2-2-2双曲线的几何性质练习题及答案

合集下载

双曲线的简单几何性质(2) 同步练习-高二上学期数学人教A版(2019)选择性必修第一册

双曲线的简单几何性质(2) 同步练习-高二上学期数学人教A版(2019)选择性必修第一册

3.2.2双双双双双双双双双双(2)一、单选题1. 已知斜率为1的直线l 与双曲线2214x y -=的右支交于A ,B 两点,若||8AB =,则直线l 的方程为 ( )A. 21y x =B. 21y x =C. 35y x = D. 35y x =2. 已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,则双曲线C 的离心率的取值范围是( )A. 3)B. (1,2]C. 3,)+∞D. [2,)+∞3. 设12,F F 是双曲线22:-=145x y C 的两个焦点,O 为坐标原点,点P 在C 上且||3OP =,则12PF F 的面积为( )A. 3B.72C.532D. 54. 已知1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,12||23F F =,600(,)M x y 是双曲线C 上的一点,若120MF MF ⋅<,则0y 的取值范围是( )A. 33(B. 33(C. 2222(33-D. 2323( 5. 若直线2y x =与双曲线22221(0,0)x y a b a b-=>>有公共点,则双曲线的离心率的取值范围为( )A. 5)B. 5,)+∞C. 5]D. 5,)+∞6. 已知双曲线方程为2214y x -=,过(1,0)P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )A. 4条B. 3条C. 2条D. 1条7. 已知双曲线C :2212x y -=,若直线l :(0)y kx m km =+≠与双曲线C 交于不同的两点M ,N ,且M ,N 都在以(0,1)A -为圆心的圆上,则m 的取值范围是( )A. 1(,0)(3,)3-⋃+∞B. (3,)+∞C. (,0)(3,)-∞⋃+∞D. 1(,3)3-二、多选题8. 已知双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,若223||||F A F B =,则双曲线C 的离心率可能为( )A.141B.6 C. 3 D. 59. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点分别为A 、B ,O 为坐标原点.点P 为双曲线上任意一点(异于实轴端点),过点1F 作12F PF ∠的平分线的垂线,垂足为Q ,连接.OQ 则下列结论正确的有.( )A. 2//OQ PFB. ||OQ a =C. 22||||2PF PF b ⋅=D. 2max()ABQ Sa =三、填空题10. 若直线0x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,则m 的值为__________.11. 直线1y kx =+与双曲线2231x y -=相交于不同的两点,.A B 若点,A B 分别在双曲线的左、右两支上,则实数k 的取值范围为__________;若以线段AB 为直径的圆经过坐标原点,则实数k 的值为__________.12. 已知双曲线C :22145x y -=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,若||5AB =,则满足条件的l 的条数为__________.13. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F 的面积分别为1S ,2S ,则21S S =__________. 四、解答题14. 设A ,B 分别为双曲线22221(0,0)x y a b a b-=>>的左,右顶点,双曲线的实轴长为43 3.(1)求双曲线的方程; (2)已知直线32y x =-与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.15. 如图,平面上,P 、Q 两地间距离为4,O 为PO 中点,M 处为一基站,设其发射的电波为直线,测量得60MOQ ︒∠=,且O 、M 间距离为23N 正在运行,它在运行过程中始终保持到P 地的距离比到Q 地的距离大2(P 、O 、M 、N 及电波直线均共面),请建立适当的平面直角坐标系.(1)求出机器人N 运行的轨迹方程;(2)为了使机器人N 免受M 处发射的电波的影响(即机器人接触不到过点M 的直线),求出电波所在直线斜率k 的取值范围.16. 已知双曲线E :22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =,且点(2,3)P 为E 上一点.(1)求E 的标准方程;(2)设M 为E 在第一象限的任一点,过M 的直线与E 恰有一个公共点,且分别与E 的两条渐近线交于点A ,B ,设O 为坐标原点,证明:AOB 面积为定值.17. 已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,过点且斜率为1的直线l 交双曲线C 于A ,B 两点.且 3.OA OB ⋅=(1)求双曲线C 的标准方程.(2)设Q 为双曲线C 右支上的一个动点,F 为双曲线C 的右焦点,在x 轴的负半轴上是否存在定点.M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:设直线l 的方程为y x m =+,,由2214y x m x y =+⎧⎪⎨-=⎪⎩得2238440x mx m +++=, 则212443m x x +=,1283m x x +=-,又因为||8AB =,且A 、B 是直线l 与双曲线2214x y -=右支的交点, 所以,且803m->, 即,且0m <,解得221m =,且0m <, 所以21m =-,所以直线l 的方程为21.y x =- 故选.B2.