2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题含解析
2020-2021学年度第二学期期中质量检测八年级数学试题及答案

2020-2021学年度第⼆学期期中质量检测⼋年级数学试题及答案2020-2021学年度第⼆学期期中质量检测⼋年级数学试题满分:120分,考试时间:100分⼀、选择题(本⼤题共有8⼩题,每⼩题3分,共24分在每⼩题所给的四个选项中,只有⼀项是符合题⽬要求的,请将正确选项的字母代号填涂在答题卡相应位置上.) 1.下列图形中,既是轴对称图形,⼜是中⼼对称图形的有(▲)A .1个B .2个C .3个D .4个 2..菱形不具有的性质是(▲)A.对⾓线互相平分B.对⾓线相等C.对⾓线互相垂直D.每⼀条对⾓线平分⼀组内⾓3.下列各式:()22214151 ,, ,, 232x x y a x x b y π-+--,4x-y 其中分式共有(▲)A .2个B .3个C .4个D .5个4.⼀个不透明的布袋中装有5个⽩球和3个红球,它们除了颜⾊不同外,其余均相同.从中随机摸出⼀个球,摸到红球的概率是(▲)A .13 B .15 C .38 D .585.关于反⽐例函数xy 1=的图像,下列说法不正确的是(▲)A .图像在第⼀、三象限B .图像经过点(1,1)C .当0D .当1>x 时,10<6.如图,菱形纸⽚ABCD 中,∠A=60°,折叠菱形纸⽚ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的⼤⼩为( ▲ )A .78°B .75°C .60°D .45°学校_______班级_______考试学_______姓名_________………………………………密……………………………………封………………………………………线…………………………………………7.设有反⽐例函数=y -x2,),(11y x 、),(22y x 、()33,y x 为其图像上的三个点,210x x <<<3x ,则下列各式正确的是(▲)A .321y y y <<B .132y y y <<C .123y y y <<D .231y y y << 8.如图,在Rt △ABC 中,∠C=90°,AC=BC =6cm ,点P 从点B 出发,沿BA ⽅向以每秒 2 cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB ⽅向以每秒2cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间t 秒,若四边形QPBP ′为菱形,则t 的值是(▲)A .1.5B . 2C .2 2D .3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.当分式6562---x x x 的值为0时,x 的值为▲ .10.下列命题:①⼀组对边平⾏,另⼀组对边相等的四边形是平⾏四边形;②对⾓线互相平分的四边形是平⾏四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平⾏四边形;④⼀组对边相等,⼀组对⾓相等的四边形是平⾏四边形.其中正确的命题是▲.(将命题的序号填上即可).11.已知反⽐例函数25ky -=(k-1)x ,那么k 的值是▲ .12. 已知y 与x ?3成反⽐例,当x=4时,y=?1;那么y 与x 的函数关系可以表⽰为y= ▲__.13.从形状、⼤⼩相同的9张数字卡⽚(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是:①偶数;②⼩于6的数;③不⼩于9的数,这些事件按发⽣的可能性从⼤到⼩排列是▲(填序号)14.⽤反证法证明“等腰三⾓形的底⾓是锐⾓”时,⾸先应假设▲. 15.下列4个分式:①332++a a ;②22y x y x --;③n m m 22;④1m 2+,中最简分式有▲个.16. 若关于x 的⽅程221--=-x mx x ⽆解,则m 的值是___▲_____. 17.如图,在平⾯直⾓坐标系中,直线y =﹣kx +m 与双曲线y =(x >0)交于A 、B 两点,点A 的横坐标为1,点B 的横坐标为4,则不等式﹣kx +m >的解集为 _▲_ .18.如图,在△ABC 中,AB=3cm ,AC=4cm ,BC=5cm,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂⾜分别是D 、E.线段DE 的最⼩值是 _▲_ cm.三、解答题(本⼤题共9⼩题,共66分.请在答题卡指定区域内作答,解答时应写出⽂字说明,推理过程或演算步骤)19. (本题满分6分)计算(1)22x x y x y-++ (2)22214()244x x x x x x x x +---÷--+ 20.(本题满分6分)解⽅程:(1)21122x x x =--- (2) 3911332-=-+x x x 21.(本题满分6分))先化简:)112(1222xx x x x x --÷+-+,再从﹣2<x <3的范围内选取⼀个你喜欢的x 值代⼊求值.22. (本题满分8分已知21y y y +=,y1与x 成正⽐例,2y 与2x 成反⽐.当x =1时,y =﹣12;当x =4时,y =7.(1)求y 与x 的函数关系式和x 的取值范围;(2)当x =41时,求y 的值. 23.(本题满分8分)△ABC 在平⾯直⾓坐标系xOy 中的位置如图所⽰.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平⾯直⾓坐标系中直线AB 上的⼀个动点,点N 是x 轴上的⼀个动点,且以O 、A 2、M 、N 为顶点的四边形是平⾏四边形,请直接写出点N 的坐标.24.(本题满分8分)准备⼀张矩形纸⽚,按如图操作:将△ABE 沿BE 翻折,使点A 落在对⾓线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对⾓线BD 上的N 点.(1)求证:四边形BFDE 是平⾏四边形;(2)若四边形BFDE 是菱形,BE =2,求菱形BFDE 的⾯积.25.(本题满分8分)某⼀⼯程,在⼯程招标时,接到甲,⼄两个⼯程队的投标书.施⼯⼀天,需付甲⼯程队⼯程款1.2万元,⼄⼯程队⼯程款0.5万元.⼯程领导⼩组根据甲,⼄两队的投标书测算,有如下⽅案:①甲队单独完成这项⼯程刚好如期完成;②⼄队单独完成这项⼯程要⽐规定⽇期多⽤6天;③若甲,⼄两队合做3天,余下的⼯程由⼄队单独做也正好如期完成.试问:规定⽇期是多少天?在不耽误⼯期的前提下,你觉得哪⼀种施⼯⽅案最节省⼯程款?请说明理由.26.(本题满分12分)如图,在平⾯直⾓坐标系中,A 点的坐标为(a ,6),AB ⊥x 轴于点B ,AB 3OB 4,反⽐例函数y=kx 的图象的⼀⽀分别交AO 、AB 于点C 、D .延长AO 交反⽐例函数的图象的另⼀⽀于点E .已知点D 的纵坐标为32.(1)求反⽐例函数的解析式及点E 的坐标; (2)连接BC ,求S △CEB .(3)若在x 轴上的有两点M (m,0)N(-m,0).①以E 、M 、C 、N 为顶点的四边形能否为矩形?如果能求出m 的值,如果不能说明理由。
山东省济宁任城区2022-2023学年八年级下学期期中质量检测数学试卷(含解析)

