__________;__________=__________;__________=__________.填完空你发现有理数乘法计算过程中有什么规律吗?三、知识讲解1. 有理数的乘法有理数乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与 相乘,都得 .【运算步骤】先确定积的符号,再求积的绝对值、即把两个因数的绝对值相乘;因数中有 则积为 .【推广】多个数相乘时,先确定积的符号:负因数有奇数个则积为负数、负因数有偶数个则积为正数,再求积的绝对值、即把每个因数的绝对值相乘;因数中有 则积为.(简称:奇负偶正)经典例题1(1)(2)(3)(4)计算: .. ..思路梳理知识点:1、2、3、题目练习11..2.计算:.(1)(2)3.填空:..4.()有理数乘法运算律有理数乘法运算律()乘法交换律:.()乘法结合律:.()乘法分配律:.【易错点津】()乘法交换律和乘法结合律是指因数的位置交换、因数的结合,它们都包含自身符号.()运用乘法分配律时,不要漏乘,并要注意符号,如.经典例题2(1)(2)1.计算:..思路梳理知识点:1、2、3、2.运用简便方法计算:.思路梳理知识点:1、2、3、题目练习21.计算:.2.计算: .(1)3.计算:.4..2. 有理数的除法倒数倒数:乘积是的两个数互为倒数.负倒数:乘积是的两个数互为负倒数.【注意】没有倒数和负倒数.【知识拓展】()根据乘法法则中“同号得正”可知互为倒数的两个数符号相同,即正数的倒数是正数,负数的倒数是负数.()倒数是本身的数只有和,没有倒数.()的倒数可以用表示、负倒数可以用表示.经典例题3的倒数是 ,负倒数是 .思路梳理知识点:1、 2、 3、题目练习3(1)(2)(3)(4)1.求倒数:的倒数是 .的倒数是 .的倒数是 .的倒数是 .2.若两数之积为,则这两数互为 ;若两数之商为,则这两数 ;若两数之积为,则这两数互为 ;若两数之商为,则这两数互为 .有理数的除法与小学学过的除法一样,有理数的除法和乘法也是互逆的;。
2.2.1有理数的乘法教学设计2024-2025学年人教版数学七年级上册

解答:-2 × 3 = -6。这是一个简单的异号相乘的例子。
3. 例题3:计算0 × 3。
解答:0 × 3 = 0。这是一个任何数与0相乘的例子。
4. 例题4:计算3 × (-2)。
解答:3 × (-2) = -6。这是一个正数与负数相乘的例子。
5. 例题5:计算(-3) × 4。
2.2.1 有理数的乘法 教学设计 2024-2025学年人教版数学七年级上册
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容分析
本节课的主要教学内容是《2.2.1 有理数的乘法》,该章节属于2024-2025学年人教版数学七年级上册。教学内容将包括以下几个方面:
1. 有理数乘法的定义和规则:学生将学习有理数乘法的概念,掌握有理数相乘的法则,理解乘法运算中符号的确定方法。
2. 课程平台:学校提供的教学管理平台,用于发布课程资料、布置作业和进行课堂讨论。
3. 信息化资源:数学教学视频、PPT课件、在线数学题库、数学学习APP。
4. 教学手段:讲解、示范、练习、讨论、小组合作、互动提问、在线测试。
五、教学流程
一、导入新课(用时5分钟)
同学们,今天我们将要学习的是《2.2.1 有理数的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将有理数相乘的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘法的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
有理数的乘法教案人教版

有理数的乘法教案人教版有理数乘法运算是继加法和减法运算后的又一种运算,也是有理数除法运算和乘方运算的基础,学好有理数乘法运算是学好有理数运算的关键,接下来店铺为你整理了有理数的乘法教案人教版,一起来看看吧。
有理数的乘法教案人教版【教学目标】(一)知识技能1.使学生掌握多个有理数相乘的积的符号法则;2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;(二)过程方法在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。
培养学生观察、归纳、概括能力及运算能力.(三)情感态度通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。
通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。
培养学生的观察和分析能力,渗透转化的教学思想。
教学重点乘法的符号法则和乘法的运算律.教学难点几个有理数相乘的积的符号的确定.【复习引入】1.有理数乘法法则是什么?2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);(5)-2×3×(-4); (6) 97×0×(-6);(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);(11)(-1)×(-2)×(-3)×(-4)×(-5).有理数的乘法教学过程1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试:(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.(2)第一个因数是负数时,可省略括号.2.乘法运算律在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律计算:(1)5×(-6); (2)(-6)×5;(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.代数式表达:(ab)c=a(bc).例2,用简便方法计算:(1)(-5)×89.2×(-2)(2)(-8)×(-7.2)×(-2.5)×解:(1)原式=5×2×89.2……交换因数位置,决定积的符号=892………………按顺序依次运算(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号=-60………………按顺序依次运算有理数的乘法课堂作业1.确定积的符号:积的符号 ;积的符号 ;积的符号。
2023-2024学年七年级上数学:有理数的乘除法(精讲教师版)

自学笔记: 1.两数相乘,同号得正,异号得负,并把绝对值相乘. 2.任何数同 0 相乘,都得 0.
第 5页(共 12页)
命题方向: 利用有理数的乘法计算.
名师点拨: 先根据有理数乘法的符号法则判断符号,再把绝对值相乘即可得到结 果.
