临界转速计算
电机转轴的挠度及临界转速计算

b处:f1'= 0.006714438 cm d处:f2'= -0.006606742 cm 5、磁拉力刚度:
转子一:K1= 136812.9233 kg/cm
转子二:K2=
0
kg/cm
6、初始磁拉力:
P1= 1368.129233 kg
P2=
0
kg
7、由磁拉力引起的
挠度:
F0= 1.03954E-12
同步转速:
n=
5781 5000
功率:
P=
300
过载系数:
K=
2.25
2、挠度系数计算:
单位:
cm
cm4
(kg) (kg) (cm) (cm) (cm) (MPa) GS r/min kW
L1=
49
L2=
52.1
L=
126
La=
36
G2=
20
y= 0.388888889
z= 0.285714286
根据y、 z值查图2-119
0 0 0 0
Xi3
91.125 857.375 6331.625 20796.875 34328.125
0 0 0 0 0
Xi3-X(i-1)3
3375 8015.625
7219 18985.75 39170.25 30406.25
0 0 0 0
Kab=
Xi3-X(i-1)3
91.125 766.25 5474.25 14465.25 13531.25
D2无铁心 输入0或 空格
280 2.06E+06
转子二外径: D2=
0
cm
转子一气隙磁密:Bδ1=
临界转速的计算

一、临界转速分析的目的临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。
例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck<N<0.7Nck+1,而对于航空涡轮发动机,习惯做法是使其最大工作转速偏离转子一阶临界转速的10~20%。
二、选择临界转速计算方法要较为准确的确定出转子支撑系统的临界转速,必须注意以下两点1.所选择的计算方法的数学模型和边界条件要尽可能的符合系统的实际情况。
2.原始数据的(系统支撑的刚度系数和阻尼系数)准确度,也是影响计算结果准确度的重要因素。
3.适当的考虑计算速度,随着转子支撑系统的日益复杂,临界转速的计算工作量越来越大,因此选择计算方法的效率也是需要考虑的重要因素。
三、常用的计算方法2.Prohl-Myklestad莫克来斯塔德法传递矩阵法基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。
优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。
缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。
今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。
轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。
临界转速的计算资料

一、临界转速分析的目的临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。
例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck<N<0.7Nck+1,而对于航空涡轮发动机,习惯做法是使其最大工作转速偏离转子一阶临界转速的10~20%。
二、选择临界转速计算方法要较为准确的确定出转子支撑系统的临界转速,必须注意以下两点1.所选择的计算方法的数学模型和边界条件要尽可能的符合系统的实际情况。
2.原始数据的(系统支撑的刚度系数和阻尼系数)准确度,也是影响计算结果准确度的重要因素。
3.适当的考虑计算速度,随着转子支撑系统的日益复杂,临界转速的计算工作量越来越大,因此选择计算方法的效率也是需要考虑的重要因素。
三、常用的计算方法2.Prohl-Myklestad莫克来斯塔德法传递矩阵法基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。
优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。
缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。
今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。
轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。