2022-2023学年度第二学期期中质量检测初三数学试题一、单选题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将.A. 10cm6.下列各式计算成立的是(A.33-23=1二、填空题(每小题3分,共15分)三、解答题(共55分16.(本题满分5分)计算:(23.(本题9分)问题解决:如图1,在矩形中,点分别在边上,于点.(1)求证:四边形是正方形;(2)延长到点,使得,判断的形状,并说明理由.类比迁移:如图2,在菱形中,点分别在边上,与相交于点,,求的长.ABCD ,E F ,AB BC ,DE AF DE AF =⊥G ABCD CB H BH AE =AHF △ABCD ,E F ,AB BC DE AF G ,60,6,2DE AF AED AE BF =∠=︒==DE∵•AC •BD =AD •EG ,∴×6×6=3•EG ∴EG =2,1212236【点睛】此题考查解一元二次方程配方法,熟练掌握这种方法是解题的关键.18.(1),(2)见解析【来源】福建省泉州市泉港区2022-2023学年九年级上学期期末教学质量检测数学试题【分析】(1)当时,原方程为用因式分解法解方程即可;(2)利用根的判别式进行证明即可.【详解】(1)当时,原方程化为∴∴,(2)证明:∵中,,,,∴∵,即∴原方程总有两个实数根【点睛】本题考查了解一元二次方程及一元二次方程的根的判别式的应用,熟练掌握知识点是解题的关键.19.(1)详见解析;(2)详见解析【来源】北京市顺义区2017-2018学年八年级下学期期末数学试卷【分析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB ∥CD ,AB=CD ,又因AE=AB ,可得AE=CD ,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)由(1)得的结论先证得四边形ACDE 是平行四边形,通过角的关系得出AF=EF ,推出AD =EC ,根据对角线相等的平行四边形是矩形,得证.【详解】证明:(1)∵▱ABCD 中,AB =CD 且AB ∥CD ,又∵AE =AB ,∴AE =CD ,AE ∥CD ,∴四边形ACDE 是平行四边形;(2)∵▱ABCD 中,AD ∥BC ,∴∠EAF =∠B ,又∵∠AFC =∠EAF+∠AEF ,∠AFC =2∠B∴∠EAF =∠AEF ,∴AF =EF ,又∵平行四边形ACDE 中AD =2AF ,EC =2EF 11x =-23x =-1m =-2430x x ++=1m =-2430x x ++=()()130x x ++=11x =-23x =-22430x mx m -+=1a =4b m =-23c m =()22244413b ac m m ∆=-=--⨯⨯24m =240m ≥0∆≥∴AD =EC ,∴平行四边形ACDE 是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,根据边的转换,推出平行四边形,再通过对角线的关系证矩形.20.行【来源】辽宁省沈阳市第四十三中学2021-2022学年九年级上学期第二次质量监测数学试题【分析】设增加了行,根据体操队伍人数不变列出方程即可.【详解】解:设增加了行,根据题意得:,整理为:,解得:,(舍),答:增加了行.【点睛】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.21.(1)见解析;(2)3【来源】湖北省襄阳市樊城区诸葛亮中学2019-2020学年八年级下学期5月月考数学试题【分析】(1)先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DCA ,得出CD =AD =AB ,即可得出结论;(2)先判断出OE =OA =OC ,再求出OB =1,利用勾股定理求出OA =3,即可得出结论.【详解】(1)证明:∵AB//CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD ,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB//CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形;(2)解:∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,2x x (8)(10)81040x x ++=⨯+218400x x +-=12x =220x =-2又∴矩形是正方形.(2)是等腰三角形.理由如下:,AF DE ABF DAE =∴ V V ≌ABCD AHF △.又,即是等腰三角形.类比迁移:如图2,延长到点,使得,连接.∵四边形是菱形,...又.是等边三角形,,.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.,ABH DAE AH DE ∴∴=V V ≌,DE AF AH AF =∴= AHF △CB H 6BH AE ==AH ABCD ,,AD BC AB AD ABH BAD ∴=∴∠=∠∥,BH AE ABH DAE =∴∆ V ≌,60AH DE AHB DEA ∴=∠=∠=︒,DE AF AH AF =∴= 60,AHB AHF ∠=︒∴ V AH HF ∴=628DE AH HF HB BF ∴===+=+=。
2020-2021学年度第二学期期末质量检测八年级语文试题舟

2020-2021学年度第二学期期末质量检测八年级语文试题舟(考试时间:120分钟分值:120分)注意事项:1.答卷前务必将你的姓名、座号和准考证号按要求填写在试卷和答题卡上的相应位置。
2.本试题不分ⅠⅡ卷,所有答案都写在答题卡上,不要直接在本试卷上答题。
3.必须用0.5毫米黑色签字笔书写在对应的答题卡区域,不得超出规定范围。
一、积累与运用(共20分)1.给下列加点字注音或根据拼音写汉字。
(2分)我们经常在忙碌而庸俗的生活里dai慢了时光,轻视了岁月。
等到回首往昔才突然醒悟:光阴没有我们想象的那么苍劲有力,她会从指缝间溜走,在漫不经心里消失。
①dai _____ ②劲______2.依次填入下列句中空缺处的词语,最恰当的一项是()(2分)①时至今天,王阳明的思想还在继续支配着一些中国读书人的头脑。
______这个文化背景,中国学生大都偏向于理论而轻视实验,偏向于抽象的思维而不愿动手。
②请想象一下,当这种愉悦向外喷涌,并与对大自然的热爱之情和对艺术的奔放激情融为一体;当它为灿烂阳光所_____,为音乐所振奋,或被嵌入圆柱式大厅时,会是怎样的情景。
③黄昏时,主人再去打水浇花时,我又回到了穿城而过的水流之中。
这时,古城五彩的灯光把渠水______得五彩斑斓。
A.因为环绕倒映B.但是环绕辉映C.因为萦绕辉映D.但是萦绕倒映3.下列句子标点使用正确的一项是()(2分)A.最使我彷徨恐慌的,是当时的唯一办法——以埋头读书应付一切,对于实际的需要毫无帮助。
B.布谷鸟开始唱歌,劳动人民懂得它在唱什么:“阿公阿婆,割麦插禾”。
C.它们在龙槽两边的滩壁上散开来,或钻石觅缝,汩汩如泉,或淌过石板,潺潺成溪,或被夹在石间,哀哀打旋。
D.1961年一位名叫S.M.斯季绍夫的前苏联科学家发现,如果二氧化硅处于超高压(非常纯的沙子)的状态,那么它的原子相距很近,从而变得极为致密。
4.下列句子没有语病的一项是()(2分)A.在学习中,我们应该注意培养自己观察问题、解决问题和分析问题的能力。
2020-2021学年度第二学期期末质量抽查八年级数学真题试卷

4.方程x3-x= 0的解为__________________.
5.方程 的解为_____.
6.“太阳每天从东方升起”,这是一个_____________事件(填“确定”或“随机”).
7.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是_____.
三、解答题
20.解方程: .
21.解方程组:
22.已知□ABCD,点E是BC边的中点,请回答下列问题:
(1)在图中求作 与 的和向量: =;
(2)在图中求作 与 的差向量: =;
(3)如果把图中线段都画成有向线段,那么在这些有向线段所表示的向量中,所有与 互为相反向量的向量是;
(4) =.
23.请你根据图中图像所提供的信息,解答下面问题:
8.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是_________.
9.甲乙两人加工同一种玩具,甲加工 个玩具所用的时间与乙加工 个玩具所用的时间相等.已知甲乙两人每天共加工 个玩具.若设甲每天加工 个玩具,则根据题意列出方程为:_____________________________.
