高三数学数列的概念与通项公式ppt文档

合集下载

人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】

人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】
类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规
律的数列,建立它们的通项公式和前n项和公式,并运用它们解决实际问题和
数学问题,从中感受数学模型的现实意义与应用.
下面,我们从一类取值规律比较简单的数列入手.
新知导入
请看下面几个问题中的数列.
1. 北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,围绕天心石的
这个数列不能称为等差数列.
新知讲解
等差中项
由三个数a,A,b组成的等差数列可以看成是最简单的等差数列.
这时,A 叫做 a 与 b 的等差中项.
根据等差数列的定义可以知道,2A=a+b.
(1)条件:如果a,A,b成等差数列
(2)结论:A叫做a与b的等差中项
(3)满足的关系式是 2A=a+b
合作探究
是9圈扇环形的石板,从内到外各圈的石板数依次为
9,18,27,36,45,54,63,72,81. ①
2. S,M,L,XL,XXL,XXXL型号的女装上衣对应的尺码分别是
38,40,42,44,46,48. ②
3. 测量某地垂直地面方向海拔500m以下的大气温度,得到从距离地面
20m起每升高100m处的大气温度(单位:℃)依次为
1 − ( ∈ ) 当x=n时的函数值,即 = () .
如图4.2-1, 在平面直角坐标系中画出
= + −
的图象,
就得到一条斜率为d,截距为1 − 的直线.
合作探究
在这条直线上描出点
, , , , ⋯ , , , ⋯ ,
就得到了等差数列{ }的图象.
an=a1+(n-1)d (n∈N*)
合作探究

高中数学《数列概念与通项公式》课件

高中数学《数列概念与通项公式》课件

7
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
2.数列与函数的关系 对任意数列{an},其每一项与序号都有对应关系,见下 表:
序号 1 2 3 4 … n … 项 a1 a2 a3 a4 … an …
8
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
□ 因此,数列也可以看成是定义域为 02 正整数集 N* (或 □ □ 它的 03 有限子集{1,2,3,…,n} )的函数 04 an=f(n) ,
19
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(6)6,6,6,…; (7)0,-1,0,…,cosn2π,…. 解 (1)是无穷递减数列. (2)是有穷递增数列. (3)是无穷数列,也是摆动数列. (4)是有穷递增数列. (5)是无穷数列,也是摆动数列. (6)是无穷数列,也是常数列. (7)是无穷数列,也是摆动数列.
21
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(6)32,1,170,197,…;
(7)12,2,92,8,…. 解 (1)∵各项减去 1 后为正偶数,∴an=2n+1.
(2) ∵ 每 一 项 的 分子 比 分 母少 1, 而 分 母 组成 数 列
21,22,23,24,…,∴an=2n2-n 1.
解 数列 0.6,0.66,0.666,0.6666,…的通项公式为 an=23
1-110n.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5

4.2.1 第一课时 等差数列的概念及通项公式(课件(人教版))

4.2.1 第一课时 等差数列的概念及通项公式(课件(人教版))
4.2 等差数列
4.2.1 等差数列的概念
新课程标准解读 1.通过生活中的实例,理解等差数列的 概念和通项公式的意义. 2.能在具体的问题情境中,发现数列的 等差关系,并解决相应的问题. 3.体会等差数列与一元一次函数的关系.
核心素养
数学抽象
逻辑推理、数学 运算
数学抽象
第一课时 等差数列的概念及通项公式
[随堂检测] 1.已知等差数列{an}的通项公式为 an=3-2n,则它的公差为
()
A.2
B.3
C.-2
D.-3
解析:∵an=3-2n=1+(n-1)×(-2),∴d=-2,故选 C.
答案:C
2.在△ABC 中,三内角 A,B,C 成等差数列,则 B 等于( )
A.30° C.90°
B.60° D.120°
[问题导入] 预习课本第 12~15 页,思考并完成以下问题 1.等差数列的定义是什么?如何判断一个数列是否为等差数列?
2.等差数列的通项公式是什么?
3.等差中项的定义是什么?
[新知初探]
知识点一 等差数列的定义 如果一个数列从第 2 项起,每一项与它的前一项的差等 于同一个常数,那么这个数列就叫做等差数列,这个常 数叫做等差数列的公差,通常用字母 d 表示.
令(n-6)d=0,得 n=6,故选 A.
法二:设公差为 d(d≠0),因为 4a3=3a2,所以 a3=-3d,又
因为 a3=a1+2d,所以 a1=-5d,故 an=-5d+(n-1)d,令
an=0.得 n=6,所以数列{an}中 a6=0.故选 A. 答案:A
5.一个等差数列的第 5 项 a5=10,且 a1+a2+a3=3,则首 项 a1=________,公差 d=________. a5=a1+4d=10, 解析:由题意得 a1+a1+d+a1+2d=3,