【答案】B解:由题意,圆心到直线的距离231d k ==+,3k ∴= 圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,与其中一条渐近线by x a=斜率比较即可, 3b a∴,2214b a+,∴双曲线C 的离心率的取值范围是(1,2].故答案选:.B11(,)A x y3.【答案】D解:由已知得2, 3.a c == 设(,)P x y ,由||3OP =,得229x y +=, 所以229x y =-,代入22145x y -=,解得5.3y =± 所以1212115||||6||5223F F PSF F y ==⨯⨯±=, 故选.D4.【答案】A解:由题意,3c =2a =1b =,∴双曲线方程为22 1.2x y -=120MF MF ⋅<,220030x y ∴+-<, 220022x y =+, 20310y ∴-<,03333y ∴-<<, 故选:.A5.【答案】B解:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,由双曲线与直线2y x =有交点, 则有2ba>, 即有22221()145c a b b e a a a+===+>+=则双曲线的离心率的取值范围为(5,).+∞ 故选:.B6.【答案】B解:由题意可得:双曲线2214y x -=的渐近线方程为:2y x =±, 点(1,0)P 是双曲线的右顶点,故直线1x =与双曲线只有一个公共点;过点(1,0)P 平行于渐近线2y x =±时,直线L 与双曲线只有一个公共点,有2条, 所以,过(1,0)P 的直线L 与双曲线只有一个公共点,这样的直线共有3条. 故选.B7.【答案】A解:设11(,)M x y ,22(,)N x y , 由,则①,且122412mkx x k+=-,21222(1)12m x x k -+=-, 设MN 的中点为00(,)G x y ,则02212km x k =-,0212my k=-, M ,N 在以A 为圆心的圆上,,G 为MN 的中点,AG MN ∴⊥,21212m k k km+-∴⋅=-,2231k m ∴=+②,由①②得103m -<<或3m >, 故选.A8.【答案】BC解:由题意得直线 l 垂直于渐近线by x a=,则2OA BF ⊥, 由双曲线性质得2||AF b =,||OA a =,由223||||F A F B =,得2||2||2AB AF b ==或2||4||4.AB AF b == 当2||2||2AB AF b ==时,如图:在Rt BOA 中,2tan b BOA a∠=, 由双曲线渐近线性质得21AOF BOF ∠=∠,2tan b AOF a∠=, 因此有22tan tan(2)tan(2)BOA AOF AOF π∠=-∠=-∠2222222tan 21tan 1bAOF b a b AOF a a⨯∠=-=-=-∠-,化简得2b a =,故离心率2213b e a=+=;当||4AB b =时,如图:在2Rt AOF 中,2tan b AOF a∠=,在Rt AOB 中,4tan b AOB a ∠=,因为22AOB AOF ∠=∠,利用二倍角公式,得2241()bb a b a a⨯=-, 化简得21()2b a =,故离心率2261.2b e a =+=综上所述,离心率e 的值为3或6.2故选.BC9.【答案】ABD解:如图所示:A 选项,延长1F Q 交2PF 于点C ,因为PQ 为12F PF ∠的平分线,1PQ F Q ⊥, 故Q 为1F C 的中点,1||||F Q QC =,又因为12||||FO F O =,即O 为12F F 的中点, 故OQ 为12F F C 的中位线, 所以2||2||F C OQ =,2//OQ F C , 又因为P 、2F 、C 共线, 故2//OQ PF ,故A 正确;B 选项,由定义可知12||||2PF PF a -=, 因为1||||F P PC =,而12||||2F P PF a -=, 故22||||||2PC PF F C a -==,而2||2||F C OQ =, 故1||22OQ a a =⨯=,故B 正确; C 选项,若212||||2PF PF b ⋅=,则222222212121212||||(||||)2||||444()PF PF PF PF PF PF a b c F F +=-+=+==,则1290F PF ∠=︒,题中无说明,故不成立,故C 错误; D 选项,因为||2AB a =,||OQ a =, 当OQ x ⊥轴时,2max1()22ABQ Sa a a =⨯⨯=,故D 正确.故选:.ABD10.【答案】1±解:设A ,B 两点的坐标分别为11(,)A x y ,22(,)B x y ,线段AB 的中点为00(,).M x y 由得22220(0)x mx m ---=∆>,则212122,2x x m x x m +==--,1202x x x m +∴==,002.y x m m =+= 点00(,)M x y 在圆225x y +=上,22(2)5m m ∴+=, 1.m ∴=±故答案为 1.±11.