A.本市明天将有80%的地区降水
B.本市明天将有80%的时间降水
C.明天肯定下雨
D.明天降水的可能性比较大
18.如图,在□ ABCD中,对角线AC、BD交于点O,下列式子一定成立的是( )
A.AC⊥BDB.AO=ODC.AC=BDD.OA=OC
19.矩形、菱形、正方形都具有的性质是()
A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等
东城区2020-2021学年第二学期期末考试初二数学试题及答案

北京市东城区2020-2021学年度 第二学期期末初二数学 2021.7一、选择题(本大题共10小题,每小题3分,共30分)1.函数11y x =+的自变量取值范围是 A. x ≥-1 B.x ≤-1 C. x ≠-1 D. x ≠12.如图,数轴上点B 表示的数为1,AB ⊥OB ,且AB =OB ,以原点O 为圆心,OA 为半径画弧,交数轴正半轴于点C ,则点C 所表示的数为AB.C1 D .13.为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学喜爱的水果做了民意调查,再决定最终买哪种水果,下面的统计量中,他最关注的是 A .众数 B .平均数 C . 中位数 D .方差4.下列各组数中,能作为直角三角形边长的是A.1、2、3B.6、7、8C.1、1D. 5、12、13 5.一次函数y =3x +1的图象经过点(,),(,),y y 1212则以下判断正确的是....A y y B y y C y y D ><=121212无法确定6.在平面直角坐标系xOy 中,将直线y =2x +1向上平移2个单位长度后,所得的直线的解析式为A .y =2x ﹣1B .y =2x +2C .y =2x +3D .y =2x ﹣27.菱形和矩形都具有的性质是A. 对角线互相垂直B. 对角线长度相等C.对角线平分一组对角D.对角线互相平分8. 甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较高且状态稳定的同学参加数学比赛,那么应选甲 乙 丙 丁 平均数 80 85 85 80A .甲B .乙C .丙D .丁9. 如图,在△ABC 中,点D ,点E 分别是AB ,AC 的中点,点F 是DE 上一点,且∠AFC =90°,若BC =12,AC =8,则DF 的长为A.1B.2C.3D.4 10.若定义一种新运算:2,()212,()a b a b a b a b a b -≥⎧⊗=⎨+-<⎩例如:31=23-1=5;45=24+5-12=1⊗⨯⊗⨯.则函数y =(+2)(22)x x ⊗-的图象大致是)11.写出一个图象经过第一、三象限的正比例函数解析式____________ 12.在□ABCD 中,若∠A +∠C =100°,则∠A =°.方 差 42 45 54 5913.某手表厂抽查了10只手表的日走时误差,数据如下表所示:日走时误差(单位:秒)0123只数4321则这10只手表的平均日走时误差是____________秒.14.如图,在平面直角坐标系xOy中,函数y1=kx与y2=ax+3的图象相交于点A(-1,2),则关于x的不等式kx>ax+3的解集是.15.如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP=°.16.我国三国时期数学家赵爽为了证明勾股定理,绘制了一幅“弦图”,后人称其为“赵爽弦图”如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为17.如图,把矩形ABCD沿直线BD向上折叠,使点C落在点C′的位置上,B C′交AD于点E,若AB=3,BC=6,则DE的长为________.xy2-1y=ax+3y=kxAO18.如图,菱形ABCD 的边长为4,∠ABC = 60°,点E 是CD 的中点,点M 是AC 上一点,则MD +ME 的最小值是________.三、解答题(第19题4分,第20-25题每题5分,第26题6分,第27-28题每题7分,共54分)解答应写出文字说明,演算步骤或证明过程19. 已知:如图1,△ABC 为锐角三角形,AB AC =. 求作:菱形ABDC . 作法:如图2.①以点A 为圆心,适当长为半径作弧,交AC 于点M , 交AB 于点N ;②分别以点M ,N 为圆心,大于12MN 的长为半径作弧, 两弧在CAB ∠的内部相交于点E ,作射线AE 与BC 交于点O ;③以点O 为圆心,以O A 长为半径作弧,与射线AE 交于点D ,点D 和点A 分别位于BC 的两侧,连接CD ,BD ;四边形ABDC 就是所求作的菱形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明.证明:由作法可知,AE 平分CAB ∠,∵AB AC =, ∴CO =__________. ∵AO DO =,C'EDCBANM C BAC BA∴四边形ABDC是平行四边形.(__________).(填推理的依据).,∵AB AC∴四边形ABDC是菱形(__________)(填推理的依据).20.如图,在□ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O.求证∶OE=OF.21.下表是一次函数y=kx+b(k,b为常数,k≠0)中x与y的两组对应值.(1)求这个一次函数的表达式;(2)求这个一次函数图象与坐标轴围成的三角形的面积.22.如图,在4×4的正方形网格中,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形ABC.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的两边长是有理数,另外一边长是无理数;(3)在图③中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;23. 2021年7月1日是中国共产党成立100周年纪念日.某校开展了一次党史知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩,经过整理数据,得到以下信息:信息一:50名学生竞赛成绩的频数分布直方图如图所示,从左到右依次为第一组到第五组(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),信息二:第三组的成绩(单位:分)为71,72,73,73,74,74,75,76,76,76,77,79根据信息解答下列问题:(1)补全频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是_____分,抽取的50名学生竞赛成绩的中位数是______分; (3)若该校共有1500名学生参赛,估计该校参赛学生成绩不低于...80分的人数.24.如图,在平面直角坐标系xOy 中,直线l 1经过原点,且与直线l 2:y=-x+3交于点A (m ,2),直线l 2与x 轴交于点B .(1) 求直线l 1的函数解析式;(2) 点P (n ,0)在x 轴上,过点P 作平行于y 轴的直线,分别交直线l 1与直线l 2于点M 、N ,若MN =OB ,求n 的值.25.如图,在四边形ABCD 中, AB =CD=6,BC =10,AC=8,∠ABC=∠BCD ,过点D 作DE ⊥BC ,垂足为点E ,延长DE 至点F ,使EF =DE .连接BF ,CF . (1)求证:四边形ABFC 是矩形; (2)求DE 的长.(分)26.某种机器工作前先将空油箱加满(加油过程....).,然后停止加油立即开始工作(加工过程....),当停止工作时,油箱中油量为10升.在整个过程中,油箱里的油量y (单位:升)与时间x (单位:分)之间的关系如图所示.(1)机器加油过程....中每分钟加油量为 升,机器加工过程....中每分钟耗油量为 升. (2)求机器加工过程....时y 关于x 的函数解析式; (3)当油箱中油量为油箱容积的一半时,直接写出x 的值.27.如图,点P 正方形ABCD 边BC 上一点,∠BAP =α,作点D 关于直线AP 的对称点E ,连接AE ,作射线EB 交直线AP 于点F ,连接CF . (1)依题意补全图形; (2)求∠ABE 的度数;(用含α的式子表示) (3)①∠AFB=°;②用等式表示BE 、CF 的数量关系,并给出证明.A FDCBE(分)28.在平面直角坐标系x O y中的图形M和点P,给出如下定义:如果图形M 上存在点Q,使得0≤PQ≤1,那么称点P为图形M 的和谐点.已知点A(3,3),B(-3,3).(1)在点P₁(﹣2,2),P2(0,3.5),P3(4,0)中,直线AB的和谐点是__________ ;(2)点P在直线y=x-1 上,如果点P是直线AB的和谐点,求点P的横坐标x的取值范围;(3)已知点C(-3,-3),D(3,-3),如果直线y=x+b上存在正方形ABCD 的和谐点E,F,使得线段EF上的所有点(含端点)都是正方形ABCD 的和谐点,且EFb的取值范围.北京市东城区2020-2021学年度第二学期期末教学统一检测初二数学评分标准及参考答案2021.7题号 1 2 3 4 56 7 8 9 10答案 C A A D B C D B B A五、填空题(本大题共8小题,每小题2分,共16分)11.y=3x,(答案不唯一,只需k>0) 12.5013. 1 14. -1x<15. 22.516. 10 17. 15418.27三、解答题(第19题4分,第20-25题每题5分,第26题6分,第27-28题每题7分,共54分)19.图略;BO; 对角线互相平分的四边形是平行四边形;有一组邻边相等的平行四边形是菱形.1每空分20.证明∶∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC. 2分∴∠EDO=∠FBO. ∠DEO=∠BFO.∵AE=CF,∴AD-AE=CB-CF. 