第十二章-陶瓷烧成
陶瓷工艺原理--烧成与窑具PPT共62页

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
陶艺 陶瓷烧成课件

(2).龙窑——一般都是依山坡而建,坡的大 小缓急直接影响烧成时间和产量。
一般窑头坡度大,易上火,窑尾坡度小,易 存火,低的一端为火膛,高的一端有排烟 口。
龙窑的只要特点是升温快、降温也快,维持 火焰和还原时间长。使用的材料为松柴。
在我国南方比较多见。(如浙江龙泉、福建 德化、在景德镇的湖田也多出发现了龙 窑。)
一次烧成和二次烧成
一次烧成:是指经过成型、干燥或施釉后的 生坯,在烧成窑内一次烧成陶瓷产品的工艺 路线。 二次烧成:是指经过成型干燥的生坯,先在 素烧窑内进行第一次烧成(素烧)后的产品, 经拣选,施釉等工序后,再进行第二次烧成 (釉烧)的工艺路线。
设置烧制曲线
釉下烧成曲线
釉上烧成曲线
(三)升温曲线
使之变成“形如覆瓮”的蛋型, 所以也叫瓮形 窑或蛋形窑,景德镇人把这各独具地方特色, 独具技术优势的属于平焰式的窑叫镇窑。
电窑认识
以此款八边形顶 开盖窑炉为例。
此款窑为顶开 盖,小且轻便。 0.07立方、6kw、 220v、接线为4m ㎡以上的全铜 线。
窑炉结构
采用五层不同结构层完美结合。 最里层为高温砖,然后以高保温耐火棉保
150~500℃:坯体可快速升温,比较安全,失去结合 水,碳酸盐、黑云母的分解,气体很容易溢出。
500~700℃:较松散,石英在573℃有突变,膨胀系数 较大。
700~900℃:可快速加热坯体,比较安全,碳化物燃 烧成气体,并排出,坯体气孔增多,可不限制加热速 度,因为坯体很薄,可渗透性强。
• 900~1100℃:在烧成收缩很严重之前要减小制品间 的温差,在900度是升温较慢,盐酸盐分解许多气泡 在釉面玻化之前必须排出,快速升温会导致石膏混入 坯体或已干燥的可溶性盐类集中到一起,坯体炸裂。
(整理)1篇8章3节陶瓷烧成.

(四)生料成球生料成球(raw meal nodule)质量是保证立窑煅烧极其重要的环节。
成球质量好、粒度均匀、大小适宜,才能使窑内通风均匀,煅烧良好,从而保证熟料质量,提高窑的产量,降低消耗。
生料成球质量,首先决定于原料质量,特别是粘土性能及生料细度。
生料细度细时,由于细颗粒生料和水结合较强,料球坚实,强度较大。
其次,生料球大小应适宜,粒度要均匀,有足够的孔隙率,这样既可降低阻力损失,又易于使料球烧透,缩短反应时间,提高煅烧速度。
成球水分与料球大小及强度有密切关系。
用水量多,球径增大;水分过少,物料润湿不充分,形成大量小球,既影响料层透气性,又易炸裂。
通常对生料球有如下要求:(1)粒度:8~15mm,球径大小要均匀;(2)料球含水分:12%~15%;(3)料球强度:从1m高处掉下不破裂;(4)料球孔隙率:30%~35%。
近年来开发推广的“预加水成球”,能显著改善成球质量,提高料层的透气性、通风的均匀性和料球强度,是提高立窑产量、质量,降低消耗的一项新的技术措施。
第三节陶瓷的烧成一、烧成的动力机制及方法从热力学观点来看,烧成(firing)是系统总能量减少的过程。
与块状物料相比,粉末有很大的比表面积,表面原子具有比内部原子高得多的能量。
同时,粉末粒子在制造过程中,内部也存在各种晶格缺陷。
因此,粉体具有比块料高得多的能量。
任何体系都有向最低能量状态转变的趋势,这就是烧成过程的动力。
即粉料坯块转变为烧成制品是系统由介稳状态向稳定状态转变的过程。
但烧成一般不能自动进行,因为它本身具有的能量难以克服能垒,必须加高到一定的温度才能进行。
烧成是一个复杂的物理、化学变化过程。
比如特种陶瓷的烧成,有人认为其烧成机制可归纳为:①粘性流动;②蒸发与凝聚;③体积扩散;④表面扩散;⑤晶界扩散;⑥塑性流动等。
实践说明用任何一种机制去解释某一具体烧成过程都是困难的,烧成是一个复杂的过程,是多种机制作用的结果。
烧成大批量的普通陶瓷一般是在隧道窑、辊道窑或梭式窑等窑炉中进行的。
陶瓷烧成与窑炉热工

在还原气氛下 CaSO4+CO﹥910℃ CaSO3+CO2↑ CaSO31080~ 1100℃CaO+SO2↑ Fe2O3+CO1000~ 1100℃2Fe+CO2↑ CaO和Fe0促进烧成 致密化,减少泛黄 现象
(3)形成大量液相和莫来石 ①985℃开始出现液相,温度越高,液 985℃ 相越多 液相的作用: A、促使晶体(如莫来石)长大; B、填充坯体孔隙拉紧颗粒,促进坯体致密 化,提高瓷件抗蚀性和机械强度; C、液相会阻碍气体排出,易发生冲泡和变 形。 ②1100℃以上开始形成莫来石. 1100℃以上开始形成莫来石.