汽轮机转子临界转速计算

汽轮机转子临界转速计算引言:汽轮机是一种广泛应用在能源转换和发电行业中的设备。
在讨论汽轮机转子临界转速之前,我们先介绍一下汽轮机的基本结构和工作原理。
汽轮机结构和工作原理:汽轮机包括一个或多个转子,每个转子上安装有多个叶片。
当蒸汽通过汽轮机的叶片流过时,叶片会受到压力差的作用,从而转动汽轮机转子。
汽轮机转子上的叶片通过抽吸机尾部产生的气流冷却,从而使得汽轮机能够连续工作。
汽轮机通常由高、中、低三个压级组成,每个压级中的汽轮机转子都需设计在临界转速以下。
什么是临界转速?临界转速是指汽轮机转子在工作过程中发生的第一个共振频率。
当汽轮机转子运转至临界转速时,叶片的振动会欣然增大,并可能导致转子破裂,从而对汽轮机造成严重的损坏。
临界转速计算:临界转速是汽轮机设计中的一个重要参数。
根据转子设计理论,临界转速取决于叶片长度、转子材料的弹性模量、密度、截面形状、转子半径等因素。
下面我们将详细介绍临界转速的计算方法。
1. 叶片长度:叶片长度是指叶片从离心机壳上的固定支点到叶片末端长度的距离。
叶片长度的增加会导致临界转速的降低。
2. 转子材料的弹性模量和密度:转子材料的弹性模量和密度是确定临界转速的两个重要因素。
具有较大弹性模量和较小密度的材料有助于提高临界转速。
3. 截面形状:转子的截面形状可以通过转动惯量系数J来表示。
较大的转动惯量系数将有助于提高临界转速。
4. 转子半径:转子的半径决定了叶片承受的离心力大小。
较大的转子半径对应着较大的临界转速。
综上所述NC=K*√(E/(ρJ))其中,NC是临界转速,K是比例常数,E是转子材料的弹性模量,ρ是转子材料的密度,J是转子的转动惯量系数。
结论:汽轮机转子临界转速是设计过程中需要关注的一个重要参数。
通过合理选择叶片长度、转子材料的弹性模量、密度、截面形状和转子半径等参数,并通过计算公式来计算临界转速,可以保证汽轮机的正常运行和安全性。
此外,在汽轮机设计过程中还可以采用其他的设计手段,如叶片增加补偿重量、改变叶片截面形状等来提高汽轮机的临界转速。
电机转轴的挠度及临界转速计算

转轴的挠度及临界转速计算程序(一具有集中载荷的两支点轴承的计算(如图2-118转轴重量: Q=285(kg L1=49转子重量: G1=365(kg L2=52.1铁心有效长度:L fe=46(cm L=126转子外径: D1=37.2(cm La=36单边气隙: δ=0.4(cm G2=20弹性模量: E= 2.06E+06(MPay=0.388888889气隙磁密: Bδ=5781GS z=0.285714286同步转速: n=5000r/min根据y、z值查图2-119功率: P=300kWθ=0.5过载系数: K= 2.25b处轴径212、挠度系数计算:单位:cm cm4cm cm3cm3轴a~b段d i J i X i Xi 3Xi3-X(i-1319321.89906251533753375 210490.62522.511390.638015.625 311718.324062526.518609.637219 4121017.3633.537595.3818985.75 5131401.27406342.576765.6339170.25 6141884.78547.5107171.930406.25 7000008000009000001000000∑ K ab=轴c~b段d i J i X i Xi 3Xi3-X(i-1318200.96 4.591.12591.125 29321.89906259.5857.375766.25311718.324062518.56331.6255474.25 4131401.27406327.520796.8814465.25 5141884.78532.534328.1313531.25 600000 700000 800000 900000 1000000∑ K cb=3、轴在b点的柔度:αbb= 3.44022E-06cm/kg一、绕度及临界转速计算4、磁拉力刚度:K0=8753.301622kg/cm5、初始单边磁拉力:P0=350.1320649kg6、由G1重量引起的b点绕度:f1=0.001875367cm7、滑环重量G2引起的b点绕度:f2=7.67363E-05cm8、单边磁拉力引起的b点绕度:fδ=0.001883694cm9、轴在b点的总绕度:f=0.003835798cm应小于异步电机同步电机10、转轴临界转速:n