【精讲 4】计算 2 (3) 的结果是 ( )
A.6
B. 6
8
【精讲 3】 0.2 的倒数是 ( )
A. 1
5
B. 1
5
C.5
D. 5
【分析】本题主要考查倒数的概念,倒数的定义:若两个数的乘积是 1,我们就
称这两个数互为倒数.
【答案】D
【解析】 0.2 1 ,0.2 的倒数是 5 .故选:D.
5
【练习 1】 1 的倒数是 ( )
9
A. 9
B.9
C. 1
2023-2024 学年七年级上数学:第一章
1.4 有理数的乘除法
有理数
1.有理数的乘法 (1)有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对 值相乘;任何数与 0 相乘,都得 0; (2)倒数的定义:乘积为 1 的两个数互为倒数. 注意: ①0 没有倒数; ②求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即 可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母
a 4.真分数的倒数是假分数,真分数的倒数大于 1,也大于它本身;
第 3页(共 12页)
假分数的倒数小于或等于 1;带分数的倒数小于 1.
【精讲 1】 3 的倒数为 ( )
A. 3
B. 1
3
C.3
D. 1
3
【分析】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:
2.2.1有理数的乘法(第二课时)教案++2024—2025学年人教版数学七年级上册

初中数学集体备课活页纸学科初中数学主备人节次第周第节课题2.2.1第2课时有理数的乘法课时 1 课型新授课教学目标1.理解和掌握乘法交换律,乘法结合律和乘法分配律;能应用运算律使运算简便;2.培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣.3.能够利用有理数的运算律进行简便计算.教学重点理解和掌握乘法交换律,乘法结合律和乘法分配律教学难点灵活运用乘法的运算律简化运算.课堂教学设计教学环节教学过程二次备课情景引入问题1:有理数的乘法法则是什么?两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数和零相乘,都得0问题2:如何进行多个有理数的乘法运算?(1)定号(奇负偶正)(2)算值(积的绝对值)问题3:小学时候大家学过乘法的哪些运算律?乘法交换律、乘法结合律、乘法分配律新知探究探究1 计算下列各题:5×(-6)= (-4)×(-8)= (-9)×4=(-6)×5= (-8)×(-4)= 4×(-9)=从上述计算中,你能得出什么结论?探究2 计算下列各题:[3×(-4)]×(-5)= [2×(-3)]×(-6)= 3×[(-4)×(-5)]= 2×[(-3)×(-6)]= 从上述计算中,你能得出什么结论?探究3 计算下列各题:5×[3+(-7)]= 10×[4+(-3)]=5×3+5×(-7)= 10×4+10×(-3)= 从上述计算中,你能得出什么结论?巩固练习例3 (1)计算2×3×0.5×(-7); (2)用两种方法计算(216141-+)×12.1.计算:(1) (6541121-+-) ×36.(2)161519×(-8).探究4 改变例3(1)的乘积式子中某些乘数的符号,得到下列一些式子观察这些式子,它们的积是正的还是负的?2×3×(-0.5)×(-7),2×(-3)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).思考:几个不为0的数相乘,积的符号与负的乘数的个数之间有什么关系? 如果有乘数为0,那么积有什么特点?2.[2024·绍兴越城区月考]4个非零有理数相乘,积的符号是负号,则这4个有理数中,正数有( )A.1个B.2个C.3个D.1个或3个拓展提高1.计算:(1)(125-)×158×21×(32-);(2)(-1)×(45-)×158×23×(32-)×0×(-1)2. [2024上海宝山区期末]若-3,5,a的积是一个负数,则a的值可以是( )A.-15B.-2C.0D.153. 【新考向·知识情境化】小阳在计算65-×71×■时,不小心将一滴墨水滴在了本子上,盖住了其中一个数字,导致他无法计算,在求助老师时,老师告诉他:“被盖住的数字是4,7,10,11中的一个,并且这道题直接用乘法结合律来计算会非常简便”,则被盖住的数字最可能是( )A.4B.7C.10D.11课堂小结有理数乘法运算律1.乘法交换律:两个数相乘,交换两个因数的位置,积不变.ab=ba2.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.(ab)c=a(bc)3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=a(b+c)板书设计2.2.1第2课时有理数的乘法1.ab=ba2. (ab)c=a(bc)3.a(b+c)=a(b+c)教学后记。
新人教七年级上册第一单元第1课时 有理数的乘法教案

新人教七年级上册第一单元1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275.【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。
有理数的乘法教案人教版有理数的乘法教案优秀6篇

【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
人教新版(2024)七年级数学上册-2.2.1 有理数的乘法(教案)