即DE=BF…….3分∴△DOE≌△BOF. 4分∴OE=OF.5分21.解:(1)将x=-2,y=6和x=0,y=3分别代入,得-26,3.x bb+=⎧⎨=⎩,解得3,23.kb⎧=-⎪⎨⎪=⎩∴所求一次函数的解析式为33.2y x=-+2分(2)直线与坐标轴交点分别为(2,0),(0,3) …….4分A DB123 3.52S =⨯⨯=分22.解:(1)如图①中,△ABC 即为所求.2分(2)如图②中,△ABC 即为所求.4分(3)△ABC 即为所求.5分(答案不唯一)23.解(1)第二组的频数为50-4-12-20-4=10(人)图略1分(2)76, 783分(3)241500=720550⨯(人)分24. 解:(1)∵点A 在直线l 2上,∴m =11分设直线l 1的解析式为:y=k x ∵直线经过点A(1,2),∴k=2.∴直线l 1的解析式为:y 2x = ……2分 (2)依题意可得: B(3,0)…….3分设M(n ,2n ),N(n ,-n +3), ∵MN=OB∴2n -(-n+3)=3 或 -n +3-2n =3 ∴n =2 或n =0 ……5分25.(1)证明:∵ DE ⊥BC ,EF =DE . ∴BC 是DF 的垂直平分线.∴CD=CF . ……1分∴∠BCF=∠BCD .∵AB=CD ,∠ABC=∠BCD ,∴AB=CF.∠ABC=∠BCF .∴AB ∥CF.∴四边形ABFC 为平行四边形. …….2分∵AB =CD=6,AC=8,BC =10,∴∠BAC=90°.∴四边形ABFC 是矩形. ……3分(2)∵四边形ABFC 是矩形.∴∠BFC=90°,BF=AC=8,CF=AB=6.在Rt △BFC 中,FE ⊥BC4.8= 4.8=4810 2121EF DE EF EF =∴=•=• 解得 即FC BF EF BC26.解:(1)9, 1 …2分(2)设所求函数关系式为y=kx+b ,由图象过(10,90),(90,10)两点,10+=9090+=10k b k b ⎧⎨⎩解得1,100.k b =-⎧⎨=⎩∴100y x =-+…4分(3)5或55 …6分27.解:(1)补全图形如图所示 1分F E…… 4分…… 5分E(2)∵四边形ABCD 是正方形,α=∠BAP∴α-90︒=∠DAP∵点D 与点E 关于AP 对称∴AE=AD=AB,α90DAP EAP -︒=∠=∠∴α90EAB 2-︒=∠∴α45AEB ABE +︒=∠=∠……3分(3)①454AFB ∠=︒分 ②CF 2BE =……5分证明:如图,过点A 作AH ⊥BE 于H,过点C 作CG ⊥EF 交EF 的延长线于点G. ∵AB=AE ,∴BE=2BH.∵︒=∠45AFB ……6分∴△AHF 为等腰直角三角形.∴AH=FH∵,0,0︒=∠+∠︒=∠+∠9ABH CBG 9ABH BAH ∴,CBG BAH ∠=∠ ∵AB=BC,BGC AHB ∠=∠ ∴△ABH ≌△BCG. ∴BH=CG , AH=BG. ∴FH=BG.∴BH=FG=CG.∴BE=2CG,△CFG 为等腰直角三角形.∴CG 2FC =. ∴CF 2BE =. ……7分28.(1)12,P P (2)直线AB 的和谐点都介于直线y=2和直线y=4之间(包括边界),直线y=x-1上,且当y=2时,x=3, 当y=4时,x=5, 所以满足条件的x 的范围是:5x 3≤≤.(3)7b -<<7……2分 ……5分 ……7分。
贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

2022—2023学年度第二学期半期联合统一检测八年级数学同学你好!答题前请认真阅读以下内容:1.全卷共4页,三个大题,共21小题,满分100分.考试时间为90分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是( )A .9cm B .12cmC .12cm 或15cmD .15cm2.如图,OC 为的平分线,,,则点C 到射线OA 的距离为()A .3B .6C .9D .123.已知,则下列结论正确的是()A .B .C .D .4.下列四个图案中,不能由1号图形平移得到2号图形的是()A B CD5.不等式的解集在数轴上表示正确的是()A B CD6.下列式子从左到右变形,是因式分解的是( )A .B .C .D .7.如图,已知,点P 在边OA 上,,点M ,N 在边OB 上,AOB ∠CM OB ⊥6CM =a b >22a b->-a c b c+>+33a b<ac bc>10x ->22(2)44x x x +=++23221025x y x y y=⋅241(4)1x x x x -+=-+3(1)(1)y y y y y -=+-60AOB ∠=︒12OP =.若,则ON 的值为( )A .3B .4C .5D .68.如图,一次函数与一次函数的图象交于点,则关于x 的不等式的解集是()A .B .C .D .9.如图,在△ABC 中,,,.分别以点A ,B 为圆心,大于的长为半径作弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,则CD 的长为()A .1B .C .D .310.如果不等式的正整数解为1,2,3,则m 的取值范围是( )A .B .C .D .二、填空题:每小题4分,共16分.11.不等式组的解焦是________.12.分解因式:________.13.如图,△DEF 是由△ABC 通过平移得到的,且点B ,E ,C ,F 在同一条直线上.若,,则平移的距离是________.PM PN =2MN =1y x b =+24y kx =+()1,3P 4x b kx +>+2x >-0x >1x >1x <60C ∠=︒4AC =3BC =12AB 753230x m -≤912m ≤<912m <<12m <9m ≥54,x x -<>⎧⎨⎩242x xy -=14BF =6EC =14.如图,等腰Rt △ABC 和等腰Rt △ADE 的腰长分别为4和2,其中,M 为边DE 的中点.若等腰Rt △ADE 绕点A 旋转,则点B 到点M的距离的最大值为________.三、解答题:解答应写出必要的文字说明、演算步骤或证明过程,本大题共7小题,共54分.15.(本题满分8分)解下列一元一次不等式,并把解集在数轴上表示出来.(1);(2).16.(本题满分8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且,过点E 作,交BC 的延长线于点F .(1)求的度数;(2)若,求DF 的长.17.(本题满分8分)如图,在平面直角坐标系中,△ABC 的顶点都在网格点上,其中点C 的坐标为(1,2).(1)填空:点A 的坐标是________,点B 的坐标是________;(2)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到,请画出平移后的;(3)求△ABC 的面积.18.(本题满分6分)给出三个多项式:,,,请选择其中两个多项式进行加法运算,并把结果分解因式(写出一种情况即可).19.(本题满分8分)如图,,,,将△ABC 绕点B 逆时90BAC DAE ∠=∠=︒312)4(x x +≤+334642x x---<//DE AB EF DE ⊥F ∠2CD =A B C '''△A B C '''△21212x x +-21412x x ++2122x x -90DBC ∠=︒45C ∠=︒2AC =针旋转60°得到△DBE ,连接AE .(1)求证:;(2)连接AD ,求AD 的长.20.(本题满分8分)超市购进一批A ,B 两种品牌的饮料共320箱,其中A 品牌饮料比B 品牌饮料多80箱.两种饮料每箱的进价和售价如下表所示:品牌A B 进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B 品牌的饮料获得的利润是多少元?(注:利润售价进价)(2)问该超市购进A ,B 两种品牌的饮料各多少箱?(3)受市场经济影响,该超市调整销售策略,将A 品牌的饮料每箱打折销售,B 品牌的饮料每箱售价改为38元.为使购进的A ,B 两种品牌的饮料全部售出且利润不低于700元,问A 品牌的饮料每箱最低打几折出售?21.(本题满分8分)如图,在△ABC 中,的平分线AE 与BC 的垂直平分线DE 交于点E ,过点E 作边AC 的垂线,垂足为N ,过点E 作边AB 延长线的垂线,垂足为M .(1)求证:;(2)若,,求BM 的长.2022—2023学年度第二学期半期联合统一检测八年级数学参考答案及评分标准一、选择题:每小题3分,共30分.题号12345678910答案DBBDADCCBA9.【解析】如图,连接BD ,过点B 作于点H ,由,可知,,∴,ABC ABE △≌△=-BAC ∠BM CN =2AB =8AC =BH AC ⊥60C ∠=︒3BC =30CBH ∠=︒1322CH BC ==∴,∴.设,则,根据作图可知,则,∴根据勾股定理可得,解得,∴.二、填空题:每小题4分,共16分.11.12.13.414.14.【解析】如图,连接AM .∵M 为边DE 的中点,且△ADE 为等腰直角三角形,∴,.在Rt △ADM 中,,由勾股定理可知,即.当A ,B ,M 三点不共线时,由三角形的三边关系可知,此时一定有;当A ,B ,M 三点共线且点M 不位于点A ,B 之间时,此时有,∴,即点B 到点M 的距离的最大值为三、解答题:本大题共7小题,共54分.15.解:(1)去括号,得,移项,得,合并同类项,得.解集在数轴上表示如图所示.4分BH ==35422AH AC CH =-=-=HD x =52AD x =+AD BD =52BD x =+22252x x ⎛⎫+=+ ⎪⎝⎭110x =3172105CD CH HD =-=-=54x -<<2()2x x y -4+AM DE ⊥12AM DE DM ==2AD =222AD AM DM =+AM DM ==BM AB AM <+BM AB AM =+4BM AB AM ≤+=+4+312)4(x x +≤+3128x x +≤+3281x x -≤-7x ≤(2)去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得.