传染病模型
传染病模型

SIR 模型(传染病模型)大多数传染病如天花,流感,肝炎,麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者,也非病人,他们已经退出传染系统。
以下针对这种情况进行分析: 模型假设:1. 总人数为N,人群分为健康者,病人和病愈免疫的移出者三类,三类人在总人数N 中占的比例分别记作)()(),(t r t i t s 和2. 病人的日接触率为u 日治愈率为,λ,传染期接触数为u /λσ=。
模型构成:记初始时刻的健康者和病人的比例分别是000,0=r i s 和,即可得到模型方程为:0)0(,0)0(,s s si dtds i i ui si dt di =-=⎩⎨⎧=-=⎩⎨⎧λλ 此方程为二元非线性微分方程,我们无法求解它的解析解,下面我们用数值法来计算.数值计算:function y=ill(t,x)。
a=1;b=0.3y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];>> t=0:50;>> x0=[0.02,0.98];>> ts=0:50;>> x0=[0.02,0.98];>> [t,x]=ode45('ill',ts,x0);ans =0 0.0200 0.98001.0000 0.0390 0.95252.0000 0.0732 0.90193.0000 0.1285 0.81694.0000 0.2033 0.69275.0000 0.2795 0.54386.0000 0.3312 0.39957.0000 0.3444 0.28398.0000 0.3247 0.20279.0000 0.2863 0.149310.0000 0.2418 0.114511.0000 0.1986 0.091712.0000 0.1599 0.076713.0000 0.1272 0.066514.0000 0.1004 0.059315.0000 0.0787 0.054316.0000 0.0614 0.050717.0000 0.0478 0.048018.0000 0.0371 0.046019.0000 0.0287 0.044520.0000 0.0223 0.043421.0000 0.0172 0.042622.0000 0.0133 0.041923.0000 0.0103 0.041524.0000 0.0079 0.041125.0000 0.0061 0.040826.0000 0.0047 0.040627.0000 0.0036 0.040428.0000 0.0028 0.040329.0000 0.0022 0.040230.0000 0.0017 0.040131.0000 0.0013 0.040032.0000 0.0010 0.040033.0000 0.0008 0.040034.0000 0.0006 0.039935.0000 0.0005 0.039936.0000 0.0004 0.039937.0000 0.0003 0.039938.0000 0.0002 0.039939.0000 0.0002 0.039940.0000 0.0001 0.039941.0000 0.0001 0.039942.0000 0.0001 0.039943.0000 0.0001 0.039944.0000 0.0000 0.039845.0000 0.0000 0.039846.0000 0.0000 0.039847.0000 0.0000 0.039848.0000 0.0000 0.039849.0000 0.0000 0.039850.0000 0.0000 0.0398 >> plot(t,x(:,1),t,x(:,2)),grid>> plot(x(:,2),x(:,1)),grid结论:由上图可以看出,)(t i 由初值增长至7 t 时达到最大,然后减少,→s∞tt st则单调减少,→∞.0,)(,→0398。
传染病最简单模型

传染病最简单模型:已感染人数 (病人) x(t),每个病人每天有效接触(足以使人致病)人数为λ 有()()()x t t x t x t t λ+∆-=∆ 又设()00x x =,得微分方程dxx dtλ= 解得0()t x t x e λ=SI 模型:区分已感染者(病人)和未感染者(健康人)。