(四)、完全燃烧和不完全燃烧 )、完全燃烧和不完全燃烧
完全燃烧:燃料燃烧后完全转变为不 可再燃烧产物的一种燃烧方式 不完全燃烧:燃料燃烧后的烟气中有 可再燃烧产物的一种燃烧方式
(五)、燃料的种类 )、燃料的种类
1、固体燃料:柴、烟煤、无烟煤、煤 粉等 2、液体燃料:重油、柴油、焦油、液 态煤等 3、气体燃料:发生炉煤气、焦炉煤气、 液化石油气、天然气
(三)结构和原理图
七、隧道窑
(一)定义
隧道窑是连续烧成陶瓷制品的热工设备, 它的主体是一条隧道,是一种按逆流原 理工作的横焰式窑。
(二)隧道窑的特点: 隧道窑的特点:
1、利用烟气余热预热坯体,废气排出温度 低,约200℃ 低,约200℃; 2、产品冷却之热加热空气,可助燃或作干 燥介质,产品出窑温度低; 3、连续窑,窑体温度不变,不蓄热,热耗 低; 4、产量大,劳动条件好; 5、较适合产品单一的生产: 6、调控不便,一次投资大
1、水分蒸发期(室温~摄氏300℃) 水分蒸发期(室温~摄氏300℃ 此阶段主要是排出干燥中未除掉的水分。 要求:①入窑坯体水分小于2%否则,坯体 要求:①入窑坯体水分小于2%否则,坯体 有可能因水分蒸发而开裂;或与窑炉SO2 有可能因水分蒸发而开裂;或与窑炉SO2 发生化学反应,造成坯体蒙上一层“白霜” 发生化学反应,造成坯体蒙上一层“白霜” 或产生气泡缺陷;②加强窑内通风,使水 汽及时排除。此阶段坯体强度缓慢提高。 一般升温速度:20~35℃ 一般升温速度:20~35℃/hr
陶瓷烧成过程及影响因素

陶瓷烧成过程及影响因素一。
低温阶段温度低于300℃,为干燥阶段,脱分子水;坯体质量减小,气孔率增大。
对气氛性质无要求二中温阶段温度介于300~950℃1.氧化反应:(1)碳素和有机质氧化;(2)黄铁矿(FeS2)等有害物质氧化。
2.分解反应:(1)结构水脱出;(2)碳酸盐分解;(3)硫酸盐分解3.石英相变和非晶相形成。
影响因素加强通风保持良好氧化气氛,控制升温速度,保证足够氧化反应时间,减少窑内温差。
三。
高温阶段1.氧化保温阶段温度大于950℃,各种反应彻底;2.强还原阶段CO浓度3%~5% 三价铁还原成二价铁之后与二氧化硅反应形成硅酸铁。
3.弱还原阶段非晶态(玻璃相)增多,出现偏高岭石===模来石+ SiO2(非晶态)影响因素,控制升温速度,控制气氛,减小窑内温差四。
高温保温阶段烧成温度下维持一段时间。
物理变化:结构更加均匀致密。
化学变化:液相量增多,晶体增多增大晶体扩散,固液分布均匀五。
冷却阶段液相结晶晶体过冷强度增大急冷(温度大于850℃)→缓冷(850~400℃)→终冷(室温)一次烧成和二次烧成对比一次烧成又称本烧,是经成型,干燥或施釉后的生坯,在烧成窑内一次烧成陶瓷制品的工艺路线。
特点:1 工艺流程简化;2 劳动生产率高;3 成本低,占地少;4 节约能源。
二次烧成是指经过成型干燥的生坯先在素烧池中素烧,即第一次烧成然后拣选施釉在进入釉烧窑内进行釉烧第二次烧成特点:1 避免气泡,增加釉面的白度和光泽度;2 因瓷坯有微孔,易上釉;3 素烧可增加坯体的强度,适应施釉、降低破损率;4 成品变形小,(因素烧已经收缩);5 通过素检可降低次品率。