2.2.1有理数的乘法第1课时【教学目标】1.理解有理数的乘法法则.2.能利用乘法法则熟练进行有理数的乘法运算.3.理解倒数的意义,会求一个有理数的倒数.4.在经历探究有理数乘法法则的过程中,通过观察、分析、归纳、概括,得出有理数乘法的规律,建立数感和符号感;体验数形结合思想、分类讨论思想、归纳法在数学中的应用.【教学重点难点】重点:有理数的符号法则.难点:利用法则熟练进行有理数的乘法运算.【教学过程】一、创设情境前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2×3=2+2+2.2.请将(-2)+(-2)+(-2)写成乘法算式.答案:(-2)+(-2)+(-2)=(-2)×3.我们已经熟悉正数和0的乘法运算,但是在实际问题中还会遇到超出正数范围的乘法运算,它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探究归纳探究点1:有理数的乘法运算问题1:一只蜗牛,沿一条东西方向的跑道,以每分钟3分米的速度一直向东爬行.记蜗牛原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它位于这一点的哪个方向?相距多少米?分别用算式表示.填一填:(1)如果这只蜗牛向右爬行2厘米记为+2厘米,那么向左爬行2厘米应记为.(2)如果3分钟后记为+3分钟,那么3分钟前应记为.追问1:观察下面的四个乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,积逐次递减3.追问2:观察下面的三个乘法算式,说明以上规律在引入负数后是否仍然成立?(结合蜗牛1分钟前、2分钟前、3分钟前的位置思考) 3×(-1)=-3;3×(-2)=-6;3×(-3)=-9.问题2:两只小虫,在同一地点O处,它们沿一条东西方向的跑道爬行.若一只分别以每分钟3米、2米、1米、0米的速度向东爬行3分钟,另一只分别以每分钟1米、2米、3米的速度向西爬行3分钟,那么它们爬行后的位置分别在这一点的哪个方向?相距多少米?追问1:观察下面的算式,你又能发现什么规律吗?3×3=9,2×3=6,1×3=3,0×3=0.师生活动:规律是随着前一乘数逐次递减1,积逐次递减3.追问2:要使这个规律在引入负数后仍成立,那么应有(-1)×3=-3;(-2)×3=-6;(-3)×3=-9.追问3:从符号和绝对值两个角度观察上述算式,你发现有什么规律?【归纳总结】①从符号角度观察,可归纳积的特点是:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积为负数.②从绝对值角度观察,可归纳积的特点是:积的绝对值等于各乘数绝对值的积.问题3:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向西爬行.记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它分别位于这一点的哪个方向?相距多少米?追问1:利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.师生活动:规律:随着后一乘数逐次递减1,积逐次增加3.追问2:按照上述规律,下面的空格可以各填什么数,从中可以归纳出什么结论?(-3)×(-1)=;(-3)×(-2)=;(-3)×(-3)=.【归纳总结】负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.问题4:你能从中归纳有理数乘法的法则吗?(也就是结果的符号怎么定?绝对值怎么算?)有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.符号表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=a×b,(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b),c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.问题5:讨论,进一步深化理解有理数乘法的符号法则.(1)若a<0,b>0,则ab0.(2)若a<0,b<0,则ab0.(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?【典例剖析】例1:教材P39【例1】归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【解题反思】观察T(1)8×(-1)=-8.你有什么发现?结论:一个数同-1相乘,得原数的相反数.【针对性训练】教材P40练习T1探究点2:倒数问题1:观察例1T(2),有什么特点?要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.问题2:数a(a≠0)的倒数是什么?在这里为什么规定a≠0?【针对训练】教材P40练习T3.【典例剖析】例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1 km气温的变化量为-6 ℃,攀登3 km后,气温有什么变化?【针对性训练】教材P40练习T2【解题反思】利用有理数乘法解决实际问题,先要把实际问题转化为数学问题,建立有理数乘法算式,再根据有理数乘法的法则进行计算得出结论.三、检测反馈1.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数3.填空:(1)-7的倒数是,它的相反数是,它的绝对值是 .(2)-225的倒数是 ,-2.5的倒数是 . (3)倒数等于它本身的有理数是 .4.计算:(1)212×(-4).(2)(-710)×(-521). (3)(-10.8)×(-527).(4)(-312)×0. 四、交流反思1.有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.2.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.3.乘积是1的两个数互为倒数.五、布置作业P47T1,2,3六、板书设计七、教学反思本节课通过比较数字算式蕴含的规律性,类比发现有理数乘法法则,教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面,因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.第2课时【教学目标】1.掌握乘法的分配律,并能灵活地运用.2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.3.经历探索积的符号的过程,锻炼学生观察、分析、总结的能力.【教学重点难点】重点:熟练进行多个有理数的乘法运算,探索有理数的乘法运算律并熟练运用运算律进行计算.难点:有理数的乘法运算律的正确、灵活运用.【教学过程】一、创设情境温故而知新你会计算下列各题吗?试试看!(1)5×(-6).(2)(-6)×5.(3)[3×(-4)]×(-5).(4)3×[(-4)×(-5)].师:那么多个有理数相乘应如何进行?【通过简单的旧知识复习,让学生快速进入学习情境,引出课题,激发学生的学习兴趣】二、探究归纳探究点1:乘法的运算律问题1:比较创设情境中的结果,你有什么发现?追问:请再举几个例子验证你的发现.问题2:计算过程能够使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?