解集在数轴上表示如图所示.8分16.解:(1)∵△ABC 是等边三角形,∴.∵,∴.∵,∴,∴.4分(2)∵,,∴△EDC 是等边三角形,∴.∵,,∴.8分17.解:(1)(2,)(4,3)2分(2)如图,即为所.5分(3)△ABC 的面积.8分18.解:说明:(三个答案中任做一种正确即可给分)答案一:.答案二:.答案三:.6分334642x x---<324234()x x -<--32468x x -<-+82463x x -<-+721x -<3x >-60B ACB ∠=∠=︒//DE AB 60EDC B ∠=∠=︒EF DE ⊥90DEF ∠=︒9030F EDC ∠=︒-∠=︒60ACB ∠=︒60EDC ∠=︒2DE CD ==90DEF ∠=︒30F ∠=︒24DF DE ==1-A B C '''△111342431315222=⨯-⨯⨯-⨯⨯-⨯⨯=2221121416(6)22x x x x x x x x +-+++=+=+222112121(1)(1)22x x x x x x x +-+-=-=+-22221141221(1)22x x x x x x x +++-=++=+19.(1)证明:∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,,.∵,∴,∴.在△ABC 和△ABE 中,∴.4分(2)解:如图,连接AD .∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,.∵,∴,.∵,∴,∴,,∴8分20.解:(1)(元).答:销售一箱B 品牌的饮料获得的利润是5元.2分(2)设该超市购进A 品牌的饮料x 箱,B 品牌的饮料y 箱.依题意,得解得答:该超市购进A 品牌的饮料200箱,B 品牌的饮料120箱.5分(3)设A 品牌的饮料每箱打m 折出售.依题意,得,解得.答:A 品牌的饮料每箱最低打9折出售.8分21.(1)证明:如图,连接BE ,CE ,则DE 是边BC 的垂直平分线,∴.∵AE 是的平分线,,,∴.ABC DBE ∠=∠60EBC ∠=︒BC BE =90DBC ∠=︒–30ABC DBE DBC EBC ∠=∠=∠∠=︒30ABE ∠=︒,,,BC BE ABC ABE BA BA =⎧∠=∠=⎪⎨⎪⎩(SAS)ABC ABE △≌△2DE AC ==BED C ∠=∠ABC ABE △≌△C BEA ∠=∠2AE AC ==45C ∠=︒45BED BEA C ∠=∠=∠=︒90AED ∠=︒DE AE =AD ===40355-=320,80,x y x y +=-=⎧⎨⎩200,120.x y =⎧⎨=⎩6355200(3835)12070010m ⎛⎫⨯-⨯+-⨯≥ ⎪⎝⎭9m ≥BE CE =BAC ∠EM AB ⊥EN AC ⊥EM EN =在Rt △BME 和Rt △CNE 中,∴,∴.4分(2)解:由(1)得,.在Rt △AME 和Rt △ANE 中,∴,∴.又∵,,∴,∴.又∵,∴.8分,,BE CE EM EN ==⎧⎨⎩Rt Rt (HL)BME CNE △≌△BM CN =EM EN =BM CN =,,AE AE EM EN ==⎧⎨⎩Rt Rt (HL)AME ANE △≌△AM AN =AM AB BM =+AN AC CN =-AB BM AC CN +=-28BM CN +=-BM CN =3BM =。
广东省揭阳市榕城区一中学2020-2021学年八年级数学第二学期期末复习检测试题含解析

广东省揭阳市榕城区一中学2020-2021学年八年级数学第二学期期末复习检测试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.若关于x 的分式方程12242m x x x -=---的根是正数,则实数m 的取值范围是(). A .4m ->,且0m ≠B .10m <,且2m ≠-C .0m <,且4m ≠-D .6m <,且2m ≠ 2.若将a b ab+ (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的19C .不变D .缩小为原来的133.下列各式属于最简二次根式的有( )A .8B .21x +C .3yD .124.已知x ,y 满足480x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20C .16D .以上答案都不对 5.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁6.下列各点中,在函数 y =2x -5 图象上的点是( )A .(0,0)B .(12,-4)C .(3,-1)D .(-5,0)7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD=5,AB=8,,则CG 的长是( )A .2B .3C .4D .5 8.若()22325x k x +-+是一个完全平方式,则k 的值是( )A .8B .-2C .-8或-2D .8或-2 9.若分式x 1x 1-+的值为0,则( )A .x 1=±B .x 1=-C .x 1=D .x 0= 10.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(每小题3分,共24分)11.为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).12.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是_________.13.如图,在反比例函数1(0)y x x =-<与4(0)y x x=>的图象上分别有一点E ,F ,连接EF 交y 轴于点G ,若(1,1)E -且2EG FG =,则OG =__________.14.如图,等腰△ABC 中,AB=AC ,AB 的垂直平分线MN 交边AC 于点D ,且∠DBC=15°,则∠A 的度数是_______.15.若函数y =x ﹣1与2y x =的图象的交点坐标为(m ,n ),则11m n-的值为_____. 16.如图,已知矩形ABCD 的边6,8AB BC ==将矩形的一部分沿EF 折叠,使D 点与B 点重合,点C 的对应点为G ,则EF 的长是______将BEF 绕看点B 顺时针旋转角度()0<180.a a ︒<得到11BE F 直线11E F 分别与射线EF ,射线ED 交于点,M N 当EN MN =时,FM 的长是___________.17.一次函数y=-12x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.18.已知02a <<,化简:244a a a +-+=__________.三、解答题(共66分)19.(10分)如图,直线过A (﹣1,5),P (2,a ),B (3,﹣3).(1)求直线AB 的解析式和a 的值;(2)求△AOP 的面积.20.(6分)化简:324a a --÷(52a --a-2),并代入一个你喜欢的a 值求值. 21.(6分)如图,在ABC ∆中,AB AC =,AE 是中线,点D 是AB 的中点,连接DE ,且//BF DE ,//EF DB (1)求证:四边形BDEF 是菱形;(2)若32AC BC ==,,直接写出四边形BDEF 的面积.22.(8分)某校组织春游活动,提供了A 、B 、C 、D 四个景区供学生选择,并把选择最多的景区作为本次春游活动的目的地。
贵州省贵阳市名校2024-2025学年九上数学开学检测试题【含答案】

贵州省贵阳市名校2024-2025学年九上数学开学检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是()A .15尺B .16尺C .17尺D .18尺2、(4分)如图,ABCD 的对角线AC 、BD 交于点O ,顺次联结ABCD 各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①AC ⊥BD ;②ABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是()A .1个;B .2个;C .3个;D .4个.3、(4分)多项式x 2﹣1与多项式x 2﹣2x+1的公因式是()A .x ﹣1B .x+1C .x 2﹣1D .(x ﹣1)24、(4分)若实数m 、n 满足02m +=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是()A .12B .10C .8或10D .65、(4分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AC 的长是()A .2B .4C .D .6、(4分)能判定四边形ABCD 是平行四边形的是()A .AD //BC ,AB =CD B .∠A =∠B ,∠C =∠D C .∠A =∠C ,∠B =∠D D .AB =AD ,CB =CD7、(4分)化简222x y x xy -+的结果为()A .﹣y x B .