【答案】1±解:(1)由直线1y kx =+与双曲线2231x y -=,得22(3)220k x kx ---=, 因为A , B 在双曲线的左右两支上,所以230k -≠,2203k -<- 解得33;k -<<(2)假设存在实数k ,使得以线段AB 为直径的圆经过坐标原点,设11(,)A x y ,22(,)B x y ,则0OA OB ⋅=,即12120x x y y +=,1212(1)(1)0x x kx kx ∴+++=,即21212(1)()10k x x k x x ++++=,22222(1)1033kk k k k -∴+⋅+⋅+=--, 整理得21k =,符合条件,1.k ∴=±故答案为; 1.±12.【答案】3解:24a =,25b =,29c =,则(3,0)F ,若A 、B 都在右支上,当AB 垂直于x 轴时,将3x =代入22145x y -=得52y =±,则||5AB =,满足, 若A 、B 分别在两支上,2a =,∴两顶点的距离为2245+=<,∴满足||5AB =的直线有2条,且关于x 轴对称,综上满足条件的l 的条数为3. 故答案为:3.13.【答案】4解:离心率为2ce a==,即2c a =,3b a =, (,0)M a -,(0,)N b ,可得MN 的方程为0bx ay ab -+=,设(,)P m n ,1(,0)F c -,2(,0)F c ,可得22212(,)(,)PF PF c m n c m n m n c ⋅=---⋅--=+-, 由22222()m n m n +=+表示原点O 与P 的距离的平方, 显然OP 垂直于MN 时,||OP 最小, 由OP :ay x b=-,即33y x =-330x y a -+=, 可得33(,)44P a a -,即211332242S c a a =⋅⋅=, 当P 与N 重合时,可得||OP 最大, 可得2212232S c b a =⋅⋅=, 即有222123 4.3S a S a ==故答案为:4.14.【答案】解:(1)双曲线的渐近方程为by x a=±,焦点为(,0)F c ±, ∴焦点到渐近线的距离为,又243a =,23a ∴=,双曲线的方程为221.123x y -=(2)设点112200(,),(,),(,)M x y N x y D x y ,由得: 2163840x x -+=,1212123163,()4123x x y y x x ∴+=+=+-=, OM ON tOD +=,0,01212()(,)t x y x x y y ∴=++,有,又点00(,)D x y 在双曲线上, 2216312()()1123t t ∴-=,解得216t =,点D 在双曲线的右支上,0t ∴>,4t ∴=,此时点(43,3).D15.【答案】解:(1)如图所示,以点O 为坐标原点,以PQ 所在的直线为x 轴建立直角坐标系,则(2,0),(2,0)P Q -,设点(,)N x y ,则||||2||4NP NQ PQ -=<=, 所以动点N 是以点,P Q 为焦点的双曲线的右支, 由题得22,2,1a c a ===, 所以2413b =-=,所以动点N 的轨迹方程为221(1).3y x x -= (2)由题得点M 的坐标为3,3),设直线的方程为3(3)y k x -=,即:(3)3y k x =-+,联立直线和221(1)3y x x -=, 消去y 得2222(3)(236)633120k x k k x k k -+-+--=当230k -=时,若3k =当3k =当230k -≠时,由0∆<得2222(236)4(3)(63312)0k k k k k -----<,所以(3)(3)0k k --<, 32 3.k << 32 3.k <所以电波所在直线斜率k 的取值范围16.【答案】解:(1)当3ba =E 的标准方程为222213x y a a -=,代入(2,3),解得2 1.a =故E 的标准方程为221.3y x -=(2)直线斜率显然存在,设直线方程为y kx t =+,与2213y x -=联立得:222(3)230.k x ktx t -+++=由题意,3k ≠222244(3)(3)0k t k t ∆=--+=,化简得:2230.t k -+=设1122(,),(,)A x y B x y ,将y kx t =+与3y x =联立,解得13x k =-;与3y x =-联立,解得23x k=+ 212122113||||sin |2||2|sin1203|.22|3|AOBt S OA OB AOB x x x x k ︒∆=⋅⋅∠=⋅⋅==- 由2230t k -+=,3AOB S ∆∴AOB 3.17.【答案】解:(1)设双曲线C 的焦距为2c ,由双曲线C 的离心率为2知2c a =,所以223b c a a -=,从而双曲线C 的方程可化为222213x y a a-=,由得22226630x x a ---=,设11(,)A x y ,22(,)B x y , 因为,所以126x x +=,212332x x a ⋅=--, 因为3OA OB ⋅=,所以12121212(6)(6)3x x y y x x x x +=+=, 于是21212326()62(3)66632x x x x a ++=⨯--=,解得1a =, 所以双曲线C 的标准方程为2213y x -=; (2)假设存在,点(,0)(0)M t t <满足题设条件.由(1)知双曲线C 的右焦点为,设为双曲线C 右支上一点,当02x =时,因为290QFM QMF ︒∠=∠=, 所以45QMF ︒∠=,于是,所以 1.t =-当02x ≠时,00tan 2QF y QFM k x ∠=-=--,00tan QM y QMF k x t∠==-, 因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---, 将220033y x =-代入并整理得22200002(42)4223x t x t x tx t -++-=--++,所以,解得 1.t =-综上,满足条件的点M 存在,其坐标为。