【归纳总结】乘法交换律:两个数相乘,交换乘数的位置,积不变.ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).(推广:abc=(ab)c=a(bc)=(ac)b)师生活动:教师解释用公式表示的形式中:这里的a,b可以取任意的有理数,讲解“a×b→a•b→ab”的过程.这也是培养学生的符号意识、抽象思维的机会.问题3:计算:(1)5×[3+(-7)];(2)5×3+5×(-7).追问:你有什么发现?请再举几个例子验证你的发现.从上述的计算中,你能得出什么结论?【归纳总结】分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.【典例剖析】例1:教材P41【例3】比较T(2)两种解法,它们在运算顺序上有什么区别?解法二运用了什么运算律?哪种解法运算简便?找出错误,并改正.特别提醒:1.不要漏掉符号.2.不要漏乘.注意:1.乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.2.分配律还可写成:a×b+a×c=a×(b+c),利用它有时也可以简化计算.3.字母a ,b ,c 可以表示正数、负数,也可以表示零,即a ,b ,c 可以表示任意有理数.【针对性训练】教材P43练习T1探究点2:多个有理数相乘问题4:改变例3(1)的乘积式子中某些乘数的符号,得到下列的一些式子.它们的积是正的还是负的?2×3×(-0.5)×(-7);2×(-3)×(-0.5)×(-7);(-2)×(-3)×(-0.5)×(-7);师:请注意观察这3个式子,积的符号与哪种因数的个数有关系?积的绝对值与各因数的绝对值的积有什么关系?要点归纳:1.几个不是0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.积的绝对值是各个乘数的绝对值的积.2.几个数相乘,如果其中有乘数为0,那么积等于0.【典例剖析】例2:计算:(1)(-2)×6×(-2)×(-7).(2) (-313)×(-0.12)×(-214)×3313. (3)2 0112 012×(-0.359 8)×793×(-14)×0×(-2 0137964). 【思路点拨】观察乘数中有无0→有0则积为0,无0则先确定积的符号→再计算绝对值.【自主解答】(1)(-2)×6×(-2)×(-7)=-2×6×2×7=-168.(2) (-313)×(-0.12)×(-214)×3313. =-103×325×94×1003=-30.(3)原式=0.【总结提升】多个有理数乘法的运算步骤1.观察乘数中有没有0,若有,则积等于0.2.若乘数中没有0,观察负的乘数的个数,确定积的符号.3.各乘数的绝对值的积即为积的绝对值.【针对性训练】教材P43练习T2三、检测反馈1.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( )A.1个或3个B.1个或2个C.2个或4个D.3个或4个2.若两个有理数的和与它们的积都是正数,则这两个数 ( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数3.计算(-2)×(3-12),用分配律计算过程正确的是 ( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12)C.2×3-(-2)×(-12) D.(-2)×3+2×(-12) 4.计算:(1)(-85)×(-25)×(-4).(2)(910-115)×30. (3)(-78)×15×(-117). (4)(-65)×(-23)+(-65)×(+173). 5.(1)(-100)×(310-12+15-0.1). (2)(-78)×15×(-117). (3)(910-115)×30. (4)992425×(-25). (5)(-7)×(42.07)+(-2.07)×(-7).四、本课小结项目内容 乘法的运算律 (1)乘法交换律: . (2)乘法结合律: .(3)乘法对加法的分配律: .多个有 理数 相乘几个不为0的数相乘,积的符号由 决定.当负因数有 个时,积为 .当负因数有 个时,积为 .几个数相乘,其中有一个因数为0,积就为 . 五、布置作业P48T4,5六、板书设计七、教学反思1.在使用有理数乘法的三条运算律时,与加法的运算律一样,一定要注意将有理数的符号进行整体的移动,不能将符号丢掉或弄错.两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.2.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确.特别是乘法的分配律,涉及有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用.教材例3就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.因此,要通过编制一些正、反向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练、灵活地应用乘法的运算律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师版2.3有理数的乘法(1)【知识清单】一、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘,积为零. 二、倒数:1、定义:若两个有理数的乘积为1,就称这两个有理数互为倒数(如:3与31、43-与34-…等).2、注意:①零没有倒数 (因为0乘以任何数都等于0,不等于1,所以0没有倒数);②求分数的倒数,就是把分数的分子分母颠倒位置.若一个数是带分数要先把它化成假分数,然后再求倒数;③正数的倒数是正数,负数的倒数是负数. 三、有理数乘法运算步骤:①先确定积的符号;有若干不为0的有理数相乘时,应该先确定积的符号(当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负);②求出各因数的绝对值的积;③若其中一个因数为0,则积为0.(3) (-4.3)×0×(-【考点】有理数的乘法.【分析】几个不为0的有理数相乘时,积的符号由负因数的个数决定.当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负;几个数中有带分数要先把它化成假分数,有小数化成分数;几个数相乘若其中一个因数为0,则积为0.