等差数列的概念及通项公式.ppt

等差数列的概念及通项公式.ppt

a5 a4 d (a1 3d) d a1 4d
a 由此可知,等差数列 n 的通项公式为 当d≠0时,这是
an a1 (n 1)d
关于n的一个一 次函数。
10等差数列的图象1

9 (1)数列:-2,0,2,4,6,8,10,…
8

7
6

5
4

3
2

1

0 1234
5 6 7 8 9 10
2.2.1等差数列的概念 及通项公式
学习目标: 1.通过实例,理解等差数列的概念. 2.探索并掌握等差数列的通项公式. 3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问
题. 4.体会等差数列与一次函数的关系.
复习数列的有关概念1
按一定的次序排列的一列数叫做数列。 数列中的每一个数叫做这个数列的项。

等差数列的图象2
10
9 (2)数列:7,4,1,-2,…
8
7

6
5
4

3
2

1
0 1 2 3 4 5 6 7 8 9 10

等差数列的图象3
10 9 (1)数列:4,4,4,4,4,4,4,…
8
7 6
5
4
● ● ●● ●●● ● ● ●
3 2
1
0 1 2 3 4 5 6 7 8 9 10
等差中项
(3) 7x, 3x,-x,-5x,-9x,… 公差 d= -4x
(4) 2,0,-2,-4,-6,…
公差 d= -2 递减数列
(5) 5,5,5,5,5,5,… 公差 d=0 非零常数列

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.

数学人教A版(2019)选择性必修第二册4.1.1数列的概念与通项公式(共21张ppt)

数学人教A版(2019)选择性必修第二册4.1.1数列的概念与通项公式(共21张ppt)
96,112,128,144,160,176,192,208,224,240.
并不是所有数列都能写出(或方便写出)其通项公式
n

N*
= f(n)

a1 a2
a3

an …
R
当自变量从1开始,按照从小到大的顺序依次取值时,对应的一列
函数值f(1),f(2),…,f(n),…就是数列{ }.
另一方面,对于函数 = ,如果f(n) (n∈N*)有意义,那么
f(1),f(2),…,f(n),…构成了一个数列{f(n)}。
数列的概念:一般地,把按照确定的顺序排列的一列数称为数列.
数列中的每一个数都叫做数列的项.
数列第一个位置上的数叫做这个数列的第1项 (或首项),用符号表示
第二个位置上的数叫做这个数列的第2项, 用符号表示…,
第个位置上的数叫做这个数列的第项, 用符号表示.
数列的一般形式是 : , , . . . , , . . . ,简记为{}.

(1)这列数是什么呢?请你列出来;
(2)这列数是否具有上述的特征?如果是,请你仿照以上的叙述,
说明这也是具有确定的顺序的一列数


− 、 、





、 ...


记第i个数为si,那么s1=





,s2= ,
不能交换位置、具有确定的顺序


s3=− , s4= ,…


思考: 上面三个例子的共同特征是什么?
数列是自变量为离散的数的函数.
问题5:类比函数的表示方法,数列还有哪些表示方式?
数列也可以用表格和图象来表示.