2020-2021高中数学人教版1-1配套作业:2.2.2 双曲线的简单几何性质含解析

2020-2021高中数学人教版1-1配套作业:2.2.2 双曲线的简单几何性质含解析

2020-2021学年高中数学人教A版选修1-1配套作业:2.2.2 双曲线的简单几何性质含解析第二章2。

22。

2.2A级基础巩固一、选择题1.以椭圆错误!+错误!=1的顶点为顶点,离心率为2的双曲线方程为(C)A.错误!-错误!=1B.错误!-错误!=1C.错误!-错误!=1或错误!-错误!=1D.以上都不对[解析]当顶点为(±4,0)时,a=4,c=8,b=43,双曲线方程为错误!-错误!=1;当顶点为(0,±3)时,a=3,c=6,b=3错误!,双曲线方程为错误!-错误!=1。

2.双曲线2x2-y2=8的实轴长是(C)A.2B.2错误!C.4D.42[解析]双曲线2x2-y2=8化为标准形式为x24-y28=1,∴a=2,∴实轴长为2a=4。

3.(全国Ⅱ文,5)若a〉1,则双曲线x2a2-y2=1的离心率的取值范围是(C)A.(错误!,+∞) B.(错误!,2 )C.(1,错误!) D.(1,2)[解析]由题意得双曲线的离心率e=错误!.∴c2=a2+1a2=1+错误!.∵a>1,∴0〈错误!<1,∴1<1+错误!〈2,∴1〈e〈错误!.故选C.4.(2018·全国Ⅲ文,10)已知双曲线C:错误!-错误!=1(a>0,b>0)的离心率为错误!,则点(4,0)到C的渐近线的距离为(D) A. 2 B.2C.错误!D.2错误![解析]由题意,得e=错误!=错误!,c2=a2+b2,得a2=b2。

又因为a〉0,b>0,所以a=b,渐近线方程为x±y=0,点(4,0)到渐近线的距离为错误!=2错误!,故选D.5.(2019·全国Ⅲ卷理,10)双曲线C:错误!-错误!=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|=|PF|,则△PFO的面积为(A)A.错误!B.错误!C.2错误!D.3错误![解析]双曲线错误!-错误!=1的右焦点坐标为(错误!,0),一条渐近线的方程为y=错误!x,不妨设点P在第一象限,由于|PO|=|PF|,则点P的横坐标为错误!,纵坐标为错误!×错误!=错误!,即△PFO 的底边长为错误!,高为错误!,所以它的面积为错误!×错误!×错误!=错误!。