总人数N 不变,λ为日接触率,病人和健康人的比例分别为i(t),s(t)。
则有di si dt λ=,又有s(t)+i(t)=1。
所以有0(1),(0)dii i i i dtλ=-=。
求解出01()11(1)ti t e i λ-=+- ,传染速度最快时刻为101ln(1)mt i λ-=-SIS 模型:传染病无免疫性。
总人数N 不变,病人的日接触率为λ,病人和健康人的比例分别为i(t),s(t),接触数σ(感染期内每个病人的有效接触人数)。
病人日治愈率为μ,所以有diN Nsi Ni dtλμ=- , 0(0)i i =。
由s(t)+i(t)=1,/σλμ=,就推出1[(1)]di i i dt λσ=---。
SIR 模型:传染病有免疫性。
总人数N 不变,病人、健康人和移出者的比例分别为i(t),s(t),r(t) ,病人的日接触率为λ,病人日治愈率为μ,接触数/σλμ=。
且有s(t)+i(t)+r(t)=1。
则有r(0)=r0很小,故000i s +≈。
推出00d ,(0)d d ,(0)d i si i i i ts si s s t λμλ⎧=-=⎪⎪⎨⎪=-=⎪⎩ 经济增长模型;1 )道格拉斯(Douglas)生产函数 Q(t),K(t),L(t),0f 分别表示某地区在t 时刻的产值、资金、劳动力和技术。
静态模型令z=Q/L ,y=K/L ,则z 是每个劳动力产值,y 是每个劳动力投资。
由于z 随y 增加而增长,但增速递减。
)(/0y g f L Q z ==,10,)(<<=ααy y g ,α)/(0L K L f Q =αα-=10),(L K f L K Q 此为Douglas 生产函数。
传染病传播模型

传染病传播模型传染病一直是人类面临的严重公共卫生问题之一,了解传染病的传播规律对于控制疫情的蔓延至关重要。
在传染病学领域,研究人员提出了各种传染病传播模型,以帮助我们更好地理解疾病的传播过程。
本文将介绍几种常见的传染病传播模型。
一、SIR模型SIR模型是最经典的传染病传播模型之一,模型中将人群划分为易感者(S),感染者(I)和康复者(R)三个群体。
在SIR模型中,易感者被感染后转为感染者,感染者经过一段潜伏期后康复并具有免疫力。
该模型适用于传染病传播速度较慢且一旦康复后不再感染的情况。
二、SEIR模型SEIR模型在SIR模型的基础上增加了潜伏者(E)这一群体,即将易感者感染后先转化为潜伏者,再由潜伏者成为感染者。
这样的模型更适用于具有潜伏期的传染病,如流感和艾滋病等。
通过引入潜伏者这一群体,SEIR模型可以更准确地反映出疾病的传播过程。
三、SI模型与SIR模型和SEIR模型不同,SI模型只考虑了易感者和感染者这两类人群,即易感者一旦被感染就无法康复并具有免疫力。
SI模型适用于那些一旦感染就无法康复的传染病,比如艾滋病和病毒性肝炎等。
四、SIS模型SIS模型在SI模型的基础上增加了康复者再次成为易感者这一过程,即感染者可以康复但并没有永久的免疫力。
SIS模型适用于那些患者可以反复感染的传染病,如流感和普通感冒等。
五、SEIRS模型在SEIR模型的基础上,SEIRS模型引入了康复者再次成为易感者这一过程,从而更为贴合实际传染病的传播过程。
SEIRS模型适用于那些感染后康复后不具备永久免疫力的疾病。
以上是一些常见的传染病传播模型,每种模型都有其适用的场景和特点。
在实际研究和预测传染病传播过程时,我们可以根据病原体的特性和传播规律选择合适的模型来进行分析和预测,从而更好地控制疫情的蔓延。
传染病模型的研究为我们提供了有效的工具,帮助我们更好地理解传染病的传播机制,为公共卫生工作提供科学依据。
希望在未来的研究中能够进一步完善传染病传播模型,为防控传染病提供更有力的支持。
数学建模传染病模型例题

数学建模传染病模型例题一、传染病模型简介传染病模型是数学建模的一个重要分支,主要用于描述传染病在人群中的传播规律。
通过构建合适的数学模型,可以研究传染病的传播动力学、预测疫情发展趋势以及评估防控措施的效果。
本文将重点介绍几种常见的传染病模型及其应用。
二、传染病模型的类型及应用1.SIR模型SIR模型是一种基于微分方程的传染病模型,其中S、I、R分别代表易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
该模型通过描述易感者感染、感染者康复以及康复者不再易感的动态过程,揭示了传染病在人群中的传播规律。