【解答】 (1) 原式=3×2×4×1=24; (2) 原式=-6; (3) 原式=0. 【点评】有理数乘积与小学知识中的不同就在于符号的确定,要把符号的确定作为学习的重点.例题2、定义一种新运算: a △b =a ×b -a -b +2,如2△3=2×3-2-3+2=3, 则2△(-3)比(-3)△4( A ).A 大B 小C 相等D 以上均不对【考点】有理数的乘法.【分析】根据新定义a △b =a ×b -a -b +2,分别算出1△(-3)和3△(-4)的值,然后再进行比较即可.【解答】∵2△(-3)=2×(-3)-2-(-3)+2=-3,(-3)△4=(-3)×4-(-3)-4+2=-11 , -3>-11, ∴2△(-3)>(-3)△4【点评】此题考查了有理数的混合运算的知识,解题的关键是由新定义转化为加、减、乘、除的运算. 【夯实基础】1、下列各组数中,互为倒数的是( ) A .3与-3 B .-5与51 C .201911-与20202019- D .0与0 2、已知有理数a ,b 满足ab <0, a +b >0,则下列结论正确的是( )A .a ,b 一正一负B .a ,b 一正一负,且b a =C .a ,b 一正一负,且负数的绝对值较大D .a ,b 一正一负,且正数的绝对值较大3、在-3,4,5,-6这四个数中任取两个数相乘,所得的积最大的是( ) A .18 B .-12 C .20 D .304、有理数a ,b 在数轴上对应的点的位置如图所示,则下列式子不正确的是( )A .a +b >0B .ab (a -b )>0C .b a ->-D .a b -=a -b5、定义一种新运算是a △b =ab -b ×b ,则3△(-5)的值为 .6、若5=a ,7=b ,且b a b a -=-,则ab = .7、如图是一个简单的数值运算程序,当输入的值为5时,输出的数值是 . 8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95); (3) (-7.6)×0×(-20192018).9、某代理商用2000元购进一批货物,第二天售出获利10%,一周后又以上次售出价的90%购进一批同样的货物,由于无人购买,老板决定按第二次购进价的九折再次第4题图第7题图售出,该代理商在这两次交易中的盈亏情况?【提优特训】10、倒数等于它本身的数有( )A .1个B .2个C .3个D .4个 11、若4=x ,7=y ,且xy <0,则x +y 的值为 ( )A .11或-11B .3或-3C .11或3D .-11或-312、下列说法:①互为相反数的两个数的积是负数;②任何数的倒数都小于1;③同号的两个数,原数大的倒数反而小;④几个有理数相乘,当正因数有奇数个时,积为负;⑤0的倒数是0. 其中正确的个数是( )A .1个B .2个C .3个D .4个 13、若a ,b 是整数,且ab =15,则a +b 的最大值与最小值的差是( )A .-16B .-32C .16D .3214、已知a 与b 互为相反数,c 和d 互为倒数,e 的绝对值等于2,则5a -3cde +5b 的值为 .15、绝对值小于2019的所有整数的积是 .16、如果两个数相乘的结果为负数,其中有几个负因数?如果三个数相乘的结果为负数,其中又有几个负因数?四个数,五个数,六个数呢?找出规律后,在回答: (1) 如果2019个数相乘的结果为负数,那么其中负因数的个数有几种可能情况? (2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数的个数有几种可能情况?17、学生李明在做将某数乘以-3.37时,由于不小心漏乘了一个负号,所得的数比正确结果小1.348,那么正确的结果是多少?18、某网店去年1~3月份每月平均亏损1.8万元,4~6月份每月平均盈利2.2万元,7~10月份每月平均盈利1.9万元,11~12月份每月平均亏损2.5万元,这个网店去年总的盈亏情况如何?19、阅读下列材料:请你观察下列等式.2×2=4,2+2=4, 即2×2=2+2;214323=⨯,214323=+,即323323+=⨯; 315434=⨯,315434=+,即434434+=⨯; 416545=⨯,416545=+,即545545+=⨯; …(1)请你上述各式子的规律写出下一个式子; (2)请你观察上面的结构特点,归纳出一个猜想.20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负; (3)如果ab <0,a +b >0,b a >,试确定a ,b 的正负.【中考链接】 21、(2018•枣庄)21-的倒数是( ) A .-2 B .21- C .2 D .2122、(2018•通辽)20181的倒数是( ) A .2018 B .-2018C .20181-D .2018123、(2018•遂宁) -2×(-5)的值是( ) A .-7 B .7C .-10D .1024、(2018•吉林)计算(-1)×(-2)的结果 ( ) A .2 B .1C .-2D .-3参考答案1、C2、D3、C4、B5、-406、35±7、10 10、B 11、B 12、A 13、D 14、6± 15、0 21、A 22、A 23、D 24、A8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95); (3) (-7.6)×0×(-20192018). 解:(1)原式=417-×20=-85 (2)原式=518-×5×95=-10; (3)原式=0.9、解: 2000(1+10%)=2200,若三个数相乘,结果为负数,其中负因数有1个或3个,有213+=2可能;若四个数相乘,结果为负数,其中负因数有1个或3个,有24=2可能; 若五个数相乘,结果为负数,其中负因数有1个或3个或5个,有215+=3可能;若六个数相乘,结果为负数,其中负因数有1个或3个或5个,有26=2可能. 规律:几个数相乘,结果为负数,那么这其中负数的个数,为奇数个. (1) 若有2019个数相乘的结果为负数,那么其中有负因数的个数有几种可能情况?1—2019,一共(2019+1)÷2=1010个奇数 其中有负因数的个数有1010种可能(2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数个数有几种可能情况?①如果n 为偶数,那么负因数的个数有2n种可能; ②如果n 为奇数,那么负因数的个数有21+n 种可能. 17、解:设某数为x ,根据题意得,-3.37x -3.37x =1.348, 解得x =-0.2,所以,正确结果为-0.2×(-3.37)=0.674. 