对批量大,工艺成熟质量要求不是很高的产品,可一次烧成,但一次烧成要求坯釉一起成熟,否则损失大,质量下降,应用二次烧成耐火材料的宏观性质1.气孔:开孔、闭孔和贯通孔;2.气孔率:体积百分比真气孔率Pt=(Vc+V o)/Vb×100%闭气孔率Pc= Vc/Vb×100%显气孔率Pa= V o /Vb×100%Vc---闭孔体积;Vo---开孔+贯通孔;Vb---材料总体积Pt= Pc+ Pa 3.密度(g/cm3)体积密度d=M/V视密度或表观密度da=M/(Vc+Vt)真密度dt=M/Vt Vc---闭孔体积;Vt---除气孔外的材料体积;V---总体积;M—质量4.吸水率(%)是指全部显气孔被水填满时,水的质量与干燥材料的质量之比。
陶瓷烧成技术

第三讲陶瓷烧成技术烧成是将陶瓷坯体在相应的窑炉中进行加热处理,使其发生一系列的物理化学变化,形成预期的矿物组成和显微结构,从而形成固定的外形并获得所要求性能的工序。
烧成时坯体将发生脱水、分解、化合等物理和化学变化,烧成后制品具有一定的机械强度及使用性能。
陶瓷烧成的窑炉主要有隧道窑、辊道窑、梭式窑等。
烧成时的温度制度、气氛制度、压力制度等与产品的质量有直接关系。
因此,烧成过程是陶瓷生产中重要的工序之一。
一、陶瓷坯体的烧成过程(一)烧成过程的阶段划分陶瓷坯体烧成时,根据不同温度区间的主要作用与主要变化反应可分为如下几个阶段(见表3-1)。
在整个烧成过程中,制品在窑内经历了不同的温度变化和气氛变化,既有氧化、分解、新的晶体生成等复杂的化学变化,也伴随有脱水、收缩、以及密度、颜色、强度与硬度的改变等物理变化。
并且这些变化总是相互交错地一起进行。
(二)影响坯体烧成时物理化学变化的主要因素影响坯体烧成时物理化学变化的主要因素主要有坯料的化学组成与矿物组成、坯料的物理状态等。
1.坯料的化学组成与矿物组成根据坯料的化学组成,可以推断坯体在烧成过程中产生膨胀或气泡的可能性,可以估计坯体的耐火度的高低,也可以推断坯体烧后的呈色等。
坯体在烧成过程中的物理化学变化与坯体的化学组成有关,但坯料的化学分析只能提供坯料性质的大致情况,不能完全说明问题的本质,因为化学分析是将泥料的化学组成用氧化物表示出来,实际上泥料的各种成分绝大部分不是以游离氧化物形式存在,而是各式各样的化合物。
更准确地说,坯体在烧成过程中的物理化学变化是取决于泥料的矿物组成。
例如高岭土和多水高岭土,它们的晶体结构基本相似,但在加热过程中的脱水反应是不相同的。
即使是同一氧化物,在两种不同的矿物组成中所起的作用也不一定相同,例如游离石英与黏土或长石中的氧化硅,其所起作用的性质就不一样。
同样是氧化硅,在以不同的晶态(石英、鳞石英、方石英)存在时,会表现出不同的特性。
[整理]陶瓷烧成缺陷及原因分析
陶瓷烧成缺陷及原因分析发布时间:2008-8-4 15:07:14 阅读:52 次新闻来源:作者:(一)变形:产品烧成变形是陶瓷行业最常见、最严重的缺陷,如口径歪扭不圆,几何形状有不规则的改变等。
主要原因是装窑方法不当。
如匣钵柱行不正,匣钵底或垫片不平,使窑车运行发生震动,影响到产品的变形。
另外,产品在烧成中坯体预热与升温快时,温差大易发生变形。
烧成温度过高或保温时间太长也会造成大量的变形缺陷。
使用的匣钵高温强度差、或涂料抹不平时也会造成烧成品的变形。
(二)开裂:开裂指制品上有大小不同的裂纹。
其原因是坯体入窑水分太高(大于2%以上),预热升温和冷却太快,导致制品内外收缩不匀。
有的是坯体在装钵前已受到碰撞有内伤。
坯体厚薄不匀,配件(如壶把、咀等)重量过大或粘结不良也会造成制品开裂。
防止的办法是:(1)入窑坯体水分小于2%,车速适当减少冷却量。