kp=6635.556016rpm二、轴的强度计算:1、最大转矩:Mmax=1289.25N.m2、bb点处的弯矩:Mbb=1419.958282N.m3、bb处的交变弯矩应力:ζbb=1533266.691N/m24、bb处的剪切应力:ηbb=696064.1399N/m2ηn=348032.07N/m2脉动循环下的剪切应力:η∞=870080.1749N/m25、轴在bb处受到的总负荷应力:ζ= 2.319281093N/mm2应该小于材料许用[ζ]=三、轴承计算:1、转子所受最大径向力:W=715.1320649kg2、a处轴承支承力:Pa=295.7014332kg3、c处轴承支承力:Pc=278.1069141kg4、轴承寿命:Lh=35986600.69小时应大于10^5式中:ε=3.33f t=1载荷系数F f=1.1温度系数c=39600轴承额定动负荷P i=278.11当量动负荷(二带外伸端的两支点轴承的计算(如图2-120一、基本参数:电枢重量(G1包括转轴中部重量的2/3和滑环的重量在内一、绕度及临界转速计算2、柔度系数计算:3、轴的柔度:α11=7.56093E-07cm/kgα22= 2.42497E-06cm/kgα12=-8.91046E-07cm/kgα21=-8.91046E-07cm/kg4、转子重量所引起的挠度:b处:f1'=0.006714438cmd处:f2'=-0.006606742cm5、磁拉力刚度:转子一:K1=136812.9233kg/cm转子二:K2=0kg/cm6、初始磁拉力:P1=1368.129233kgP2=0kg7、由磁拉力引起的挠度:F0= 1.03954E-12E0=0.896556679b处:f1"=0.001153785cmd处:f2"=-0.001359721cm8、总挠度:同步机b处:f1=0.007868222cm应该<0.008d处:f2=-0.007966462cm应该<0 9、临界转速:一次:n k=3506.387398rpm应该>975 速计算程序(如图2-118(cm(cm(cm(cm(kg曲线cmcm-1[X i3-X(i-13]/J i10.4846530916.3375796210.0497816718.6617814727.9533112416.1324766599.61958374[X i3-X(i-13]/J i0.4534484472.3804045727.62086401610.32292717.17920081127.956844950.04cm0.032cm55N/mm2小时图2-120(cm(cm(cm(cmMpa[X i3-X(i-13]/J i X i2X i2-X(i-12[X i2-X(i-12]/J i X i-X i-1(X i-X i-1/J i0.918664587-0.3518347250.3368560430.903685905[X i3-X(i-13]/J i X i2X i2-X(i-12[X i2-X(i-12]/J i X i-X i-1(X i-X i-1/J i 0.056840583204204.490.00397486614.30.00027796311.2813244395459340.80.1133507583.40.00101206-0.5198816461089-8456.29-0.004903061-64.7-3.75139E-0500-10890-330000000000000000000000000异步机cm应该<0.01cm cm应该<0cm rpm满足要求。
转轴的挠度及临界转速计算

转轴的挠度及临界转速计算程序(一)具有集中载荷的两支点轴承的计算(如图2-118)一、绕度及临界转速计算3、轴在b点的柔度:αbb= 4.99225E-06cm/kg4、磁拉力刚度:K0=49554.06333kg/cm5、初始单边磁拉力:P0=991.0812667kg6、由G1重量引起的b点绕度:f1=0.007881595cm7、滑环重量G2引起的b点绕度:f2=0.000163144cm8、单边磁拉力引起的b点绕度:fδ=0.008495762cm9、轴在b点的总绕度:f=0.016540502cm应小于异步电机同步电机10、转轴临界转速:n kp=2802.141933rpm二、轴的强度计算:1、最大转矩:Mmax=10170.75N.m2、bb点处的弯矩:Mbb=8752.669171N.m3、bb处的交变弯矩应力:σbb=9451105.897N/m24、bb处的剪切应力:τbb=5491172.66N/m2τn=2745586.33N/m2脉动循环下的剪切应力:τ∞=6863965.824N/m25、轴在bb处受到的总负荷应力:σ=16.66671863N/mm2应该小于材料许用[σ]=三、轴承计算:1、转子所受最大径向力:W=2301.081267kg2、a处轴承支承力:Pa=1192.429249kg3、c处轴承支承力:Pc=1045.819095kgLh=1456982.883小时 