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。

2.2.2 双曲线的简单几何性质(1)

2.2.2 双曲线的简单几何性质(1)

6 ,0
e 3 2 2
3
10 , 0

0 , 2 2
e 2
y x
0 ,
e
74

e 10
74 5
y
2 4
x
y=±3x
y
5 7
x
例题讲解
1 :求双曲线
9y2 16x2 144 的实半轴长,虚半轴长,
y2 x2 2 1 2 4 3
e 增大时,渐近线与实轴
的夹角增大
e是表示双曲线开口大小的一个量,e越大开口越大
(4)等轴双曲线的离心率e= ?2
离心率 e 2的双曲线是等轴双曲线
(5)
e
c a
c a b
2 2
2
y
在 a 、 b 、 c 、 e 四个参数中,知二可求
2 2

2
B2
c b a
c b a
A2
几何意义
( a ,0),(0,b),且 原 点 到 直 线 l的 距 离 为
解 : l : b x a y a b 0 ,
ab a b
2 2
=
3c 4 2 3 3 ,
则 3e -16e +16=0,解 得 e=2,或 e= 0<a<b e= 1+ b a
2 2
4
2
> 2 ,则 e=2.


椭 圆
双曲线
方程
a b c关系
2 x2 y 1 a> b >0) 2 ( 2 a b
x2 y2 1 ( a> 0 b>0) 2 b2 a
c 2 a 2 b 2 (a> b>0)

高中数学2.2双曲线2.2.2双曲线的简单几何性质第2课时双曲线几何性质的应用学案含解析新人教A版选修1_1

高中数学2.2双曲线2.2.2双曲线的简单几何性质第2课时双曲线几何性质的应用学案含解析新人教A版选修1_1

第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。

课时作业6:2.2.2 双曲线的简单几何性质

课时作业6:2.2.2  双曲线的简单几何性质

2.2.2 双曲线的简单几何性质基础梳理1.直线与双曲线的位置关系.一般地,设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),② 把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线的渐近线平行,直线与双曲线C 相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有________公共点,此时称直线与双曲线相交;Δ=0⇒直线与双曲线有________公共点,此时称直线与双曲线相切;Δ<0⇒直线与双曲线________公共点,此时称直线与双曲线相离.想一想:直线和双曲线只有一个公共点,直线一定和双曲线相切吗?2.弦长公式.斜率为k (k ≠0)的直线l 与双曲线相交于A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2(y 1+y 2)2-4y 1y 2.想一想:当直线的斜率k 不存在或为0时,如何求弦长?自测自评1.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( ) A .y =±54x B .y =±45x C .y =±43x D .y =±34x 2.设F 1和F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为( )A.32 B .2 C.52 D .33.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4条B .3条C .2条D .1条基础巩固1.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A .y =±2x B .y =±2xC .y =±22xD .y =±12x 2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) A.53 B.43 C.54 D.323.若圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( )A.x 29-y 272=1B.y 29-x 272=1 C.x 216-y 281=1 D.y 281-x 216=1 4.若双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),则双曲线的方程是______________.能力提升5.若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等C .离心率相等D .焦距相等6.设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0个 B .1个 C .2个 D .3个7.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是__________. 8.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为__________,渐近线方程为__________.9.双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,试求双曲线方程与椭圆的方程.10.P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.答 案基础梳理1.【答案】(2)两个 一个 没有想一想:【解析】不一定.当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.2.想一想:【解析】把直线的方程直接代入双曲线方程,求出交点坐标,再求其弦长.自测自评1.【解析】依题意,得e =c a =53.设a =3k ,c =5k ,则b 2=c 2-a 2=25k 2-9k 2=16k 2,则b =4k .又双曲线焦点在y 轴上,∴其渐近线方程为y =±34x . 【答案】D2.【答案】B3.【解析】过P 与渐近线平行的直线与双曲线只有一个公共点,另外x =1与双曲线只有一个公共点,∴l 的条数是3.【答案】B基础巩固1.【解析】由题意得b =1,c =3,所以a =2,所以双曲线的渐近线方程为y =±b ax ,即y =±22x .故选C. 【答案】C2.【解析】双曲线焦点在x 轴,由渐近线方程可得b a =43,可得e =c a =32+423=53. 【答案】A3.【解析】因为圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,所以A ,B 是双曲线的顶点.令x =0,则y =-3或y =3,A (0,-3),B (0,3),在双曲线中a =3,2c =3×2a =18,所以c =9,得b 2=81-9=72,因此,双曲线的标准方程是y 29-x 272=1.故选B. 【答案】B4.【解析】由渐近线方程知b a=3,又c =10, a 2+b 2=c 2⇒a 2+9a 2=10⇒a 2=1,b 2=9.【答案】x 2-y 29=1能力提升5.【解析】∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k=1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等. 【答案】D6.【解析】由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.【答案】A7.【解析】由渐近线方程为y =±m 2x =±32x ,得m =3,c =7,且焦点在x 轴上. 【答案】(±7,0)8.【解析】椭圆的焦点坐标为(4,0),(-4,0),故c =4,且满足c a=2,故a =2,b =c 2-a 2=23,所以双曲线的渐近线方程为y =±b ax =±3x . 【答案】(4,0),(-4,0) y =±3x9.【答案】解:由共同的焦点F 1(0,-5),F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1(a 2>25); 双曲线方程为y 2b 2-x 225-b 2=1(0<b 2<25), 点P (3,4)在椭圆上,所以16a 2+9a 2-25=1,得a 2=40, 双曲线过点P (3,4)的渐近线为y =b 25-b 2x , 即4=b 25-b 2×3,b 2=16, 所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1. 10.【答案】解:(1)由点P 在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1, 由题意又有y 0x 0-a ·y 0x 0+a =15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305. (2)联立方程得⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=5c 2,x 1x 2=35b 24. 设OC →=(x 3,y 3),由OC →=λOA →+OB →得⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2. 又C 为双曲线E 上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线E 上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2. 又x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0或λ=-4.。