(2)装窑时套装操作谨慎,垫片与坯体配方一致。
配件大小、重量与粘接位置恰当。
有的在粘接泥浆中加入10-15%的釉料,可以使咀、把与主体牢固熔接一体,如此可克服开裂缺陷。
(三)起泡:烧制品起泡有"坯泡"与"釉泡"两种。
坯泡分为"氧化泡"与"还原泡"两种。
氧化泡指坯泡外面覆盖釉层,断面呈灰黑色,多形成于窑内低温部位。
主要是瓷胎与釉料中的分解物未能充分氧化,烧失物未完全排除所致。
予热升温快,氧化分解阶段时间短、氧化结束时窑内温度过低,上下温度差过大。
在坯釉料中,碳酸盐。
硫酸盐及有机杂质含量较多等都是造成产品起泡的主因。
此外时装车密度不当、入窑水份高等原因亦须注意。
还原泡又称过火泡,断而发黄,多发生于高温近喷火口处的制品。
主要由于坯体内硫酸盐与高价铁还原不足,强还原气氛不足及烧成温度过高造成。
釉泡系沉积炭及分解物在釉熔前未能烧尽挥发,气体被阻于釉面层中形成。
若延长釉熔时间或适当平烧即可解决。
陶瓷烧窑小作文
陶瓷烧窑小作文篇一《陶瓷烧窑:一场奇妙的土与火之歌》我和陶瓷烧窑的缘分,还得从一次乡间旅行说起。
那是个宁静的小村子,路边有个小小的陶瓷作坊,一进去就像进入了一个泥土的魔法世界。
在作坊里,我看到了尚未烧制的陶瓷坯体,它们看起来普普通通的,就像被揉好面人却还没上过色的样子。
有个老师傅正把一摞摞的坯拿进窑里。
那窑看起来就像一个大大的嘴巴,坯体就像是要被吞进去的食物。
我好奇极了,凑上去想一探究竟。
只见老师傅小心翼翼地摆放着每一个坯体,像是摆弄着一件件稀世珍宝。
他说这些坯体摆放可不能马虎,如果不小心碰到或者放置的间距不对,烧出来的陶瓷可就全毁了。
我看着他那专注的神情,就像在对待自己刚出生的孩子。
我在旁边也想帮忙,老师傅笑着让我拿一个小坯体试试。
我紧张兮兮地拿起,那坯体在我手上就像个脆弱的蛋壳,我都不敢用力呼吸,颤颤巍巍地放到指定位置。
一切准备就绪后,就是点火环节了。
老师傅像个神秘的魔法师,轻轻一点,那火焰就呼地一下蹿起来。
窑里一下子亮堂堂的,像个被点燃激情的小宇宙。
我能透过窑的小窗口看到里面的坯体在火焰中微微晃动,好像在接受一场神圣的洗礼。
接下来的几个小时,我就像个虔诚的守护者一样,守在窑边。
随着温度的上升,窑壁也变得滚烫滚烫的。
我时不时去看看那火焰的颜色,老师傅说火焰的颜色能大概反映窑内的温度呢。
刚开始是那种暗暗的红色,就像晚霞的尾巴不小心被塞进了窑里,过了一会儿就变成了明亮的橙色,像个热情奔放的橘子精在窑里撒欢。
我眼睛都不敢眨,生怕错过这奇妙的变化。
这一窑烧完后,当看到那些原本灰扑扑的坯体变成了色彩斑斓、质地光滑的陶瓷,我整个人都惊呆了。
就像目睹了一群丑小鸭瞬间变成了白天鹅。
我拿起一个小小的陶瓷茶杯,那触感、那色泽,无不诉说着这一场土与火共舞的奇妙经历。
这小小的烧窑过程,却像一场盛大而又神秘的庆典,让人回味无穷。
篇二《陶瓷烧窑:从土到宝的神秘之旅》我一直对陶瓷烧窑充满了好奇,就像只好奇的小老鼠想要探寻宝库的秘密。
陶瓷制造工艺烧成
烧结现象示意图 a-晶粒重排; b1-疏松堆积的颗粒系 统中颗粒中心靠近; b2-紧密堆积的系统中, 颗粒中心的靠近。
固相烧结传质机理 (1)蒸发-凝聚
烧结时颈部区域的扩大,球的形状逐步变为椭圆,气孔形状发生了变化 两个球形颗粒中心间的距离不变。 不导致坯体的收缩和气孔率的降低
烧结温度TS和熔融温度Tm之间的关系: 金属粉末TS≈(0.3~0.4) Tm, 盐类TS≈0.57Tm, 硅酸盐TS ≈(0.3~0.4) Tm。