SIR模型在分析疫情爆发、研究防控措施等方面具有广泛应用。
2.SEIR模型SEIR模型是在SIR模型基础上发展的一种传染病模型,其中E代表潜伏者(Exposed)。
与SIR模型相比,SEIR模型增加了潜伏期这一概念,使得模型更加符合实际情况。
该模型可以用于研究传染病的传播速度、预测疫情发展趋势以及评估疫苗的效果。
3.SI模型SI模型是一种简化的传染病模型,仅包含易感者和感染者两个群体。
该模型适用于分析短期传染病,如流感等。
通过研究易感者与感染者的动态关系,可以预测疫情爆发的时间和规模。
三、传染病模型的参数估计与预测传染病模型的参数估计是数学建模的关键环节,通常采用最大似然估计、贝叶斯估计等方法。
此外,基于传染病模型的预测技术在疫情防控中也具有重要意义。
通过构建时间序列模型,如ARIMA、SVM等,可以预测未来一段时间内疫情的发展趋势。
四、数学建模在传染病防控中的实际应用数学建模在传染病防控中具有广泛应用,如疫情监测、防控措施评估、疫苗研究等。
通过对传染病模型的深入研究,可以为政府部门提供科学依据,协助制定针对性的防控策略。
五、案例分析本文将结合具体案例,如我国2003年非典疫情、2020年新冠肺炎疫情等,详细阐述传染病模型在实际应用中的重要作用。
通过分析案例,可以加深对传染病模型的理解,为今后疫情防控提供借鉴。
传染病的数学模型有哪些(一)

传染病的数学模型有哪些(一)引言:传染病是一种对人类健康造成严重威胁的疾病,为了更好地理解和控制传染病的传播过程,研究人员利用数学模型对传染病进行建模和预测。
本文将介绍传染病的数学模型,为了更好地控制和预防传染病的传播提供参考。
正文:1. 推广SIR模型a. SIR模型是一种常见的传染病数学模型,包括易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三个状态。
b. SIR模型基于一组微分方程进行建模,描述了各个人群状态之间的转化过程。
c. SIR模型可以通过改变参数值来预测和控制传染病的传播速度和范围。
2. 扩展SEIR模型a. SEIR模型是对SIR模型的扩展,引入了潜伏者(Exposed)的概念。
b. 潜伏者是指已经感染病毒但尚未表现出症状的人群。
c. SEIR模型可以更准确地预测传染病的传播速度和范围,尤其对于具有潜伏期的传染病。
3. 基于网络的模型a. 基于网络的传染病模型将人群视为图网络中的节点,节点之间的连接表示传播途径。
b. 网络模型可以更好地考虑人群的空间结构和社交关系对传染病传播的影响。
c. 网络模型常使用随机图、小世界网络或无标度网络等来表示人群间的联系。
4. 多主体模型a. 多主体模型是一种把个体行为和人群行为结合起来的传染病模型。
b. 多主体模型通过建立个体决策规则、交流机制和协调行为,考虑个体之间的相互作用和行为变化。
c. 多主体模型可以模拟人群在传染病传播中的决策行为,为制定个性化的防控策略提供参考。
5. 结合机器学习的模型a. 机器学习模型可以通过学习数据中的模式和规律,对传染病进行预测和控制。
b. 机器学习方法可以结合传染病流行病学和社会行为数据,提高模型的预测准确性。
c. 机器学习模型可以通过监督学习、无监督学习和强化学习等方法,对传染病的传播机制和防控策略进行建模和优化。
总结:传染病的数学模型有多种类型,包括SIR模型、SEIR模型、基于网络的模型、多主体模型和结合机器学习的模型。
传染病模型

染病类(Infectives):其数量记为I(t),表示t时刻已经
被感染成病人而且具有传染力的人数;
移出类(Removed):其数量记为R(t),表示t时刻已经从染
病类移出的人数;
Susceptibles
Infectives
模型1
假设 建模
已感染人数(病人)
i (t )
1/ σ 阈值
• s0 < 1 / σ ( P2 ) → i (t )单调降至0
模型4
预防传染病蔓延的手段
传染病不蔓延的条件——
s0 < 1 / σ
• 提高阈值1 / σ ⇒ σ ( = λ / µ ) ↓⇒ λ ↓, µ ↑
λ (日接触率)↓ ⇒ 卫生水平↑ µ(日治愈率)↑ ⇒ 医疗水平↑
• 降低s0 ( s0 + i0 + r0 = 1) ⇒ r0 ↑
t
tm~传染病高潮到来时刻 λ (日接触率)↓ → tm↑
1 − 1 t m = λ ln i 0
t → ∞ ⇒ i →1 ?