﹣y C .x y x +D .x y x -8、(4分)已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m ,n 的取值范围是()A .m >-1,n >2B .m <-1,n >2C .m >-1,n <2D .m <-1,n <2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形纸片ABCD 中,已知4=AD ,3AB =,点E 在BC 边上,沿AE 折叠纸片,使点B 落在点'B 处,连结'CB ,当'CEB ∆为直角三角形时,BE 的长为______.10、(4分)分解因式:222m -=_________________________.11、(4分)如图,一张三角形纸片ABC ,其中90C =∠,4AC =,3BC =,现小林将纸片做三次折叠:第一次使点A 落在C 处;将纸片展平做第二次折叠,使点B 若在C 处;再将纸片展平做第三次折叠,使点A 落在B 处,这三次折叠的折痕长依次记为,,a b c ,则,,a b c 的大小关系是(从大到小)__________.12、(4分)若菱形的周长为14cm ,一个内角为60°,则菱形的面积为_____cm 1.13、(4分)如图,在平行四边形ABCD 中,连接AC ,按以下步骤作图:分别以点A ,C 为圆心,以大于12AC 的长为半径画弧,两弧分别相交于点M ,N ,作直线MN 交CD 于点E ,交AB 于点F .若AB =5,BC =3,则△ADE 的周长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,AC 是▱ABCD 的一条对角线,过AC 中点O 的直线EF 分别交AD ,BC 于点E ,F .(1)求证:△AOE ≌△COF ;(2)连接AF 和CE ,当EF ⊥AC 时,判断四边形AFCE 的形状,并说明理由15、(8分)菱形ABCD 在平面直角坐标系中的位置如图所示,对角线AC 与BD 的交点E 恰好在y 轴上,过点D 和BC 的中点H 的直线交AC 于点F,线段DE,CD 的长是方程x 2﹣9x+18=0的两根,请解答下列问题:(1)求点D 的坐标;(2)若反比例函数y=k x (k≠0)的图象经过点H,则k=;(3)点Q 在直线BD 上,在直线DH 上是否存在点P,使以点F,C,P,Q 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.16、(8分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.17、(10分)解方程(1)()6511x x x x +=++(2)28142xx x =---18、(10分)如图,在方格纸中(小正方形的边长为1),△ABC 的三个顶点均为格点,将△ABC 沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△A ′B ′C ′,并直接写出点A ′、B ′、C ′的坐标;(2)求在平移过程中线段AB 扫过的面积.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在△ABC 中,AB =3cm ,BC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于_______cm .20、(4分)“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x ,则可列方程___.21、(4分)在菱形ABCD 中,M 是BC 边上的点(不与B ,C 两点重合),AB=AM ,点B 关于直线AM 对称的点是N ,连接DN ,设∠ABC ,∠CDN 的度数分别为x ,y ,则y 关于x 的函数解析式是_______________________________.22、(4分)若关于x 的分式方程当311x a x -=-的解为正数,那么字母a 的取值范围是_____.23、(4分)将正比例函数6y x =-的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.二、解答题(本大题共3个小题,共30分)24、(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x <6060.1260≤x <70a 0.2870≤x <80160.3280≤x <90100.2090≤x ≤100c b 合计50 1.00(1)表中的a=______,b=______,c=______;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.25、(10分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A ,B 都在格点处.(1)请在图中作等腰△ABC ,使其底边AC =,且点C 为格点;(2)在(1)的条件下,作出平行四边形ABDC ,且D 为格点,并直接写出平行四边形ABDC的面积.26、(12分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,﹣1.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2、C【解析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.=C△CBO,∴AB=BC.∵C△ABO根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C.本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.3、A【解析】x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.4、B【解析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.5、B 【解析】解:在矩形ABCD 中,OA=OC ,OB=OD ,AC=BD ,∴OA=OC .∵∠AOD=60°,∴△OAB 是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B .6、C 【解析】根据平行四边形的判定定理依次确定即可.【详解】A.AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B.∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C.∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意;D.AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.此题考查平行四边形的判定定理,熟记定理内容即可正确解答.7、D 【解析】先因式分解,再约分即可得.【详解】()()()222x y x y x y x yx xy x x y x+---==++故选D .本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.8、C 【解析】根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.【详解】解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限∴m+1>0,n-2<0∴m >-1,n <2,故选:C .本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.二、填空题(本大题共5个小题,每小题4分,共20分)9、3或32【解析】分两种情况:①当∠EFC=90°,先判断出点F 在对角线AC 上,利用勾股定理求出AC ,设BE=x,表示出CE ,根据翻折变换的性质得到AF=AB,EF=BE ,再根据Rt △CEF 利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF 是正方形,根据正方形的性质即可求解.【详解】分两种情况:①当∠EFC=90°,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A 、F 、C 共线,∵矩形ABCD 的边AD=4,∴BC=AD=4,在Rt △ABC 中,5==设BE=x ,则CE=BC-BE=4-x ,由翻折的性质得AF=AB=3,EF=BE=x ,∴CF=AC-AF=5-3=2在Rt △CEF 中,EF 2+CF 2=CE 2,即x 2+22=(4-x)2,解得x=32;学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………②当∠CEF=90°,如图2由翻折的性质可知∠AEB=∠AEF=45°,∴四边形ABEF 是正方形,∴BE=AB=3,故BE 的长为3或32此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.10、2(1)(1)m m +-.【解析】试题分析:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.考点:提公因式法与公式法的综合运用.11、b >c >a.【解析】由图1,根据折叠得DE 是△ABC 的中位线,可得出DE 的长,即a 的长;由图2,同理可得MN 是△ABC 的中位线,得出MN 的长,即b 的长;由图3,根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证△ACB ∽△AGH ,利用比例式可求GH 的长,即c 的长.【详解】解:第一次折叠如图1,折痕为DE ,由折叠得:AE =EC =12AC =12×4=2,DE ⊥AC ∵∠ACB =90°∴DE ∥BC ∴a =DE =12BC =12×3=32,第二次折叠如图2,折痕为MN ,由折叠得:BN =NC =12BC =12×3=32,MN ⊥BC ∵∠ACB =90°∴MN ∥AC ∴b =MN =12AC =12×4=2,第三次折叠如图3,折痕为GH ,由勾股定理得:AB =5由折叠得:AG =BG =12AB =52,GH ⊥AB ∴∠AGH =90°∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB ∽△AGH ∴AC BC AG GH =,即4352GH =,∴GH =158,即c =158,∵2>158>32,∴b >c >a ,故答案为:b >c >a.