烧结的推动力
1、能量差 粉状物料的表面能大于多晶烧结体的晶界能,即能量差是烧结的推 动力,但较小。烧结不能自发进行,必须对粉料加以高温,才能促 使粉末体转变为烧结体。 例如:
球形颗粒间颈部长大改变气孔形状与中心距
在球形颗粒表面有一正曲率半径,在二个颗粒连接处有一小的负曲率半径 的颈部。
根据开尔文公式:
ln P 2M P0 dRTr
x r
凸表面蒸气压>平表面蒸气压>凹表面蒸气压 质点从凸表面蒸发向凹表面(颈部)迁移、凝 聚,使颈部逐渐被填充。
蒸发-凝聚传质
球形颗粒连接处曲率半径ρ和接触颈部半径x之间的开尔文公式:
粒度为1m的材料烧结后,G降低约8.3J/g(无机材料等效于0.5 1.5 KJ/mol);
α-石英与β-石英之间的多晶转变时,G为1.7 KJ/mol; 一般化学反应前后能量变化超过200 KJ/mol。
烧结的难易可以用GB晶界能/SV表面能比值来衡量: GB/SV越大,烧结越困难
2、压力差:颗粒的弯曲表面上存在有压力差
目前我国日用陶瓷工业广泛采用隧道窑、辊道窑和推板窑,并 保留少量的倒焰窑继续用于生产。
烧结定义: 经过成型的粉末在加热到一定温度后开始收缩,在低于物质
陶瓷艺术的烧成方法
陶瓷艺术的烧成方法陶瓷品制作完成后,还要经过烧制才能最终成为成品。
那么,你知道陶艺的烧成方法有哪些吗?以下是有我为大家整理的,希望能帮到你。
陶瓷的烧成方法1、素烧法:表面不上釉的作品,直接烧成称为素烧。
素烧可以保留陶瓷作品上的手工痕迹,显现材质的自然和本质的美。
陶的素烧温度为900~1150℃。
瓷的素烧温度为1100~1310℃。
2、本烧法:陶瓷作品坯体表面上釉后,用高温一次性烧成,使坯体完全烧结,釉料完全融化,称为本烧。
烧成温度为1100~1350℃。
3、釉烧法:釉烧分两次烧成,陶瓷坯体经过一次素烧后再上釉,用低温二次烧成,使釉完全融化,烧成温度为900~1000℃。
4、氧化焰法:调整烟道阀门,保证窑内空气充足,定时添加燃料,使燃料在空气中彻底烧尽,由于窑炉氧气充足,则形成氧化焰气氛5、还原焰法:当温度加速升温至高温阶段,放低烟道阀门,使窑炉供养不足,炉内碳素增加,形成还原焰气氛。
6、乐烧法:乐烧采用二次烧成的工艺技术。
第一次素烧,温度为700~900℃。
再上釉,用低温二次烧成。
7、盐烧法:坯体在高温时,将氯化钠直接撒入在燃烧的窑炉中,氯化钠开始挥发,产生纳蒸气,这种纳蒸汽同陶瓷坯体表面的铝与硅产生反应,熔融成釉形成带有肌理的透明釉。
8、熏烧法:熏烧采用素烧和烟熏二次完成的工艺技术。
在素烧完成后再选用木屑、树枝、报纸等作燃料产生浓烟,通过坯体表面的缝隙使碳素附着于作品表面,形成自然的斑迹效果。
9、柴烧法:一种用木柴直接烧陶的方法。
因柴火直接在体坯上留下自然的“火痕”和木柴燃烧后的灰烬落在作品表面形成的“落灰釉”,使得作品色泽温润且有变化。
烧制陶瓷工艺流程烧制陶瓷的关键因素是:泥、釉、火。
为什么有些陶、瓷器会莫明其妙的出现裂纹呢?为什么有时甚至会掉皮釉呢?这不外是在一定温度条件下泥和釉的收缩系数又称膨胀系数不相一致的结果。
有时人们亦会对这种缺陷特意加以利用,传统的开片釉及现代陶艺的一些肌理追求就是利用釉和泥收缩系数不相一致的原理配制出来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1、坯体在烧成过程中有那些物理变化?