病人可以治愈!
模型3
增加假设
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染
SIS 模型
3)病人每天治愈的比例为µ µ ~日治愈率
建模 N [i (t + ∆t ) − i (t )] = λNs (t )i (t ) ∆t − µNi (t ) ∆t
第二部分 建立模型前的准备工作
1. 艾滋病发展阶段
感染
潜伏
发病
死亡
2个 月
8年
1年
每年的新发HIV感染数
年龄段 性别 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 男 13.5 0 10.65 8.18 5.63 4.39 1.24 0 0 0.34 0 0 0 0 合计(千人) 45.06 2000 女 6.44 2.31 2.25 3.43 0.89 0.98 0.89 0.32 0 0.28 0 0 0 0 18.86 男 12.48 0 9.86 7.23 6.5 5.06 1.08 0 0 0.39 0 0 0 0 43.78 2001 女 5.94 1.08 1.73 2.94 0.47 1.26 0.71 0.36 0 0.25 0 0 0 0 15.89 男 21.21 7.83 22.7 24.19 22.51 15.96 8.21 0 0.76 0.73 0 0 0 0 125.5 2002 女 9.02 5.81 7.04 7.79 4.15 3.26 2.22 1.35 0 0.42 0 0 0 0 42.45 男 19.13 5.32 16.14 17.34 18.67 12.27 4.13 0 1.04 0.51 0 0 0 0 96.2 2003 女 8.91 4.75 5.53 6.75 3.73 3.43 1.52 1.3 0 0.42 0 0 0 0 37.9 男 25.7 10.6 20.52 24.78 27.45 18.05 6.35 0 1.84 0.48 0 0 0 0 137.7 2004 女 11.62 7 6.6 8.17 5.42 4.43 2.09 1.91 0 0.58 0 0 0 0 49.65 男 35.95 19.4 28.71 38.62 43.4 29.7 12.58 0.96 3.18 0.55 0 0 0 0 215.5 2005 女 16.64 11.79 10.15 13.12 9.81 7.22 3.53 3.21 0 1.11 0 0 0 0 78.89
传染病传播模型

传染病传播模型随着世界人口的不断增加和人类活动的频繁交流,传染病的传播成为了一个日益严重的问题。
为了更好地理解和应对传染病的传播,科学家们提出了各种传染病传播模型。
本文将介绍几种常见的传染病传播模型,并分析它们的特点和应用。
一、SI模型SI模型是最简单的传染病传播模型之一,其中S表示易感者(Susceptible)、I表示感染者(Infectious)。
在SI模型中,人群中的个体只有在易感者和感染者两种状态之间相互转换。
具体而言,易感者可以通过与感染者接触而被感染,一旦感染,就成为感染者,并在一段时间内具有传播传染病的能力。
然而,在SI模型中,感染者随着时间的流逝不会重新变回易感者。
由于缺乏免疫力的存在,SI模型所描述的传染病在人群中的传播速度通常很快,例如流感等。
二、SIR模型SIR模型是相对复杂一些的传染病传播模型,其中R表示康复者(Recovered)。
和SI模型一样,SIR模型中的人群也被分为易感者、感染者和康复者三个状态。
然而,SIR模型引入了康复者的概念,即感染者经过一段时间的潜伏期后可以康复并具有免疫力。
在SIR模型中,康复者不再具有传播传染病的能力,不会再感染其他人。
与SI模型相比,SIR模型所描述的传染病传播速度相对较慢,且可能经历一次大规模的传播后逐渐衰减。
