初一平面直角坐标系动点问题(经典难题)

合集下载

(完整版)初一平面直角坐标系动点问题(经典难题)

(完整版)初一平面直角坐标系动点问题(经典难题)
(1)求点C,D的坐标及四边形ABDC的面积
(2)在y轴上是否存在一点P,连接PA,PB,使 = ,
若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论: 的值不变, 的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
5.观察下列有序数对:(3,﹣1)(﹣5, )(7,﹣ )(﹣9, )…根据你发现的规律,第100个有序数对是.
6、观察下列有规律的点的坐标:
依此规律,A11的坐标为,A12的坐标为.
7、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.
平面直角坐标系动点问题
(一)找规律
1.如图1,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )
图1
A.(4,0)B.(5,0)C.(0,5)D.(5,5)
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
4.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

七年级平面直角坐标系动点规律问题(经典难题)

七年级平面直角坐标系动点规律问题(经典难题)

平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。

图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1PAOyxP1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△?若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.图②5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD . (1)直接写出图中相等的线段、平行的线段; (2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.图②10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.图①A B'-1-2-3-412340图②(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形D C 3-1BA O x y PDCBAOx y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。

平面直角坐标系。动点问题。好

平面直角坐标系。动点问题。好

平面直角坐标系。

动点问题。

好平面直角坐标系动点问题已知平面直角坐标系中,点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度在x轴上向右平移,点Q从B 点出发,以每秒2个单位的速度沿直线y=3向右平移,又P、Q两点同时出发,设运动时间为t秒。

1) 求当t为多少时,四边形OBPQ的面积为8.首先,可以求出四边形OBPQ的坐标:O(0,0),B(0,3),P(4+t,0),Q(2t,3)。

由于四边形OBPQ是平行四边形,所以它的面积可以用它的对角线之积来表示:S(OBPQ) = |OB| × |PQ|× sinθ。

其中,|OB| = 3,|PQ| = √[(4+t-2t)²+3²] = √(t²+16),θ是OB与PQ之间的夹角。

由于OB与PQ平行,所以θ = 0,sinθ = 0,因此S(OBPQ) = 0.所以,四边形OBPQ的面积始终为0,无法等于8,因此无解。

2) 连接AQ,当△APQ是直角三角形时,求Q的坐标。

由于△APQ是直角三角形,所以根据勾股定理,有AP²+PQ² = AQ²。

又因为AP = 4+t,PQ = 3-2t,所以可以列出方程:(4+t)² + (3-2t)² = AQ²。

化简后得到:AQ² = 25-8t+5t²。

又因为Q在直线y=3上,所以可以列出另一个方程:yQ = 3.将Q的坐标表示为(xQ。

yQ),则有xQ² + yQ² = AQ²,代入上面的方程,得到xQ² + 9 = 25-8t+5t²,化简后得到:xQ² = 16-8t+5t²。

因为Q在第二象限,所以xQ<0,因此xQ = -√(16-8t+5t²),yQ = 3.所以Q的坐标为(-√(16-8t+5t²)。

七年级下册数学平面直角坐标系中的动点问题

七年级下册数学平面直角坐标系中的动点问题

1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.2.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(4,0),点C 的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着 O —A —B —C —O 的路线移动(即沿着长方形的边移动一周). (1)点B 的坐标为_______________.(2)当点P 移动了4秒时,描出此时点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.3.如图,在平面直角坐标系中,四边形OABC 为正方形,A 点在x 轴负半轴上,C 点在y 轴负半轴上,边长为4,有一动点P 自O 点出发,以每秒2个单位长度的速度沿O —A —B —C —O 运动,则何时S △PBC =4?并求出此时P 点的坐标.4 .如图 , △ A BO 的三个顶点的坐标分别为 O ( 0 , 0 ) , A ( 5 , 0 ) , B ( 2 , 4 ) .( 1 ) 求 △O AB 的面积; ( 2 ) 若 O , B 两点的位置不变 , 点 M 在 x 轴上 , 则点 M 在什么 位置时 , △O BM 的面积是 △ O AB 的面积的 2 倍? ( 3 ) 若 O , A 两点的位置不变 , 点 N 由点 B 向上或向下平移得 到 , 则点 N 在什么位置时 , △O AN 的面积是 △ O AB 的面积的 2 倍? O AB C yA B C O yP。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

动点问题经典例题

动点问题经典例题

动点问题经典例题在数轴上,点A从原点出发,以每秒2个单位长度的速度向右运动,同时点B也从原点出发,以每秒3个单位长度的速度向左运动。

经过5秒,A、B两点之间的距离是多少?A. 5个单位长度B. 10个单位长度C. 15个单位长度D. 25个单位长度在一条直线上,甲车以每小时40千米的速度从A地出发向B地行驶,同时乙车以每小时60千米的速度从B地出发向A地行驶。