2.2.2双曲线的简单几何性质

2.2.2双曲线的简单几何性质

b y=±- ax
a y=±- bx
半轴长
离心率 a,b,c的关系
半实轴长为a, 半虚轴长为b. c e a c2=b2+a2
例3 求双曲线9y2–16x2=144的实半轴长和虚半轴长、焦点坐标、 离心率及渐进线方程.
例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋 转所成的曲面,它的最小半径为12m,上口半径为13m,下口 半径为25m,高为55m,试选择适当的坐标系,求出此双曲线 的方程。
4.渐近线:
b 0 ,即y=±- ax
y
B2 A1
O
当a=b时,双曲线叫做等轴双曲线。 5.离心率: 双曲线的焦距与实轴长的比 称为双曲线的离心率,
c 用e表示,即 e a
a
B1
A2
b
x
[1]离心率的取值范围:e>1
[2]离心率对双曲线形状的影响:
渐近线与双曲 线永不相交
e越大,c就越大,从而b就越大,双曲线就开口越阔。
(3)焦点为(0, 6),(0, -6),且过点(0, 4)
2.2.2 椭圆的简单几何性质
x y - 2 =1 2 a b
1.范围: 两直线x=±a的外侧 2.对称性:
A1
O
2
2
y
B2
a
B1
A2
b
x
双曲线是轴对称图形,也是中心对称图形。坐 标轴是它的对称轴,坐标原点是它的对称中心。 双曲线的对称中心叫双曲线的中心。 3.顶点: A1(-a,0),A2(a,0)叫做双曲线的顶点。 线段A1A2叫做双曲线的实轴,ห้องสมุดไป่ตู้B1B2 叫做双曲线 的虚轴。它们的长分别为2a和2b。
F(±c,0)