三、SEIR模型SEIR模型是在SIR模型的基础上进一步扩展的,其中E表示潜伏者(Exposed)。
在SEIR模型中,人群被分类为易感者、潜伏者、感染者和康复者四个状态。
潜伏者是指已经被感染但尚未表现出症状的个体,潜伏期结束后,潜伏者会进一步转化为感染者,并开始传播传染病。
由于潜伏期的存在,SEIR模型所描述的传染病具有一定的潜伏期,并且在人群中的传播速度相对较慢。
四、SIRS模型SIRS模型是对SIR模型的改进,其中S表示易感者、I表示感染者,R表示免疫者(Susceptible-Infected-Recovered-Susceptible)。
传染病的传播模型与分析

传染病的传播模型与分析传染病是指通过接触、空气传播、飞沫传播等途径从一个人传播到另一个人的疾病。
了解传染病的传播模型以及相应的分析方法对预防与控制传染病具有重要意义。
本文将探讨传染病的传播模型以及常用的分析方法。
一、传染病的传播模型1. SIR模型SIR模型将人群分为易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三个互不重叠的类别,描述了传染病在人群中的传播过程。
在这个模型中,一个人从易感者状态转变为感染者状态后再转变为康复者状态,整个过程是一个动态的流程。
2. SEIR模型SEIR模型在SIR模型的基础上增加了一个潜伏期状态(Exposed),即感染者已经被病原体感染但尚未表现出明显症状。
该模型可以更准确地描述某些疾病的传播特征,例如新冠病毒。
3. 网络传播模型网络传播模型基于人与人之间复杂的联系,将人与人之间的接触关系表示为网络结构,从而可以更好地研究疾病在社交网络中的传播过程。
该模型为防控传染病提供了新的思路和方法。
二、传染病的分析方法1. 流行病学调查流行病学调查是研究传染病传播规律的核心方法之一。
通过对患者、病原体、传播途径等进行全面的调查,可以了解感染源、传播途径、传染力大小等信息,从而为疫情防控提供科学依据。
2. 数学模型数学模型是传染病研究中常用的工具之一。
基于传染病的传播机理以及传染力大小等参数,可以建立相应的数学模型,并通过模型推导出预测结果,如疫情的发展趋势、传播速度等。
常用的数学模型包括微分方程模型、积分方程模型、格点模型等。
3. 统计分析统计分析是对大量传染病数据进行处理和分析的重要手段。
通过对病例数据进行整理、汇总和统计,可以得到病例分布、死亡率、复发率等重要指标。
同时,还可以运用统计学方法对数据进行建模和预测。
4. 传播网络分析传播网络分析是一种基于网络结构的方法,可以研究传染病在社交网络中的传播特征。
通过分析网络拓扑结构、节点特征以及传播路径等信息,可以发现传播的薄弱环节和高风险群体,并制定有针对性的防控策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在
i
2
时达到)。
记
a
,可知
i ()
1
1 a
,
0 ,
a 1 a 1
i(t)
i0
1 1 a
i0
0
t
(a 1)
i(t) a 1
a 1
0
t
(a 1)
模型解释
可知 a( a 刻画出该地区医疗条件和卫生水平)为
一个阈值,当 a 1 时,i(t) 0;当a 1时,i(t) 增减
性取决于i0
的大小,但其极限1
x s0 s
由 i0 0, s0 1, 经(8),
x
1
ln(1
x s0
)
0
x
2s0
(s0
1
)
当该地区的卫生和医疗水平不变时, 就不变,这个
比例也不变。
2、群体免疫和预防
由于当 s0
1
时不会蔓延,故降低
s0也是种手段。
由 i0
0 , s0
1 r0
,于是 s0
1
可表示为 r0
1 1
,即通
过群体免疫使初始时刻的移出者比例r0
求出(6)的解为
(6)
i
(s0
i0 )
s
1
ln
s s0
(7)