18、根据题意列式-1.8×3+2.2×3+1.9×4-2.5×2=-5.4+6.6+7.6-5 =-10.4+14.2 =3.8(万元).答:这个网店去年盈利3.8万元. 19、解:(1)517656=⨯,517656=+,即656656+=⨯ (2)nn n n n 1)2()1(1+=+⨯+,n n n n n 1)2()1(1+=+++, 即)1(1)1(1+++=+⨯+n nn n n n . 20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负;a>,试确定a,b的正负.(3)如果ab<0,a+b>0,b解:(1)∵ab<0,a-b>0,∴a>0,b<0;(2)∵ab<0,a-b<0,∴a<0,b>0;a>,(3)∵ab<0,a+b>0,b∴a>0,b<0;2.3有理数的乘法(2)【知识清单】 有理数乘法的运算律1、乘法交换律:两个数相乘,交换因数的位置,积不变. 字母表示:a ×b =b ×a2、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(a ×b )×c =a ×(b ×c )3、分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a ×(b +c )=a ×b +a ×c 【经典例题】例题1、如果四个不同的整数m ,n ,p ,q 满足(7-m )(7-n )(7-p )(7-q )=6,则m +n +p +q 等于( D )A .18B .24C .27D .28 【考点】有理数的乘法.【分析】因为m ,n ,p ,q 都是四个不同正整数,所以(7-m )、(7-n )、(7-p )、(7-q )都是不同的整数,四个不同的整数的积等于6,这四个整数为(-1)、(-2)、1、3,由此求得m ,n ,p ,q 的值,问题得解.【解答】解:因为(7-m )(7-n )(7-p )(7-q )=6, 每一个因数都是整数且都不相同, 那么只可能是-1,1,-2,3,由此得出m 、n 、p 、q 分别为8、6、9、4,所以,m +n +p +q =27.【点评】本题考查了有理数的乘法,解决本题的关键是一个正整数通过分解把它写为四个不同的整数.例题2、2019减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20191,求最后剩下的数. 1 【考点】有理数的混合运算.【点评】本题考查了数字的变化规律,根据题意列出算式是解决此题的关键. 【夯实基础】1、若五个有理数的积为负数,则其中负因数的个数为( )A .1个B .1个或2个C .1个或3个D .1个或3个或5个 2、下列运算中,错误的是( )A .-5×(-4) ×(-3) ×2=-120B .-4-12=2C .(-14)×(-6)×)32()72(-⨯+=16D .(-2)×(+7)-(-2)×3-2(-4)=-2×(7-3-4)=03、运用分配律计算976-×9时,你认为下列变形中最简便的是( )A .976-×9=)977(--×9B .976-×9=)976(--×9C .976-×9=)977(-×9D .976-×9=)976(---×94、对于算式2019×(-2017)+(-2019)×(-2018)-(-2019)分配律的逆用正确的是( )A. 2019×(-2017+2018)B. 2019×(-2017+2018-1)C. 2019×(-2017+2018+1)D. 2019×(-2017-2018-1)5、在等式4×□-3×□==-9的两个方框中分别填一个数,使这两个数为互为相反数且等式成立,则第一个“□”中填入的数为 .6、若干有理数相乘,将奇数个因数换成它的相反数,所得是结果与原来的结果一样,则原来的结果为 .7、计算(1-2) ×(3-4) ×(5-6) ×…×(2017-2018)= . 8、计算:(1)-40×(-83+521-43); (2)(-314)×(-5310)×(-133); (3)(-47)×)85(-+(-7)× 85; (4)-999×1789、王老师将甲乙两种股票同时卖出,其中甲种股票卖价1200元,盈利20%;乙种股票卖价也是1200元,但亏损20%,求王老师在这次交易中是盈利还是亏损?【提优特训】10、已知在5个数中有三个负数,则这5个有理数的乘积为( )A .小于0B .非正数C .等于0D .无法确定11、若xyz >0,则x ,y ,z 的值为 ( )A .都大于0B .两负一正C .都大于0或两负一正D .至少一个大于012、如图,A ,B 两点在数轴上表示的数分别为a ,b ,有下列结论:①ab <0;②b -a >0;③(a +1)(b -1)>0;④(a -1)(b +1)>0;⑤(a -b )(a +b )>0. 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个13、绝对值大于1.9且不大于5的所有负整数的积为( )A .-14B .-120C .0D .12014、某同学把5×(□-6)错抄为5×□-6,若正确答案为a ,抄错后的结果为b ,则a -b = .15、符号“f ”表示一种运算,它对一些数运算结果如下: (1) f (1)=0,f (2)=1,f (3)=2,f (4)=3,… (2) f (21)=2,f (31)=3,f (41)=4,f (51)=5,… 利用以上规律求f (2019)-f (20191)-f (2018)的值 . 16、一辆出租车的东西走向的一条街道上行驶,上午一共连续拉客17次,其中7次向东行驶,其余都是向西行驶,向东行驶每次的行程为11千米,向西行驶每次的行程为8千米. (1) 该出租车连续17次拉客后停在何处? (2) 该出租一共行驶了多少千米?17、用简便方法计算:第12题图(1) )227()317713(2221713-⨯-⨯⨯;(2) )175(116)1715()2252217(177116-⨯+-⨯--⨯(3) 2019×20202020-2020×2019201918、饲养场有158头牛和158只羊,1头牛每星期平均吃67千克草,1只羊每星期平均吃33千克草,求饲养场每星期要准备多少千克草?19、已知x 、y 、z 是三个有理数,若x <y ,x +y =0,且xyz >0,试判定x +z 的符号.20、甲、乙两位同学做一个乘法运算的游戏,游戏中规定:每人抽到4个数字,长方形表示对应数字前是正号,圆形表示对应数字前是负号,计算其积,结果数小者为胜. 请列式计算说明,甲、乙两位同学谁为胜者?【中考链接】21.