本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.12、【解析】根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积【详解】解:菱形的周长为14cm ,则边长为6cm ,可求得60°所对的高为32×6=,则菱形的面积为=1.故答案为.此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理13、8【解析】解:由做法可知MN 是AC 的垂直平分线,∴AE =CE .∵四边形ABCD 是平行四边形∴CD =AB =5,AD =BC =3.∴AD +DE +AE =AD +DE +CE =AD +CD =5+3=8,∴△ADE 的周长为8.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)是菱形;【解析】根据菱形判定定理:对角线互相垂直且平分的四边形是菱形【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAO=∠FCO ,∵O 是OA 的中点,∴OA=OC ,在△AOE 和△COF 中,∠EAO=∠FCO OA=OC ∠AOE=∠COF ,∴△AOE ≌△COF (ASA );(2)EF ⊥AC 时,四边形AFCE 是菱形;由(1)中△AOE ≌△COF ,得AE=CF ,OE=OF ,又∵OA=OC ,EF ⊥AC ∴四边形AFCE 是菱形.此题主要考查全等三角形的判定和菱形判定定理,熟练能掌握即可轻松解题.15、(1)(﹣32,(2)2(3)(92)或(﹣152,)或(212)【解析】(1)由线段DE,CD 的长是方程x 2﹣9x+18=0的两根,且CD >DE ,可求出CD、DE 的长,由四边形ABCD 是菱形,利用菱形的性质可求得D 点的坐标.(2)由(1)可得OB 、CM ,可得B、C 坐标,进而求得H 点坐标,由反比例函数y=k x (k≠0)的图象经过点H,可求的k 的值;(3)分别以CF 为平行四边形的一边或者为对角线的情形进行讨论即可.【详解】(1)x 2﹣9x+18=0,(x ﹣3)(x ﹣6)=0,x=3或6,∵CD >DE ,∴CD=6,DE=3,∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC==3,∴∠DCA=30°,∠EDC=60°,Rt △DEM 中,∠DEM=30°,∴DM=DE=,∵OM ⊥AB ,∴S 菱形ABCD =AC•BD=CD•OM ,∴=6OM ,OM=3,∴D (﹣,3);(2)∵OB=DM=,CM=6﹣=,∴B (,0),C (,3),∵H 是BC 的中点,∴H (3,),∴k=3×=;故答案为;(3)①∵DC=BC ,∠DCB=60°,∴△DCB 是等边三角形,∵H 是BC 的中点,∴DH ⊥BC ,∴当Q 与B 重合时,如图1,四边形CFQP 是平行四边形,∵FC=FB ,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC ﹣∠CBF=120°﹣30°=90°,∴AB ⊥BF ,CP ⊥AB ,Rt △ABF 中,∠FAB=30°,AB=6,∴FB=2=CP ,∴P (,);②如图2,∵四边形QPFC 是平行四边形,∴CQ ∥PH ,由①知:PH⊥BC ,∴CQ ⊥BC ,Rt △QBC 中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6,连接QA,∵AE=EC ,QE ⊥AC ,∴QA=QC=6,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q (﹣,6),由①知:F(,2),由F 到C 的平移规律可得P 到Q 的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);③如图3,四边形CQFP 是平行四边形,同理知:Q(﹣,6),F (,2),C (,3),∴P (,﹣);综上所述,点P 的坐标为:(,)或(﹣,5)或(,﹣).本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.16、(1)1.6度;(2)1度;1度;(3)2.2度.【解析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;(2)1度出现了3次,最多,故众数为1度;第3天的用电量是1度,故中位数为1度;(3)总用电量为22×1.6×36=2.2度.17、(1)1x =;(2)无解【解析】(1)将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()6511x x x x +=++方程两边同乘()1x x +,得65x x =+解得:1x =经检验:1x =是原方程的解所以原分式方程的解为1x =(2)28142xx x =---方程两边同乘24x -,得2(2)(4)8x x x +--=22+248x x x -+=解得:2x =当2x =时,24=0x -∴2x =是原方程的增根所以原分式方程无解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、(1)图见解析,'''(1,5),(4,0),(1,0)A B C ---;(2)25【解析】(1)由题意直接根据图形平移的性质画出△A ′B ′C ′,并写出各点坐标即可;(2)由题意可知AB 扫过的部分是平行四边形,根据平行四边形的面积公式即可得出结论.【详解】解:(1)平移后的△A′B′C′如图所示,观察图象可知点A′、B′、C′的坐标分别为:'''(1,5),(4,0),(1,0)A B C ---.(2)由图象以及平移的性质可知线段AB 扫过部分形状为平行四边形,且底为5,高为5,故线段AB 扫过的面积为:5525⨯=.本题考查的是作图-平移变换,熟练掌握图形平移不变性的性质是解答此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、8【解析】由折叠的性质知,AE=CE ,∴△ABE 的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm .20、69.05%(1+x )2=72.75%【解析】此题根据从2019年起每年的森林覆盖率年平均增长率为x,分别列出2020年以及2021年得森林覆盖面积,即可得出方程.【详解】∵设从2019年起每年的森林覆盖率年平均增长率为x,∴根据题意得:2020年覆盖率为:69.05%(1+x),2021年为:69.05%(1+x)²=72.75%,故答案为:69.05%(1+x)²=72.75%此题考查一元二次方程的应用,解题关键在于列出方程21、5180,607225180,72902x xyx x⎧︒-︒<≤︒⎪⎪=⎨⎪-︒︒<≤︒⎪⎩【解析】首先根据菱形的性质得出∠ABC=∠ADC=x,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND=1802DAN︒-∠=180°-32x,分情况求解即可.【详解】∵菱形ABCD中,AB=AM,∴∠ABC=∠ADC=x,AB=BC=CD=AD,AD∥BC ∴∠ABC+∠BAD=180°,∴∠BAD=180°-x∵AB=AM,∴∠AMB=∠ABC=x∴∠BAM=180°-∠ABC-∠AMB=180°-2x连接BN、AN,如图:∵点B 关于直线AM 对称的点是N ,∴AN=AB ,∠MAN=∠BAM=180°-2x ,即∠BAN=2∠BAM=360°-4x ∴AN=AD ,∠DAN=∠BAD-∠BAN=180°-x -(360°-4x )=3x -180°∴∠AND=∠AND=1802DAN ︒-∠=180°-32x ∵M 是BC 边上的点(不与B ,C 两点重合),∴6090x ︒︒<<∴451803902x ︒︒-︒<<若32180x x ≥︒-,即7290x ︒≤︒<时,∠CDN=∠ADC-∠AND=52180x -︒,即80521y x =-︒;若32180x x ︒-<即6072x ︒︒<<时,∠CDN=∠AND-∠ADC =18052x ︒-,即52180y x =︒-∴y 关于x 的函数解析式是5180,607225180,72902x x y x x ⎧︒-︒<≤︒⎪⎪=⎨⎪-︒︒<≤︒⎪⎩故答案为:5180,607225180,72902x xy x x ⎧︒-︒<≤︒⎪⎪=⎨⎪-︒︒<≤︒⎪⎩.此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.22、a >1且a ≠3【解析】首先根据题意求解x 的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【详解】解:去分母得:3x ﹣a =x ﹣1,解得:x =12a -,由分式方程的解为正数,得到12a ->0,12a -≠1,解得:a >1且a ≠3,故答案为:a >1且a ≠3本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.23、612y x =-+【解析】根据“左加右减”的法则求解即可.【详解】解:将正比例函数6y x =-的图象向右平移2个单位,得()6-2y x =-=612x -+,故答案为:612y x =-+.本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)14;0.08;4;(2)详见解析;(3)80.