五、 强度与硬度的变化
低温阶段随着机械吸附水的消失,强度略 有提高结晶水排除阶段则无明显变化。到了 570℃石英转变时,强度则有所下降750℃以后 强度才逐渐增加,此时应控制好烧成温度防止 过烧。
坯体在750℃以前是非常脆弱的,750℃以后, 由于长石-石英玻璃质及莫来石晶体开始形成, 硬度逐渐增加,在良好的烧成温度下冷却后, 陶瓷器的硬度一般可达莫氏7-8级
然掌握烧窑的科学规律,闯过最后关键工序--烧窑。
2.烧结过程
在烧结过程中,烧结坯发生一系列物理、 化学变化,坯块由粉末颗粒聚集体变成晶 粒结合体,多孔体变成致密体,从而得到 具有所需物理、机械性能的产品。
烧成工序是陶瓷生产过程中最重要的工序 之一,制定科学合理的烧成制度,并准确 执行是产品质量的重要保证。
坯体在烧结过程中会发生哪些宏观上的变 化呢?
陶瓷的烧成
—— “土”与“火”的艺术—— 主讲人:吴任平 教授
思考题
1、何谓氧化气氛烧成,何谓还原气氛烧 成,试述不同气氛烧成的产品外观有什么 不同?原因何在? 2、坯体在烧成过程中有那些物理变化? 烧结程度可用哪些指标来衡量? 3、为什么说在陶瓷生产中烧窑是关键? 4、制定烧成制度的依据有哪些?
2.烧结过程
坯体宏观上的变化: 体积收缩、气孔减少、致密度提高,强度增
加,颜色改变; 烧结程度可以用坯体的: 收缩率、气孔率、体积密度和机械强度 等指标来衡量; 烧结是一个不可逆的过程。
烧结是一个复杂的物理、化学变化过程;
2.烧结与烧成
烧成温度:为了达到产品的性能要求,应该 烧到的最高温度。
4.4制定烧成制度的依据4
四、釉烧方法
1、釉料的熔化温度与坯料的氧化分解温度相适应,中 火保温防止针孔、橘釉、黑心、鼓泡等缺陷。 2、冷却初期依据釉料要求确定冷却速度
光泽釉——快速冷却 结晶釉——结晶温度保温处理 3、二次烧成 高温素烧低温釉烧:釉烧时可以不考虑坯体的脱结 构水及氧化分解排气,素烧时不考虑釉的作用。 低温素烧高温釉烧:釉烧时可以不考虑坯体的脱结 构水,素烧时不考虑釉的作用。 二次烧成其它优点:
2)烧成制度对产品性能的影响
⑤ 压力制度 是实现气氛制度的保障,二者相辅相
成; 参见热压烧结。
问题2:何谓氧化气氛烧成,何谓还原气氛烧成,试述不 同气氛烧成的产品外观有什么不同?原因何在?