(2018•枣庄)(3分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >0第20题图第21题图 第22题图22、(2018•北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>23、(2018•陕西)117-的倒数是 A .117 B .117-C .711 D .711-参考答案1、D2、C3、B4、C5、-96、07、-1 10、B 11、C 12、C 13、D 14、-24 15、-2019 21、B 22、B 23、D8、 解:(1)原式=-40×(-83)+(-40)×57+(-40)×(-43) =15-56+30=-11; (2)原式=-313×133×553=-553;(3)原式=47×85+(-7)×85=85×(47-7)=25; (4)原式=(-1000+1)×178=-178000+178=-177822.9、解:甲的原价:1200÷(1+20%)=1000元, 赚了:1200-1000=200元;乙的原价:1200÷(1-20%)=1500元, 赔了:1500-1200=300元; 合计是亏了300-200=100元. 16、 解:(1)设向东为正方向, 向东行驶了7×11km=77km 向西行驶了10×8km=80km 77km -80km=-3km , 故最后停在起始点西3km 处(2)一共行驶了77km+80km=157km17、解:(1)原式=)322722(2272221722-⨯⨯⨯- =)322722(2221-⨯-=)322()2221(7222221-⨯-+⨯-=-3+7=4;(2)原式=1751161715116177116⨯-⨯+⨯ =)1751715177(116-+⨯ =1161116=⨯; (3)原式=2019×2020×101-2020×2019×101 =2019×2020×(101-101)=0.18、解:根据题意列式:158×67+158×33=158×(67+33) =15800(千克)答:每星期要准备15800千克草. 19、解:∵x +y =0, ∴x 、y 是互为相反数, ∵x <y , ∴y >0,x <0. 又∵xyz >0,∴x 、y 、z 三个数中一定是两负一正, ∴z <0, ∴x +z <0.20、解:甲同学胜. 理由如下:甲同学:5.2×[-(-4)]×(-0.5)×[-(-6)]=-62.4. 乙同学:(-3)×(-2.8)×[-(-2)] ×1.5=25.2. 由于-62.4<25.2,所以甲同学胜.第20题图学生版2.3有理数的乘法(1)【知识清单】一、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘,积为零. 二、倒数:1、定义:若两个有理数的乘积为1,就称这两个有理数互为倒数(如:3与31、43-与34-…等).2、注意:①零没有倒数 (因为0乘以任何数都等于0,不等于1,所以0没有倒数);②求分数的倒数,就是把分数的分子分母颠倒位置.若一个数是带分数要先把它化成假分数,然后再求倒数;③正数的倒数是正数,负数的倒数是负数. 三、有理数乘法运算步骤:①先确定积的符号;有若干不为0的有理数相乘时,应该先确定积的符号(当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负);②求出各因数的绝对值的积;③若其中一个因数为0,则积为0.(3) (-4.3)×0×(-例题2、定义一种新运算: a △b =a ×b -a -b +2,如2△3=2×3-2-3+2=3, 则2△(-3)比(-3)△4( ).A 大B 小C 相等D 以上均不对【夯实基础】1、下列各组数中,互为倒数的是( )A .3与-3B .-5与51 C .201911-与20202019- D .0与0 2、已知有理数a ,b 满足ab <0, a +b >0,则下列结论正确的是( )A .a ,b 一正一负B .a ,b 一正一负,且b a =C .a ,b 一正一负,且负数的绝对值较大D .a ,b 一正一负,且正数的绝对值较大3、在-3,4,5,-6这四个数中任取两个数相乘,所得的积最大的是( ) A .18 B .-12 C .20 D .304、有理数a ,b 在数轴上对应的点的位置如图所示,则下列式子不正确的是( )A .a +b >0B .ab (a -b )>0C .b a ->-D .a b -=a -b5、定义一种新运算是a △b =ab -b ×b ,则3△(-5)的值为 .6、若5=a ,7=b ,且b a b a -=-,则ab = .7、如图是一个简单的数值运算程序,当输入的值为5时,输出的数值是 . 8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95);(3) (-7.6)×0×(-20192018).9、某代理商用2000元购进一批货物,第二天售出获利10%,一周后又以上次售出价的90%购进一批同样的货物,由于无人购买,老板决定按第二次购进价的九折再次售出,该代理商在这两次交易中的盈亏情况?第4题图第7题图【提优特训】10、倒数等于它本身的数有( )A .1个B .2个C .3个D .4个 11、若4=x ,7=y ,且xy <0,则x +y 的值为 ( )A .11或-11B .3或-3C .11或3D .-11或-312、下列说法:①互为相反数的两个数的积是负数;②任何数的倒数都小于1;③同号的两个数,原数大的倒数反而小;④几个有理数相乘,当正因数有奇数个时,积为负;⑤0的倒数是0. 其中正确的个数是( )A .1个B .2个C .3个D .4个 13、若a ,b 是整数,且ab =15,则a +b 的最大值与最小值的差是( )A .-16B .-32C .16D .3214、已知a 与b 互为相反数,c 和d 互为倒数,e 的绝对值等于2,则5a -3cde +5b 的值为 .15、绝对值小于2019的所有整数的积是 .16、如果两个数相乘的结果为负数,其中有几个负因数?如果三个数相乘的结果为负数,其中又有几个负因数?四个数,五个数,六个数呢?