若A、B两地相距200千米,则两车相遇时,它们各自行驶了多少千米?A. 甲车100千米,乙车100千米B. 甲车80千米,乙车120千米C. 甲车120千米,乙车80千米D. 甲车60千米,乙车140千米在平面直角坐标系中,点P从原点出发,沿x轴正方向以每秒1个单位长度的速度移动。

同时,点Q从点(0,4)出发,沿y轴负方向以每秒2个单位长度的速度移动。

当P、Q两点之间的距离达到5个单位长度时,它们各自移动了多少秒?A. 1秒B. 2秒C. 3秒D. 4秒在一条环形跑道上,甲、乙两人同时同地同向出发进行跑步比赛。

甲的速度是每分钟400米,乙的速度是每分钟500米。

经过多少分钟,两人会再次相遇?A. 1分钟B. 5分钟C. 10分钟D. 无法确定在数轴上,点A和点B分别表示-3和7。

点A以每秒2个单位长度的速度向右移动,同时点B以每秒1个单位长度的速度向左移动。

经过多少秒,A、B两点之间的距离为15个单位长度?A. 2秒B. 4秒C. 6秒D. 8秒在平面直角坐标系中,点A从(0,0)出发,沿x轴正方向以每秒1个单位长度的速度移动。

同时,点B从(4,0)出发,沿x轴负方向以每秒2个单位长度的速度移动。

当A、B两点之间的距离为2个单位长度时,它们各自移动了多少秒?A. 1秒B. 1.5秒C. 2秒D. 2.5秒在一条直线上,甲、乙两人相距100米,甲以每秒6米的速度向乙走去,乙以每秒4米的速度向甲走来。

经过多少秒,甲、乙两人会相遇?A. 5秒B. 10秒C. 15秒D. 20秒在平面直角坐标系中,点P从原点出发,沿x轴正方向以每秒2个单位长度的速度移动。

七年级下册数学压轴题训练——坐标系动态问题

压轴题训练——坐标系动态问题1.如图,在平面直角坐标系中,A(4,0),B(0,4),C是第一象限内一点,且BC∥x轴.(1)连接AC,当S∥ABC=6时,求点C的坐标;(2)设D为y轴上一动点,连接AD,CD,作∥BCD、∥DAO的平分线相交于点P,在点D的运动过程中,试判断等式∥CPA=2∥CDA是否始终成立,并说明理由.2.如图,在直角坐标系中,点A.C分别在x轴、y轴上,CB∥OA,OA=8,若点B的坐标为(4,4).(1)直接写出点A,C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分时停止运动,求P点运动时间;(3)在(2)的条件下,点P停止运动时,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC 的面积相等?若存在,求点Q的坐标;若不存在,请说明理由。