【解析】(1)根据频率分布表确定出总人数,进而求出a ,b ,c 的值即可;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【详解】解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;故答案为:14;0.08;4;(2)频数分布直方图、折线图如图,(3)根据题意得:1000×(4÷50)=80(人),则你估计该校进入决赛的学生大约有80人.此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.25、(1)见解析;(2)画图见解析;其面积为8.【解析】(1)根据每个正方形的边长为1,利用勾股定理确定C 点的位置(使),再连接AB,AC 即可.(2)根据平行四边形的性质确定点D 连接BD,CD 即可得到所求四边形;再根据平行四边形面积公式即可求出.【详解】(1)如图,△ABC 即为所求.(2)如图,平行四边形ABDC 即为所求,其面积为8.本题考查了等腰三角形的性质以及平行四边形的性质,熟练掌握性质定理是解题的关键.26、2.【解析】根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.【详解】解:原式2222x xy y x xy =++--2 xy y =+x 2,y 1==-当时))2211=+原式 231=+-=2本题考核知识点:二次根式化简求值.解题关键点:掌握乘法公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cmB .18cmC .9cmD .36cm2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图,在四边形ABCD 中,3AB =,5BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是( )A 2B 3C .2D 54.下列命题是真命题的是( ) A .如果a 2=b 2,那么a=bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对项角D .在同一平面内,垂直于同一条直线的两条直线平行 5.以下列各组数为边长能构成直角三角形的是( )A .6,12,13B .3,4,7C .8,15,16D .5,12,136.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A .B .C .D .7.下列图形是中心对称图形的是( )A .B .C .D .8.点()0,3P 向右平移m 个单位后落在直线21y x =-上,则m 的值为( ) A .2B .3C .4D .59.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .10.函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题(每小题3分,共24分)11.已知整数x 、y 满足x +3y =72,则x y +的值是______.12.约分:236a bab=_______.13.计算2(3)- +(3 )2=________.14.如图,在一次测绘活动中,某同学站在点A 处观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向160米处,船C 在点A 南偏东15°方向120米处,则船B 与船C 之间的距离为________米.15.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠B ′AB 等于_____.16.己知关于x 的分式方程1233x k x x +-=--有一个增根,则k =_____________. 17.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____. 18.如图,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,,n A ,分别过这些点作y 轴的垂线,与反比例函数2y x=-()0x <的图象交于点1P ,2P ,3P ,4P ,,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,,1n B -,连结12PP ,23PP ,34P P ,,1n n P P -,得到一组112Rt PB P ∆,223Rt P B P ∆,334 Rt P B P ∆,,11n n n Rt P B P --∆,它们的面积分别记为1S ,2S ,3S ,,1n S -,则12S S +=_________,1231n S S S S -++++=_________.三、解答题(共66分)19.(10分)如图,矩形ABCD 中,点E ,F 分别在边AB ,CD 上,点G ,H 在对角线AC 上,EF 与AC 相交于点O ,AG=CH ,BE=DF .(1)求证:四边形EGFH 是平行四边形; (2)当EG=EH 时,连接AF ①求证:AF=FC ;②若DC=8,AD=4,求AE 的长.20.(6分)对于实数a ,b ,定义运算“⊗”:a ⊗b =22()()ab b a b a ab a b ⎧-≥⎨-<⎩,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x 1,x 2是一元二次方程x 2﹣3x +2=0的两个根,则x 1⊗x 2等于( ) A .﹣1B .±2C .1D .±121.(6分)直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.22.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?23.(8分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD= 20,求AB和CD的长.24.(8分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下班级最高分平均分中位数众数方差八(1)班100 a93 93 12八(2)班99 95 b c8.4(1)求表中a,b,c的值;(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.25.(10分)如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)15 20 25 ……y(件)25 20 15 ……参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据三角形的中位线定理即可得到结果.由题意得,原三角形的周长为,故选B.考点:本题考查的是三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF 中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3、C【解析】【分析】,根据勾股定理求出AC,根据三角形中位线定理连接AC,根据等腰三角形的性质、三角形内角和定理求出DAC计算即可.【详解】解:连接AC,100D ∠=︒,AD CD =, 40DAC DCA ∴∠=∠=︒, 90BAC BAD DAC ∴∠=∠-∠=︒,224AC BC AB ∴=-=,点E ,F 分别是边AD ,CD 的中点, 122EF AC ∴==, 故选:C . 【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4、D 【解析】 【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项. 【详解】A 、如果a 2=b 2,那么a=±b ,故错误,是假命题;B 、两直线平行,同位角才相等,故错误,是假命题;C 、相等的两个角不一定是对项角,故错误,是假命题;D 、平面内,垂直于同一条直线的两条直线平行,正确,是真命题, 故选D . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大. 5、D 【解析】解:A .62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.6、C【解析】观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.7、C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】【分析】根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.【详解】解:∵将点P(0,3)向右平移m个单位,∴点P平移后的坐标为(m,3),∵点(m,3)在直线y=1x-1上,∴1m-1=3,解得m=1.故选A.【点睛】本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.9、A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.10、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.二、填空题(每小题3分,共24分)11、2或52【解析】【分析】x y722,且x、y x72,y x2,y2x,,分别求出x 、y【详解】,又x 、y 均为整数,,=0,,∴x=72,y=0或x=18,y=2或x=0,y=8,或.故答案为:或.【点睛】本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.12、2a 【解析】【分析】根据分式的基本性质,分子分母同时除以公因式3ab 即可。