找出规律后,在回答: (1) 如果2019个数相乘的结果为负数,那么其中负因数的个数有几种可能情况? (2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数的个数有几种可能情况?17、学生李明在做将某数乘以-3.37时,由于不小心漏乘了一个负号,所得的数比正确结果小1.348,那么正确的结果是多少?18、某网店去年1~3月份每月平均亏损1.8万元,4~6月份每月平均盈利2.2万元,7~10月份每月平均盈利1.9万元,11~12月份每月平均亏损2.5万元,这个网店去年总的盈亏情况如何?19、阅读下列材料:请你观察下列等式.2×2=4,2+2=4, 即2×2=2+2;214323=⨯,214323=+,即323323+=⨯; 315434=⨯,315434=+,即434434+=⨯; 416545=⨯,416545=+,即545545+=⨯; …(1)请你上述各式子的规律写出下一个式子; (2)请你观察上面的结构特点,归纳出一个猜想.20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负; (3)如果ab <0,a +b >0,b a >,试确定a ,b 的正负.【中考链接】 21、(2018•枣庄)21-的倒数是( ) A .-2 B .21- C .2 D .2122、(2018•通辽)20181的倒数是( )A .2018B .-2018C .20181-D .20181 23、(2018•遂宁) -2×(-5)的值是( ) A .-7 B .7C .-10D .1024、(2018•吉林)计算(-1)×(-2)的结果 ( ) A .2 B .1C .-2D .-32.3有理数的乘法(2)【知识清单】 有理数乘法的运算律1、乘法交换律:两个数相乘,交换因数的位置,积不变. 字母表示:a ×b =b ×a2、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(a ×b )×c =a ×(b ×c )3、分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a ×(b +c )=a ×b +a ×c 【经典例题】例题1、如果四个不同的整数m ,n ,p ,q 满足(7-m )(7-n )(7-p )(7-q )=6,则m +n +p +q 等于( )A .18B .24C .27D .28例题2、2019减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20191,求最后剩下的数.【夯实基础】1、若五个有理数的积为负数,则其中负因数的个数为( )A .1个B .1个或2个C .1个或3个D .1个或3个或5个 2、下列运算中,错误的是( )A .-5×(-4) ×(-3) ×2=-120B .-4-12=2C .(-14)×(-6)×)32()72(-⨯+=16D .(-2)×(+7)-(-2)×3-2(-4)=-2×(7-3-4)=03、运用分配律计算976-×9时,你认为下列变形中最简便的是( )A .976-×9=)977(--×9B .976-×9=)976(--×9C .976-×9=)977(-×9D .976-×9=)976(---×94、对于算式2019×(-2017)+(-2019)×(-2018)-(-2019)分配律的逆用正确的是( )A. 2019×(-2017+2018)B. 2019×(-2017+2018-1)C. 2019×(-2017+2018+1)D. 2019×(-2017-2018-1)5、在等式4×□-3×□==-9的两个方框中分别填一个数,使这两个数为互为相反数且等式成立,则第一个“□”中填入的数为 .6、若干有理数相乘,将奇数个因数换成它的相反数,所得是结果与原来的结果一样,则原来的结果为 .7、计算(1-2) ×(3-4) ×(5-6) ×…×(2017-2018)= . 8、计算:(1)-40×(-83+521-43); (2)(-314)×(-5310)×(-133);(3)(-47)×)85(-+(-7)× 85; (4)-999×1789、王老师将甲乙两种股票同时卖出,其中甲种股票卖价1200元,盈利20%;乙种股票卖价也是1200元,但亏损20%,求王老师在这次交易中是盈利还是亏损?【提优特训】10、已知在5个数中有三个负数,则这5个有理数的乘积为( )A .小于0B .非正数C .等于0D .无法确定11、若xyz >0,则x ,y ,z 的值为 ( )A .都大于0B .两负一正C .都大于0或两负一正D .至少一个大于012、如图,A ,B 两点在数轴上表示的数分别为a ,b ,有下列结论:①ab <0;②b -a >0;③(a +1)(b -1)>0;④(a -1)(b +1)>0;⑤(a -b )(a +b )>0. 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个13、绝对值大于1.9且不大于5的所有负整数的积为( )A .-14B .-120C .0D .12014、某同学把5×(□-6)错抄为5×□-6,若正确答案为a ,抄错后的结果为b ,则a -b = .15、符号“f ”表示一种运算,它对一些数运算结果如下: (1) f (1)=0,f (2)=1,f (3)=2,f (4)=3,… (2) f (21)=2,f (31)=3,f (41)=4,f (51)=5,… 利用以上规律求f (2019)-f (20191)-f (2018)的值 . 16、一辆出租车的东西走向的一条街道上行驶,上午一共连续拉客17次,其中7次向东行驶,其余都是向西行驶,向东行驶每次的行程为11千米,向西行驶每次的行程为8千米. (1) 该出租车连续17次拉客后停在何处? (2) 该出租一共行驶了多少千米?第12题图17、用简便方法计算: (1) )227()317713(2221713-⨯-⨯⨯;(2))175(116)1715()2252217(177116-⨯+-⨯--⨯(3) 2019×20202020-2020×2019201918、饲养场有158头牛和158只羊,1头牛每星期平均吃67千克草,1只羊每星期平均吃33千克草,求饲养场每星期要准备多少千克草?19、已知x 、y 、z 是三个有理数,若x <y ,x +y =0,且xyz >0,试判定x +z 的符号.20、甲、乙两位同学做一个乘法运算的游戏,游戏中规定:每人抽到4个数字,长方形表示对应数字前是正号,圆形表示对应数字前是负号,计算其积,结果数小者为胜. 请列式计算说明,甲、乙两位同学谁为胜者?【中考链接】 21.(2018•枣庄)(3分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >022、(2018•北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +> 23、(2018•陕西)117-的倒数是 A .117 B .117- C .711 D .711-第20题图 第21题图 第22题图。