3.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O 的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.4.已知点A(1,a),将线段OA平移至线段BC,B(b,0),a是m+6n=3,n,且m <n,正数b满足(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的面积;(3)如图2,若∥AOB=a,点P为y轴正半轴上一动点,试探究∥CPO与∥BCP之间的数量关系.5.如图1,在平面直角坐标系中,点A(a,0),B(0,b),且a、b2(2)0a b++=.(1)请直接写出A、B两点的坐标:点A为_______,点B为________.(2)若点P的坐标为(-2,n),且三角形PAB的面积为7,求n的值.(3)如图2,过点B作BC//x轴,点Q为x轴上点A左侧的一动点,连结QB,BM平分∥QBA,BN平分∥CBA,当点Q运动时,∥MBN:∥AQB的值是否发生变化?如果变化,请说明理由;如果不变,请求出其值.6.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,∥BCD的面积为______;(2)如图2,若AC∥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∥CPQ=∥CQP时,求证:BP 平分∥ABC;(3)如图3,若AC∥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∥ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.7.如图,以直角∥AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,080b +-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得∥ODP 与∥ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∥DOC=∥DCO ,点G 是第二象限中一点,并且y 轴平分∥GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∥GOA ,∥OHC ,∥ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).8.如图,在平面直角坐标系中,点A 、B 分别是x 轴、y 轴上的点,且OA=a ,OB=b ,其中a 、b 满足|a ﹣20|+(﹣2b+a ﹣8)2=0,将点B 向左平移16个单位长度得到点C .(1)求点A 、B 、C 的坐标;(2)如图,点M 为线段BC 上的一个动点,点F 在x 轴的正半轴上,点E 、D 在直线BC 上,∥FOE=23∥MOF ,∥MOD=13∥BOM .请问当点M 运动时,∥DOE 的大小是否发生变化?如果变化请说明理由;如果不变,求出其大小;(3)如图2,当点M 从点B 以1个单位长度/秒的速度向左运动时,线段OA 上的动点N 同时从点A 以2个单位长度/秒的速度向右运动,设运动时间为t 秒(0<t≤10).是否存在某个时间,使得S 四边形NACM <12S 四边形BOAC ?若存在,求出t 的取值范围;若不存在,说明理由.9.如图1,在平面直角坐标系中,A(a,0)是x轴负半轴上一点,C是第三象限内一点,CB∥y轴交y轴负半轴于B(0,b),且|a+3|+(b+4)2=0,S四边形AOBC=16.(1)求点A、B、C的坐标;(2)如图2,设D为线段OB上一动点,当AD∥AC时,∥ODA的平分线与∥CAN的平分线的反向延长线交于点E,求∥AED的度数(点N在x轴的负半轴);(3)如图3,当点D在线段OB上运动时,作DP∥AD交BC于P点,∥BPD、∥DAO的平分线交于Q点,则点D 在运动过程中,∥Q的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由..10.如图,已知点A(﹣m,n),B(0,m),且m、n(n﹣5)2=0,点C在y轴上,将∥ABC沿y 轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∥AED,若∥ACF﹣∥AEF=20°,求∥EFB的度数;(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∥BCQ 和∥ARX,当点C在y轴上运动时,∥CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.11.如图,在平面直角坐标系中,点A,B的坐标为(a,0),(0,b),且满足(a﹣4)2=0,现将OA平移到BC的位置,连接AC,点P从点B出发,沿BC﹣CA运动,速度为每秒1个单位长度,设运动时间为t 秒.(1)求出a和b的值,并写出点C的坐标;(2)求点P在运动过程中的坐标(用含t的式子表示).(3)点Q以每秒3.5个单位长度的速度从点A出发,在AO间往返运动,(两个点同时出发,当点P到达点A停止时点Q也停止),在运动过程中,直接写出当PQ∥OB时,点P的坐标.12.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求∥ACD的面积;(3)如图(2),∥OAB与∥OCD的角平分线相交于点M,探求∥AMC的度数并证明你的结论.。

动点问题一

动点问题(一)【解题关键】抓住变化中的不变量、不变关系,化动为静.【经典例题】例1.如图,平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为(40)43(),,,,动点M N ,分别从O B ,同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点M 作MP OA ⊥,交AC 于P ,连结NP ,已知动点运动了x 秒.(1)P 点的坐标为( , )(用含x 的代数式表示); (2)试求NPC △面积S 的表达式,并求出面积S 的最大值及相应的x 值; (3)当x 为何值时,NPC △是一个等腰三角形?简要说明理由.例2.如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向D 运动..,以BE 为边,在BE 的上方作正方形BEFG ,连接CG 。

请探究: (1)线段AE 与CG 是否相等?请说明理由: (2)若设x AE =,y DH =,当x 取何值时,y 最大? (3)连接BH ,当点E 运动到AD 的何位置时,△BEH ∽△BAE ? N BA M PCO y x (第3题图)G例3.如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A<OB) 是方程x 2-18x+72=0的两个根,点C 是线段AB 的中点,点D 在线段OC 上,OD=2CD . (1)求点C 的坐标;(2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.例4.如图,△OAB 是边长为23+的等边三角形,其中O 是坐标原点,顶点B 在y 轴正方向上,将△OAB 折叠,使点A 落在边OB 上,记为A ′,折痕为EF. (1)当A ′E//x 轴时,求点A ′和E 的坐标;(2)当A ′E//x 轴,且抛物线216y x bx c =-++经过点A ′和E 时,求抛物线与x 轴的交点的坐标;(3)当点A ′在OB 上运动,但不与点O 、B 重合时,能否使△A ′EF 成为直角三角形?若能,请求出此时点A ′的坐标;若不能,请你说明理由.例5.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/s 的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交与点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.QCDEB【拓展练习】1.已知:如图矩形ABCD中,AB=4m,BC=6m,E为BC的中点,动点P以每秒2m的速度从A 出发,沿着△AED的边,按照从A→E→D→A的顺序环行一周,设P从A出发经x秒后,△ABP 的面积为ym2,求y与x的函数关系式.2.如图,在ΔABC 中,AC =15,BC =18,sinC=45,D 是AC 上一个动点(不运动至点A ,C),过D 作DE ∥BC ,交AB 于E ,过D 作DF ⊥BC ,垂足为F ,连结 BD ,设 CD =x . (1)用含x 的代数式分别表示DF 和BF ;(2)如果梯形EBFD 的面积为S ,求S 关于x 的函数关系式;(3)如果△BDF 的面积为S 1,△BDE 的面积为S 2,那么x 为何值时,S 1=2S 2.3.如图:已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN =∠POQ =α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平行移动,设OM =x ,ON =y (y >x ≥0),△AOM 的面积为S ,若αcos 、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转300(即∠OAM =300)时,求点N 移动的距离;(2)求证:MN ON AN ⋅=2(3)求y 与x 之间的函数关系式及自变量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.αα第28题图PNMOAQ4.用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD .把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB ,AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC ,CD 相交于点E ,F 时,(如图13—1),通过观察或测量BE ,CF 的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC ,CD 的延长线相交于点E ,F 时(如图13—2),你在(1)中得到的结论还成立吗?简要说明理由.5.如图,A 、B 是直线L 上的两点,AB =4厘米,过L 外一点C 作CD ∥L ,射线BC 与L所成的锐角∠1=60°,线段BC =2厘米,动点P 、Q 分别从B 、C 同时出发,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时间为t (秒),当t >2时,P A 交CD 于E . (1) 用含t 的代数式分别表示CE 和QE 的长. (2)求△APQ 的面积S 与t 的函数关系式. (3)当QE 恰好平分△APQ 的面积时,QE5、如图,四边形AOBC是菱形,点B的坐标为(4,0)。