应大于10^5式中:ε=3.33f t=1载荷系数F f=1.1温度系数c=39600轴承额定动负荷P i=1045.82当量动负荷4、轴承寿命:(二)带外伸端的两支点轴承的计算(如图2-120)一、基本参数:电枢重量(G1包括转轴中部重量的2/3和滑环的重量在内)一、绕度及临界转速计算2、柔度系数计算:3、轴的柔度:α11=7.56093E-07cm/kgα22= 2.42497E-06cm/kgα12=-8.91046E-07cm/kgα21=-8.91046E-07cm/kg4、转子重量所引起的挠度:b处:f1'=0.006714438cmd处:f2'=-0.006606742cm5、磁拉力刚度:转子一:K1=136812.9233kg/cm转子二:K2=0kg/cm6、初始磁拉力:P1=1368.129233kgP2=0kg7、由磁拉力引起的挠度:F0= 1.03954E-12E0=0.896556679b处:f1"=0.001153785cmd处:f2"=-0.001359721cm8、总挠度:同步机b处:f1=0.007868222cm应该<0.008d处:f2=-0.007966462cm应该<09、临界转速:一次:n k=3506.387398rpm应该>975(cm)(cm)(cm)(cm)(kg)曲线cmcm-1[X i3-X(i-1)3]/J i0.0158060470.6150555471.00413328510.3702657246.3391216458.34438224[X i3-X(i-1)3]/J i0.0158060474.2301062568.2384035378.674287214.41912717947.9333411973.511071410.02cm0.016cm55N/mm 2小时(cm)(cm)(cm)(cm)Mpa异步机cm应该<0.01cm cm应该<0cmrpm满足要求。
资料1-转子轴系临界转速计算

YE6254转子动力学教学实验系统资料一:转子轴系临界转速计算1.转子轴系参数:转轴:Φ10×320 mm,3根,Φ10×500 mm,1根(油膜振荡用),材料为40C;r 转盘:Φ76×25mm,质量800g;Φ76×19mm,质量600g,材料为40Cr;跨度:Φ10×320 mm转轴为250mm;Φ10×500 mm转轴为430mm;连接方式:柔性和刚性两种连轴方式,且按照不同的组合;材料参数:弹性模量为210GPa,密度为7800kg/m3;给定参数:柔性连接刚度取100N/ m2 ,刚性连接则认为轴是连接在一起的。
2.计算方法:对转子轴系临界转速的理论计算采用Riccati传递矩阵法,传递矩阵法的详细介绍见资料二。
3.计算结果:按照所选取的转子轴系参数,采用Riccati传递矩阵法,计算了36种转子轴系组合情形的临界转速,结果见下表。
表中给出的是转盘在转轴特定位置的临界转速,即对单轴单盘,转盘在转轴跨长的中间位置;对单轴双盘,两转盘分别在转轴跨长的1/3位置。
转盘可安装在转轴的任意位置,其他位置的定性结论是:对单轴单盘,若转盘不在跨长的中间位置,临界转速会提高;对单轴双盘,对称位置是两转盘在跨长的1/3处,若两转盘均向支承点方向做小幅度移动,则一阶临界转速会提高,二阶临界转速会降低,若两转盘均向转轴中间方向做小幅度移动,则一阶临界转速会降低,二阶临界转速会提高;柔性连接的各阶临界转速均低于刚性连接,且一阶临界转速变化比较明显。
3.1 单轴单盘:表1:3.2 单轴双盘:表2:表3:3.3 双轴双盘:表4:表6:表7:3.4 三轴三盘:表8:3.5双轴三盘:表10:表11:附:转子轴系临界转速计算图形2单轴单盘:盘居中,320mm轴,800g盘,临界转速约为5728rmp4单轴单盘:盘居中,500mm轴,800g盘,临界转速约为2472rmp5单轴单盘:盘位于1/3处,500mm轴,800g盘,临界转速约为2814rmp6单轴双盘:两盘位于1/3处,320mm轴,600g盘两个,临界转速一阶约为5436rmp,二阶约为21307rmp一阶约为5062rmp,二阶约为20039rmp8单轴双盘:两盘位于1/3处,320mm轴,800g盘两个,临界转速一阶约为4762rmp,二阶约为18613rmp盘各一个,临界转速10单轴双盘:两盘位于1/5处,320mm轴,600g、800g6858rmp ,二阶约为17024rmp0.51 1.52x 104-1-0.50.51x 101112 单轴双盘:两盘位于1/3处,500mm 轴,600g 盘两个,临界转速一阶约为2345rmp ,二阶约为9343rmp13单轴双盘:两盘位于1/3处,500mm轴,600g、800g盘各一个,临界转速一阶约为2192rmp,二阶约为8786rmp14单轴双盘:两盘位于1/3处,500mm轴,800g盘两个,临界转速一阶约为2067rmp,二阶约为8181rmp15单轴双盘:两盘距两侧支承点各1/4轴跨度长,500mm轴,800g盘两个,临界转速一阶约为2491rmp,二阶约为7232rmp16单轴双盘:两盘距两侧支承点各2/5轴跨度长,500mm轴,800g盘两个,临界转速一阶约为1894rmp,二阶约为11874rmp临界转速一阶约为6741rmp,二阶约为9095rmp18双轴双盘:轴间柔性连接,盘位于各轴中间,320mm轴两根,600g、800g 盘各一个,临界转速一阶约为6551rmp,二阶约为8208rmp临界转速一阶约为5925rmp ,二阶约为7976rmp20 双轴双盘:轴间柔性连接,盘位于各轴中间,500mm 轴和320mm 轴各一根, 0200040006000800010000-1-0.50.51x 1011600g 、800g 盘各一个,临界转速一阶约为3821rmp ,二阶约为6252rmp0200040006000800010000-1-0.50.51x 101122 双轴双盘:轴间柔性连接,盘位于各轴中间,500mm 轴和320mm 轴各一个,800g 盘两个,临界转速一阶约为3388rmp ,二阶约为6228rmp24双轴双盘:轴间刚性连接,盘位于各轴中间,320mm轴两根,600g、800g临界转速一阶约为7410rmp ,二阶约为8105rmp26 双轴双盘:轴间刚性连接,盘位于各轴中间,500mm 轴和320mm 轴各一个, 0200040006000800010000-1-0.50.51x 1011320mm轴各一个,28双轴双盘:轴间刚性连接,盘位于各轴中间,500mm轴和临界转速一阶约为6771rmp,二阶约为8338rmp,三阶约为10008rmp30三轴三盘:轴间柔性连接,盘位于各轴中间,320mm轴三根,800g盘三个,临界转速一阶约为5951rmp,二阶约为7315rmp,三阶约为8773 rmp临界转速一阶约为8706rmp ,二阶约为8847rmp ,三阶约为11151 rmp020004000600080001000012000-1-0.50.51x 101132 三轴三盘:轴间刚性连接,盘位于各轴中间,320mm 轴三根,800g 盘三个,临界转速一阶约为7640rmp ,二阶约为7761rmp ,三阶约为9772 rmp转盘,分位于1/3处,320mm轴置1转盘,位于轴中间,600g盘三个,临界转速一阶约为3277rmp,二阶约为7035rmp,三阶约为10600 rmp34双轴三盘:轴间柔性连接,500mm轴和320mm轴各一个,500mm轴置2转盘,分位于1/3处,320mm轴置1转盘,位于轴中间,800g盘三个,临9282 rmp界转速一阶约为2887rmp,二阶约为6177rmp,三阶约为转盘,分位于1/3处,320mm轴置1转盘,位于轴中间,600g盘三个,临界转速一阶约为3365rmp,二阶约为8815rmp,三阶约为10600 rmp转盘,分位于1/3处,320mm轴置1转盘,位于轴中间,800g盘三个,临界转速一阶约为2964rmp,二阶约为7730rmp,三阶约为9282 rmp。
临界转速的计算范文

临界转速的计算范文
一、转速的临界性
在锅炉技术中,转速的临界性是指当锅炉运行转速接近其中一特定值时,锅炉的运行稳定性可能会受到影响,可能会引起振动现象,也可能会
因达到一定极限而发生突然的热绝缘问题,从而导致锅炉的停止运行。
二、计算临界转速
1.用于确定锅炉临界转速的参数有哪些?
(1)锅炉的容积。
(2)锅炉的质量。
(3)锅炉的受力情况。
(4)锅炉的振动和温度变化情况。
2.如何计算锅炉临界转速?
(1)收集必要的参数及参考数据,构建完整的锅炉运行模型及计算
模型;
(2)确定锅炉体(壳筒)的几何尺寸及材料性能数据,并建立模型,进行力学和热学计算;
(3)确定锅炉受力情况及温度变化情况,对各种情况进行分析和计算;
(4)根据计算结果确定锅炉的临界转速,并尽可能优化转速,防止
出现可预测的不正常情况。
三、总结
临界转速是指当运行转速接近其中一特定值时,锅炉的运行稳定性可能会受到影响,甚至出现振动现象或热绝缘问题,从而导致锅炉的停止运行。