在烧窑时火焰在不同时期有不同的性质。火焰的性质大致可 分为三种:氧化焰、还原焰和中性焰,不同性质的火焰有不 同的作用。
1)减少缺陷,提高合格率,避免浪费。 2)坯体强度提高,有利于施釉、装饰 3)工序的机械化。
4.5-4.6 制定烧成制度的依据
五、根据坯料中氧化钛和氧化铁的含量确定气氛制度 低铁高钛坯料(北方)常用氧化气氛烧成; 高铁低钛坯料(南方)常用还原气氛烧成。
六、窑炉结构、容量、燃料和装窑密度
窑炉结构——窑内温度的均匀性,升温速度,烧成 温度。 燃料种类——装烧方法,升温速度,烧成温度。 容量和装窑密度——窑内温度的均匀性,升温速度 。
问题1、坯体在烧成过程中有那些物理变化?
三、 气孔率的变化 气孔率由低温阶段逐渐增加,到氧化阶段末期 达最高峰。以后由于液相的形成和体积的收缩 而逐步降低,到达烧成温度时为最低。如温度 持续升高(即发生过烧现象时)气孔率又随着 坯体的膨胀而增加。
问题1、坯体在烧成过程中有那些物理变化?
四、 颜色的变化
未烧前生坯的颜色取决于坯体中的杂质。有多 量有机物存在时呈灰色,有铁质存在时呈浅黄 色。烧成过程中至中温阶段结束,由于有机物 都已挥发,只有铁质被氧化为Fe2O3,所以一般 呈粉红色。以后经高温烧成后,如是氧化焰则 呈 为浅Fe黄O并色生或成红硅色酸如亚是铁还,原所焰以则呈由泛于青Fe或2O白3被色还,原而 发 发黄生。过日烧用则瓷Fe中O再因次坯被料氧含化铁成量F一e2般O在3而0造.6%成以制下品, 所以无论用氧化焰或还原焰烧成都能得到较高 的白度。
液相的组成和数量以及气孔的形貌和 数量;
过高的烧成温度使新型陶瓷的晶粒过 大或少数晶粒猛增,破坏组织结构的 均匀性,使制品的机电等性能劣化。
2)烧成制度对产品性能的影响
③ 保温时间 使窑炉内部各处温度均匀; 使产品(大件)内部温度均匀,同时
烧结; 保温能促进新型陶瓷的扩散和重结晶,
烧结温度:材料加热过程达到气孔率最小、 密度最大时的温度。
3、烧成制度
1)烧成制度包括的内容:
温度制度:指升温速度、烧成温度、 保温时间及冷却速度;
气氛制度:氧化、还原、中性或其他 气氛;
压力制度:窑炉内气体的压力大小; 实际生产中还要考虑窑炉加热类型、
内部结构和装窑方式等因素。
问题1、坯体在烧成过程中有那些物理变化?
二、 体积的收缩
在低温阶段,由于机械吸附水的蒸发,体积有 微小收缩。当到570℃时,β--石英转化为α --石 英,到870℃时,a--石英又转化为a--鳞石英,这 些多晶转变会使石英比重降低,从而影响到坯 体的收缩,但因日用瓷中坯料石英的含量不多, 因而此阶段体积变化也不大。到了900℃以后, 坯体内液相逐渐形成,结晶颗料由于表面张力 而互相靠拢,收缩逐渐加剧,一直烧结时收缩 最大,一般日用瓷器烧成收缩在8~14%左右。
2)烧成制度对产品性能的影响
① 升、降温速度 坯体慢速升温(24~48h加热至1300℃),其
抗张强度比快速升温(18h内加热到1300℃) 的坯体约增加30%,并且气孔率为1.5%, 快速升温则为3.0%;
缓慢冷却收缩率大,相对气孔率小。
2)烧成制度对产品性能的影响
②烧成温度 Hale Waihona Puke 烧成温度的高低直接影响晶粒尺寸、
烧成
1、概述 :
烧成是陶瓷工艺的第三个重要工序。烧结是 把粉末坯块加热到低于其基本组元的熔点温 度以下进行保温,然后冷却到室温的热处理 工艺。
定义:通过高温处理,使坯体发生一系列物 理化学变化,形成预期的矿物组成和显微结 构,从而达到固定外形并获得所要求效果的 工序。
烧 结 现 象 示 意 图