1、2-2-2双曲线的几何性质

1、2-2-2双曲线的几何性质

选修1-1 2.2.1双曲线的几何性质一、选择题1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1D.x 26-y 210=1 [答案] A[解析] ∵e =ca=2,由c =4得a =2.所以b 2=c 2-a 2=12.因为焦点在x 轴上,所以双曲线方程为x 24-y 212=1.2.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .-14B .-4C .4D.14[答案] A[解析] 由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1,a =1,又虚轴长是实轴长的2倍,∴b =2,∴-1m =b 2=4,∴m =-14.故选A.3.如果双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 2 B .2 C. 3D .2 2[答案] A[解析] ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,又两渐近线互相垂直,∴a =b ,c=a 2+b 2=2a ,∴e =ca= 2.4.双曲线x 2-y 2=-3的( )A .顶点坐标是(±3,0),虚轴端点坐标是(0,±3)B .顶点坐标是(0,±3),虚轴端点坐标是(±3,0)C .顶点坐标是(±3,0),渐近线方程是y =±xD .虚轴端点坐标是(0,±3),渐近线方程是x =±y [答案] B[解析] 双曲线x 2-y 2=-3可化为y 23-x 23=1,∴a =3,b =3,顶点坐标为(0,±3),虚轴端点坐标是(±3,0), ∴它的渐近线方程为y =±a b x =±34x .5.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x[答案] D[解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34, ∴它的渐近线方程为y =±a b x =±34x .6.双曲线4x 2+my 2=4m 的虚轴长是( ) A .2m B .-2m C .2mD .2-m[答案] D[解析] 双曲线4x 2+my 2=4m 可化为:x 2m +y 24=1,∴m <0,∴a 2=4,b 2=-m ,b =-m ,2b =2-m . 7.双曲线x 2a 2-y 2b 2=1与x 2b 2-y 2a 2=1具有( )A .相同的焦点B .相同的虚轴长C .相同的渐近线D .相同的实轴长[答案] A[解析] ∵c 2=a 2+b 2,∴c =a 2+b 2, ∴双曲线x 2a 2-y 2b 2=1与x 2b 2-y 2a2=1有相同的焦点.8.方程x 2+(k -1)y 2=k +1表示焦点在x 轴上的双曲线,则k 的取值范围是( ) A .k <-1 B .k >1C .-1<k <1D .k <-1或k >1[答案] C[解析] 方程x 2+(k -1)y 2=k +1,可化为x 2k +1+y 2k +1k -1=1,∵双曲线的焦点在x 轴上,∴k +1>0且k +1k -1<0,∴-1<k <1.9.(2009·四川文,8)已知双曲线x 22-y 2b 2=1(b >0)的左右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则PF 1→·PF 2→=( )A .-12B .-2C .0D .4[答案] C[解析] 本小题主要考查双曲线的方程及双曲线的性质. 由题意得b 2=2,∴F 1(-2,0),F 2(2,0),又点P (3,y 0)在双曲线上,∴y 20=1,∴PF 1→·PF 2→=(-2-3,-y 0)·(2-3,-y 0) =-1+y 20=0,故选C.10.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4D .2[答案] C[解析] ∵焦点坐标为(±5,0), 渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.二、填空题11.双曲线x 24-y 28=1的渐近线方程是________.[答案] y =±2x[解析] 由题意知a =2,b =22,∴双曲线x 24-y 28=1的渐近线为y =±2x .12.椭圆x 24+y 2a 2=1与双曲线x 2a 2-y 2=1焦点相同,则a =________.[答案]62[解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 13.双曲线的中心在原点,离心率e =3,焦距为6,则双曲线方程为__________.[答案] x 2-y 28=1或y 2-x 28=1 [解析] ∵焦距为6,∴c =3,由e =3得a =1,所以b 2=c 2-a 2=8.