从(5)中无法得到 s(t) 和 i(t) 的解析解,转到 s i 相平
面上讨论解的性质。
D (s,i) | s 0,i 0, s i 1
i 1
O
1/σ
0
σ
s 1
可根据(5),(7)及上图分析 s(t),i(t),r(t) 的变化情况:
1、无论s0,i0如何,i 0,即病人终将消失。
2、最终未被感染的健康者比例 s 是方程
s0
i0
s
1
ln
s s0
0
在(0, 1 )内的单根。
(8)
3、若 s0
1
,则当 s
1
时,i(t ) 达到最大值
im
s0
i0
1
(1
ln
s0 )
i(t)先增后减至 0。
4、若 s0
1
,则i(t)
0,
s(t)
i(t)随 t 变化规律仍同模型(二),对r(t)应有
N dr Ni ,且 ds di dr 0dtdt d源自 dt于是得到模型di
dt
si
i
ds
dt
si
i(0) i0 , s(0) s0
(5)
从(5)中消去dt ,并注意到 的意义,可得
di ds
1
s
1
i |ss0 i0
1
1
,就可制
止传染病蔓延,但实际上难度很大,因为 越大,r0就
要越大(如 5,则r0 0.8,即有 80%以上人接受免
疫),而且这些人在人群中均匀分布。
§12 传染病模型
建立传染病模型的目的是描述传染过程、分析受 感染人数的变化规律、预报峰值期到来的时间等等。
为简单起见假定,传播期间内所观察地区人数 N 不变,不计生死迁移,时间以天为计量单位。
模型(一)(SI 模型) 模型假设
1、人群分为健康者和病人,在时刻t 这两类人中 所占比例分别为 s(t) 和 i(t) ,即 s(t) i(t) 1 ;
2、平均每个病人每天有效接触人数是常数 ,即 每个病人平均每天使 s(t) 个健康者受感染变为病 人, 称日接触率。
模型建立
据假设 2,在时刻 t ,每个病人每天可使 s(t) 个健
康者变成病人,病人数为 Ni(t) ,故每天共有 Ns(t)i(t) 个
健康者被感染,即
N di Nsi
s 。
模型解释
1、1
是一个阈值,当 s0
1
时传染病会蔓延,s0
1
时
就不会蔓延;
2、 表明 愈小,愈大, 也愈小,从而愈有利。
注:重要参数 可由(8)中令i0 0(通常开始时i0很
小)得到估计值
出估计)
ln s0 ln s
s0 s
(其中s0, s 可由实验得
模型应用
1、被传染比例的估计
tm
1 ln( 1
i0
1)
即峰值到来时刻, 越大,则tm 越小。
2、当t 时,i 1,这即所有的人都被感染,主要
是由于没有考虑病人可以治愈,只有健康者变成病
人,病人不会再变成健康者的缘故。
模型(二)(SIS 模型)
在模型(一)中补充假设
3、病人每天被治愈的占病人总数的比例为 ,称为
日治愈率。
1 a
,且
a
愈大,它也愈
大。
模型(三)(SIR 模型) 模型假设 1、人群分为健康者,病人和移出者(病愈免疫者), 三类人在时刻t 在总人数 N 中占比例分别为 s(t),i(t) , r(t),即s(t) i(t) r(t) 1; 2、病人日接触率为 ,日治愈率,传染期间接触数 。
模型建立
dt
又由假设 1 和设 t 0 时的比例 i0 ,则得到模型
di dt
i(1
i)
i(0) i0
(1)
(1)的解为
i(t)
1
1 ( 1 1)et
i0
(2)
i(t)
1
1 2
i0
0
tm
t
di dt
di ( dt )m
0
1 2
1
i
模型解释
1、当 i
1 2
时,
di dt
达最大值,这个时刻为
模型修正为( t 时刻每天有 Ni 病人转变成健康者)
di
dt
i(1 i)
i
i(0) i0
(3)
(3)的解为
i (t )
[
(
(1 i0
t 1 )1
,
)e( )t ]1,
i0
(4)
可以由(3)计算出使
di dt
达最大的峰值期 tm 。(
di dt
的
di
最大值 ( dt )m