1、氧化焰:是指燃料完全燃烧的火焰,火焰完全燃烧必须有 大量空气供给,这时窑中的氧气充足,CO较少。为了使坯中 水分及一切有机物都蒸发和挥发排出,使坯体得到正常的收 缩,所以在烧窑过程中必须有氧化焰阶段。
2、还原焰:还原焰是不完全燃烧的火焰。这时窑中所产生的 一氧化碳和氢气多,没有或者极少游离氧的存在。由于还原 焰(能Fe使O)坯,体而内变的成高青价色铁,(消Fe灭2O瓷3)色得发到黄充的分现还象原,变因为此氧在化日亚用铁瓷 的烧窑过程中,多采用还原焰烧成。
4.1 制定烧成制度的依据
一、坯料组分在加热过程中的性状变化
1)相图(晶型转变)和热分析资料(差热曲线DTA、失重曲
线TG、热膨胀曲线TE、ITE)。是确定升、降温速度的依
据之一。
热分析综合图谱
粘土
石英
线膨胀
ITE TE
长石
DTA
4.1 制定烧成制度的依据
利用热分析综合图谱绘制理论烧成曲线
1400 ITE
过长时间的保温可使晶体过分长大或 发生二次重结晶。
2)烧成制度对产品性能的影响
④ 气氛制度
还原气氛对氧化物陶瓷的烧结有促进作用, 在氧分压低的气氛中,如在氢气、一氧化 碳、惰性气体或真空中烧成的,可得到良 好的氧化物陶瓷烧结体;
气氛中存在的水蒸气能促进氧化镁陶瓷坯 体的初期烧结;
在还原性(如氢气)、中性(如氮气)和惰性(如 氩气)气氛中烧成都有利于BaTiO3陶瓷的半 导体化,即有利于陶瓷材料室温阻值的降 低。
3、中性焰:烧中性焰时,窑内所产生的一氧化碳加氢气与进 入窑中的空气化合量几乎相等,处于平衡状态,其作用是使 氧化亚铁不再受氧化作用而恢复成高价铁,最后使坯体达到 完全玻化的目的。但控制中性焰非常困难,常用弱还原焰代 替它。
4 制定烧成制度的依据
4.1 坯料在加热过程中的性状变化 4.2 烧结曲线和高温物相分析 4.3 制品的大小和形状 4.4 釉烧方法 4.5 坯料中氧化钛和氧化铁的含量 4.6 窑炉结构、容量、燃料和装窑密度
小结:为什么说在陶瓷生产过程中烧窑是关键 ?
陶瓷在制造上,最重要的操作就是烧窑。因为陶瓷的制造,从 选择原料到制成成品的工序很多,古人说过手七十二,方克成 器,现在大概也有二十到六十左右的工序。在这些工序中,当 然都各有相当的重要性,尤其是最后的烧窑操作更为重要,稍 不注意就会前功尽弃,既浪费了原材料和燃料,又浪费了大量 人力,在陶瓷工艺方面,就重要性来说,可以分为一烧,二土, 三制作,烧窑是关键之关键。 陶瓷生产上,一般的破损率及合 格率大多数是在烧窑方面,由于烧窑的操作及烧成气氛不合理, 造成破损而降低等级的产品百分率非常多。尤其是颜色釉的烧 成,更要强调烧窑,颜色釉的烧成火焰性质、温度、烧成时间 及燃料种类对颜色的呈色变化有重要影响,有人说颜色釉的烧 成是一门火的艺术,也确有其道理。 要最后得到陶瓷珍品,必
问题1、坯体在烧成过程中有那些物理变化?
陶瓷生产是一个复杂的过程,其中以由泥坯烧 成至瓷器这一环节最为重要。随着温度的不断 升高,坯体内部会发生一系列的物理、化学反 应。其中物理反应的大小主要取决于泥料的各 种组分含量,其物理反应大致有如下几种:
一、 重量的变化
在低温阶段,坯体的失重等于排出的机械吸附 水的重量,至中温阶段由于化学结晶水的排除 而使坯体急剧失重。此外,由于有机物和矿物 杂质的氧化与分解,也会失去一定的重量。而 这些失重的多少视各种坯体的组成不同而不同, 一般变化在3%~8%之间。
1.烧结范围宽、液相粘度大、且随温度变化小 的坯料,烧成温度可以确定在烧结范围上限附 近(T2); 2.烧结范围窄、液相粘度小、且随温度变化大 的坯料,烧成温度只能定在烧结范围下限附近 (T1)