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

得aa11+ +1549dd= =82, 0,
解得a1=6145, d=145.
故a75=a1+74d=1654+74×145=24.
法二
∵a60=a15+(60-15)d,∴d=
20-8 60-15

4 15
,∴a75=a60+
(75-60)d=20+15×145=24. 法三 已知数列{an}是等差数列,可设an=kn+b.由a15=8,
ACD [由条件可知an+1-an=-3,∴该数列为等差数列,公差 为-3,这时an=-3n+30.∴a5=-3×5+30=15,又由-3n+30 =-3得n=11,故ACD正确.]
3.在等差数列{an}中,已知a2=2,a5=8,则a9=( )
A.8
B.12
C.16
D.24
C [设等差数列{an}的首项为a1,公差为d, 则由a2=2,a5=8,得 aa11+ +d4= d=2, 8, 解得a1=0,d=2,所以a9 =a1+8d=16.故选C.]
[跟进训练] 2.若等差数列的前三项分别为a,2a-1,3-a,求其第2 022项.
[解] 由等差中项公式可得2(2a-1)=a+(3-a),解得a=54,所
以首项为
5 4
,公差为
2×54-1
数列的通项公式为an=
5 4
+(n-1)×14=14n+1,故其第2 022项为a2 022=14×2 022+1=1 0213.
(2)求数列{an}的通项公式. [解] 由(1)知bn=12+(n-1)×12=n2. ∵bn=an-1 2, ∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
2.(变条件)将本例中的条件“a1=2,an+1=

高考数学微专题3 数列的通项课件(共41张PPT)