由于焦点不确定在x 轴或y 轴,所以双曲线方程为x 2-y 28=1或y 2-x 28=1. 14.(2008·安徽)已知双曲线x 2n -y 212-n =1的离心率为3,则n =________.[答案] 4[解析] ①当⎩⎪⎨⎪⎧n >012-n >0时,则有12n =(3)2,∴n =4.经验证,符合题意.②当⎩⎪⎨⎪⎧n <012-n <0时无解.三、解答题15.求一条渐近线方程是3x +4y =0,一个焦点是(4,0)的双曲线标准方程. [解析] ∵双曲线的一条渐近线方程为 3x +4y =0,∴设双曲线的方程为x 216-y 29=λ,由题意知λ>0,∴16λ+9λ=16,∴λ=1625.∴所求的双曲线方程为x 225625-y 214425=1.16.求双曲线25y 2-4x 2+100=0的实半轴长、虚半轴长、焦点坐标、顶点坐标、离心率及渐近线方程.[解析] 双曲线方程25y 2-4x 2+100=0可化为x 225-y 24=1.∴实半轴长a =5,虚半轴长b =2,焦点坐标为(29,0).(-29,0),顶点坐标为(0,-5),(0,5),离心率为e =c a =295,渐近线方程为y =±25x .17.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求此双曲线的方程;(2)若点M (3,m )在双曲线上,求证MF 1⊥MF 2; (3)求△F 1MF 2的面积.[解析] (1)因为e =2,所以双曲线为等轴双曲线,所以可设双曲线方程为x 2-y 2=λ(λ≠0),因为过点(4,-10),所以16-10=λ,即λ=6,所以双曲线方程为x 2-y 2=6.(2)易知F 1(-23,0),F 2(23,0),所以kMF 1=m 3+23,kMF 2=m3-23,所以kMF 1·kMF 2=m 29-12=-m 23,因为点(3,m )在双曲线上,所以9-m 2=6,所以,m 2=3,故kMF 1·kMF 2=-1,所以MF 1⊥MF 2.(3)在△F 1MF 2中,底|F 1F 2|=43,F 1F 2上的高h =|m |=3,所以S △F 1MF 2=12|F 1F 2|·|m |=6.18.已知动圆与⊙C 1:(x +3)2+y 2=9外切,且与⊙C 2:(x -3)2+y 2=1内切,求动圆圆心M 的轨迹方程.[解析] 设动圆圆心M 的坐标为(x ,y ),半径为r , 则|MC 1|=r +3,|MC 2|=r -1,∴|MC 1|-|MC 2|=r +3-r +1=4<|C 1C 2|=6,由双曲线的定义知,点M 的轨迹是以C 1、C 2为焦点的双曲线的右支,且2a =4,a =2, 双曲线的方程为:x 24-y 25=1(x ≥2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.方程为 11.l:x=-2或
A.1 B. C.2 D.4
3.双曲线 的离心率为 ,双曲线 的离心率为则 的最小值是( )
A. B.2 C. D.4
4.已知双曲线 的焦点为 、 ,弦AB过 且在若 ,Biblioteka 曲线的一支上,则|AB|等于( )
A.2a B.3a C.4a D.不能确定
5.椭圆和双曲线有相同的中心和准线,椭圆的焦点 、 三等分以双曲线点 、 为端点的线段,则双曲线的离心率e′与椭圆的离心率e的比值是( )
A. B. C.2D.3
6.已知两点 , ,给出下列曲线方程
①4x+2y-1=0② ③ ④
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )
A.①③B.②④C.①②③D.②③④
二、填空题
7.过双曲线 的右焦点作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线共有_________条。
一、选择题(每小题四个选项中,只有一项符合题目要求)
1.双曲线 的一条准线l与一条渐近线F是与l相应的焦点,则|PF|等于( )交于P点,F是与l相应的焦点,则|PF|等于( )
A.a B.b C.2a D.2b
2.已知平面内有一定线段AB,其长度为4,动点P满足|PA|-|PB|=3,O为AB的中点,则|PO|的最小值为( )
8.设 、 是双曲线 的两焦点,Q是双曲线上任意一点,从 引 的平分线的垂线,垂足为P,则点P的轨迹方程是__________。
三、解答题新课标第一网
9.在双曲线 的一支上不同的三点 , , 与焦点F(0,5)的距离成等差数列
(1)试求 ;
(2)证明线段AC的垂直平分线经过一个定点,并求出该定点坐标。
10.设双曲线中心是坐标原点,准线平行于x轴,离心率为 ,已知点P(0,5)到这双曲线上的点的最近距离是2,求双曲线方程。
11.已知直线l与圆 相切于点T,且与双曲线C: 相交于A、B两点,若T是线段AB的中点,求直线l的方程。
答案与提示
一、1.B2.B3.C4.C5.B6.D
二、7.3条8.
三、9. (2)必过定点
相关文档
最新文档