七年级平面直角坐标系动点规律问题

平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A 、(13,13)B 、(﹣13,﹣13)C 、(14,14)D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。

图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____);(2)写出点n A 4的坐标(n 是正整数);(3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图510、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E 在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD .(1)直接写出图中相等的线段、平行的线段;(2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB x ABDC S 四边形PAB S ∆ABDC S 四边形DCP BOP CPO ∠+∠∠DCP CPO BOP∠+∠∠知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0).(1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ON F的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。

完整版)初一平面直角坐标系动点问题(经典难题)

完整版)初一平面直角坐标系动点问题(经典难题)一)找规律1.如图1,一只跳蚤在第一象限及x轴、y轴上跳动。

在第一秒钟,它从原点跳动到(0,1),然后按照箭头所示方向跳动(即(0,0)→(0,1)→(1,1)→(1,0)→…),每秒跳动一个单位。

那么第35秒时跳蚤所在位置的坐标是(4,1),因此答案为A。

2.如图2,所有正方形的中心都在坐标原点,且各边与x轴或y轴平行。

从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示。

顶点A55的坐标是(54,54),因此答案为A。

3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列。

根据这个规律,第2015个点的横坐标为1,因此答案为A。

4.在平面直角坐标系中,一只蚂蚁从原点O出发,按照向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图3所示。

1)填写下列各点的坐标:A1(0,1),A3(2,1),A12(6,﹣2);2)点A4n的坐标为(2n,﹣2n+1);3)蚂蚁从点A100到A101的移动方向为向上。

5.观察下列有序数对:(3,﹣1),(﹣5,0),(7,﹣1),(﹣9,0),…根据你发现的规律,第100个有序数对是(195,﹣1)。

6.观察下列有规律的点的坐标:A1(1,0),A2(2,1),A3(4,0),A4(8,1),…依照规律,A11的坐标为(1024,1),A12的坐标为(2048,0)。

7.以原点为起点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系。

一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向XXX方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是(﹣3,﹣3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系动点问题
(一)找规律
1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )
图1
A .(4,0)
B .(5,0)
C .(0,5)
D .(5,5)
图2
2、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)
3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2015个点的横坐标为 .
4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。

图3
(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.
5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .
6、观察下列有规律的点的坐标:
依此规律,A 11的坐标为 ,A 12的坐标为 .
7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .
8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点
1232008P P P P ,,,
,的位置,则点2008P 的横坐标为 .
9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 .
图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .
1P
A
O
y
x
P
(二)几何综合问题
1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标
2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.
(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .
(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形
D C 3
-1B
A O x y P
D
C
B
A
O
x y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,
若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①
DCP BOP CPO ∠+∠∠的值不变,②DCP CPO
BOP
∠+∠∠的值不变,其中有且只
有一个是正确的,请你找出这个结论并求其值.
5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.
(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?
(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.
6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;
(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.
②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.
7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.
(1)求a,b的值;
(2)如果在第二象限内有一点P(m,),请用含m
的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP
的面积与△ABC的面积相等?若存在,求出点P的坐标;
若不存在,请说明理由.
8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.
(1)求点A和点B的坐标;
(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.
(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。

相关文档
最新文档