高考数学微专题3 数列的通项课件(共41张PPT)
内容索引
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“an+1-an=d(常数)(n≥2)”与“an-an-1=d (d为常数,n≥2)”的细微差别.
题型三 利用递推公式求数列的通项
例3 根据下列条件,写出数列的通项公式:
(1)a1=2,an+1=an+n; (2)a1=1,an-1=2n-1an.
1
(n=1)
an= 2·3n-1 (n∈N*,且n≥2).
(2)当n=1时,a1=S1=
1 8
(a1+2)2,解得a1=2.
当n≥2时,Sn=Sn-Sn-1=
1 8
(an+2)2-
1 8
(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,
所以(an+an-1)(an-an-1-4)=0,
2.数列-1,7,-13,19,…的一个通项公式 是an= (-1)n(6n-5) .
符号问题可通过(-1)n或(-1)n+1表示, 其各项的绝对值的排列规律为:后面的 数的绝对值总比它前面数的绝对值大6, 故通项公式为an=(-1)n(6n-5).
3.如果数列{an}的前n项的和Sn=n2,那么 这个数列的通项公式是 an=2n-1 .
a1=S1=1,所以a1=1, 当n≥2时,an=Sn-Sn-1=2n-1. 经检验,a1符合上式,所以an=2n-1.
4.在数列{an}中,若an+1=
则a6=
1 11
.
an 2an 1
,a1=1,
因为an+1=
2
a an
n
1
1
1
a2=
2
a a1
1
1
=1
3
,
a3=
2
3
1
3
=1
5
,a4=
2
5
1.数列的概念
(1)数列是按一定① 顺序排列的一列数, 记作a1,a2,a3,…,an,…,简记{an}.
(2)数列{an}的第n项an与项数n的关系 若能用一个公式an=f(n)给出,则这个公式 叫做这个数列的② 通项公式.
(3)数列可以看做定义域为N*(或其子 集)的函数,当自变量由小到大依次取 值时,对应的一列函数值,它的图象是 一群③ 孤立的点 .
1
5
=1 ,
7
1
a5=
2
7
1
=1
9
7
1
,a6=
2
9
1
=1
11
.
9
5.已知数列{an}(n∈N*)满足 an+1=an-t (an≥t) t+2-an (an<t),
且t<a1<t+1,其中t>2,若an+k=an(k∈N*),则实 数k的最小值是 4 .
因为t<a1<t+1,所以a2=a1-t<1<t, 故a3=t+2-a2=2t+2-a1>t, a4=a3-t=t+2-a1<t,a5=t+2-a4=a1, 所以最小正周期为4,故k的最小值为4.
(2)分式形式的数列,分子找通项, 分母找通项,要充分借助分子、分母的 关系.
(3)对于比较复杂的通项公式,要借 助等差数列、等比数列(后面将学到) 和其他方法来解决.
(4) 此 类 问 题 虽 无 固 定 模 式 , 但 也 有 其规律可循,主要靠观察(观察规律)、 比较(比较已知的数列)、归纳、转化 (转化为等差或等比数列)等方法.
题型二 利用数列前n项和公式求通项
例2 已知数列{an}的前n项和为Sn,分
别求其通项公式.
(1)Sn=3n-2;
(2)Sn=
1 8
(an+2)2(an>0).
(1)当n=1时,a1=S1=1; 当n≥2时,an=Sn-Sn-1=3n-2-(3n-1-2)
=2·3n-1.
由于a1=1不适合上式,因此数列{an}的通 项公式为
A.0个 B.1个 C.3个 D.5个
本题是考查数列及相关概念的题, 在解题过程中,每一个叙述都有可能判断错 误,故需一一给予剖析:命题①,数列可以 看作是一个定义域为正整数集N+(或它的 有限子集{1,2,3,…,n})的函数;命题 ②,不是每一个数列都有通项,有的数列不 存在通项;另外,有通项公式的数列,通项 公式也不一定惟一;命题③,数列除了用通 项公式表示外还可以用列表法和图象法表示; 命题④,数列存在递增数列、递减数列、常 数数列,还有摆动数列;命题⑤,数列是有 序的;⑥正确.
2
2
2
(4)1,0,-1,0,1,0,-1,0,….
(1)an=(-1)n+1或an=cos(n+1)π.
(2)an=2n+1.
n2
(3)an知数列的前n项,写出数列的通
项公式,主要从以下几个方面来考虑:
(1)符号用(-1)n与(-1)n+1(或(-1)n-1)来 调节,这是因为n和n+1奇偶交错.
4.数列通项an与前n项和Sn的关系
(1)Sn=a1+a2+a3+…+an;
(2)an=⑧
S1(n=1) .
Sn-Sn-1(n≥2)
典例精讲
题型一 观察法写数列的通项公式
例1 求下列数列的一个通项公式:
(1)1,-1,1,-1,…;
(2)3,5,9,17,33,…;
(31 ) ,29, ,8,2 5 ,…;
又an>0,所以an-an-1=4,
可知{an}为等差数列,公差为4,
所以an=a1+(n-1)d=2+(n-1)·4=4n-2,
a1=2也适合上式,故an=4n-2.
点评
本例的关键是应用an=
S1
(n=1)
Sn-Sn-1 (n≥2)求
数列的通项,特别要注意验证a1的值是否
满 足 “ n≥2” 的 通 项 公 式 ; 同 时 认 清
高三数学数列的概念与通项公式
1.了解数列的概念和几种简单的表 示方法(列表、图象、通项公式).
2.了解数列是自变量为正整数的一 类函数.
3.会用观察法、递推法等求数列的 通项公式.
1.以下关于数列的叙述: ①数列是以正整数集为定义域的函数; ②数列都有通项,且是惟一的; ③数列只能用通项公式的方法来表示; ④既不是递增也不是递减的数列,则为常数列; ⑤数列1,1,2,3,5,8与数列8,5,3,2,1,1是同一数列; ⑥是对以所3有为的周n期∈的N*周,期都数有列an.+3=an,则数列{an} 其中正确的结论有( B )
2.数列的表示方法
数列的表示方法有:列举法、图示法、 解析法(用通项公式表示)和递推法 (用递推关系表示).
3.数列分类
(1) 按 照 数 列 的 项 数 分 ④ 有穷数列 、 无穷数列 .
(2)按照任何一项的绝对值是否超过某 一正常数分:⑤ 有界数列 、 无界数列 .
(3)从函数单调性角度考虑分:递增数 列、⑥ 递减数列、常数列、⑦ 摆动数列 .
相关文档
最新文档