连续周期性时间信号的傅里叶级数

合集下载

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析频域分析是信号与系统中一种重要的分析方法,用于研究信号的频谱特性。

连续周期信号是一种在时间域上具有周期性的信号,其频域分析包括傅里叶级数展开和频谱图表示。

傅里叶级数展开是一种将连续周期信号分解为若干个频率成分的方法。

对于周期为T的连续周期信号x(t),其傅里叶级数展开可以表示为:x(t) = ∑[Cn * exp( j *2πn/T * t )]其中,Cn为信号中频率为n/T的分量的振幅,j为虚数单位。

通过计算信号的傅里叶系数Cn,可以得到信号的频率成分和其对应的振幅。

在频域分析中,经常使用的一个重要工具是频谱图。

频谱图是一种将信号在频域上进行可视化展示的方法,通过绘制信号的频谱,可以直观地观察到信号的频率信息。

频谱图中的横轴表示频率,纵轴表示振幅。

对于连续周期信号,其频谱图是离散的,只有在频率为基频及其倍数的位置上有分量值。

基频是连续周期信号的最低频率成分,其他频率成分都是基频的整数倍。

频谱图中的峰值代表了信号在不同频率上的能量分布情况,而峰值的高度代表了对应频率上的振幅大小。

通过分析频谱图,可以获得信号中各个频率成分的相对强度,从而对信号进行进一步的特征提取和处理。

在实际应用中,频域分析经常用于信号处理、系统建模和通信等领域。

例如,在音频处理中,通过频域分析可以实现音频信号的降噪、音乐特征提取和音频编码等任务。

在通信系统中,频域分析可用于频率选择性衰落信道的估计和均衡、多载波调制技术等。

总结起来,频域分析是信号与系统中对连续周期信号进行分析的重要方法。

通过傅里叶级数展开和频谱图表示,可以揭示信号的频率成分及其振幅特性,为信号处理和系统设计提供依据。

连续时间信号的频域分析及Matlab实现

连续时间信号的频域分析及Matlab实现
f= 1/2*exp(-t)*heaviside(t)+1/2*exp(t)*heaviside(-t)
function CTF3()
1/2 exp(-2 t) heaviside(t)
syms t v w x;
F = fourier(x);
0.4
x = 1/2*exp(-2*t)*sym('Heaviside(t)');0.2

fliplr例子
6 4
>> n = 0:4; >> a = [5 4 3 2 1]; >> subplot(2,1,1),stem(n,a);
2
>> b = fliplr(a);
>> k = -4:4; >> c = [b,a(2:end)];
0 -5
-4
-3
-2
-1
0
1
2
3
4
5
6
4
>> subplot(2,1,2),stem(k,c);
0 0 0.5 1 t 1/2/abs(2+i w) 0.25 0.2 0.15 0.1 -6 -4 -2 0 w 2 4 6 1.5 2
subplot(2,1,1);
ezplot(x); subplot(2,1,2);
ezplot(abs(F));
f(t) = u(t+1) - u(t-1) 1
function [A_sym,B_sym] = CTF2()
syms t n k x T = 5; tao = T/5; a = 0; Nf = 16; Nn = 32; x1 = sym('Heaviside(t+0.5)')*h; x = x1 - sym('Heaviside(t-0.5)')*h; A0 = 2*int(x,t,-a,T-a)/T;%求出三角函数展开系数A0

傅里叶变换及其性质

傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分

别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02

4

2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4

(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:

第2章_连续时间信号的傅里叶分析_2.2傅里叶级数与连续时间周期信号的频谱

第2章_连续时间信号的傅里叶分析_2.2傅里叶级数与连续时间周期信号的频谱
T
1 2 2 2 (6)Parseval定理 T xt dt X n0 T 2 n 此式说明,周期信号的平均功率在时域和频域的计算结果 相等,即满足能量守恒原理。离散频谱可以用来描述信号 的功率(能量)在不同谐波频率上的分配情况。
2.2.3 周期信号的傅里叶级数举例
第2章 连续时间信号的傅里叶分析
2.2 傅里叶级数与连续时间周期信号的频谱
2.2.1傅里叶级数的定义
连续时间周期信号的傅里叶级数的定义: 如果以T为周期的连续时间周期信号x(t)满足Dirichlet条件: ①连续时间周期信号x(t)在一个周期内绝对可积; ②连续时间周期信号x(t)在一个周期内只有有限个极值点; ③连续时间周期信号x(t)在一个周期内连续,或者只有有限 个第一类间断点。 则可以将其展开为三角级数,并且此三角级数收敛,称为傅 里叶级数(Fourier Series,FS)。 将连续时间周期信号x(t)展开为傅里叶级数的目的,就是用 三角函数或各次谐波的线性组合来表示该信号。 在一般情况下,在工程中所使用的连续时间周期信号x(t)都 能满足Dirichlet条件。因此,除非特殊需要,无需考虑这一 条件。
t0
根据分离变量法,得其解为
nx u x, t cn sin e L n 1

n 2 t a L
2
其中cn为φ(x)的傅里叶系数
2 L nx cn x sin dx L 0 L
2.2.5 Gibbs现象
E , 2 xt E , 2

E t 0 2 E 0t xt sin n0t n 1, 3, 5, n
取不同数量的谐波进行 叠加,观察傅里叶级数 的叠加过程。

信号与系统第6讲第3章周期信号的傅里叶级数表示

信号与系统第6讲第3章周期信号的傅里叶级数表示

sin(2 k(1/ 4)) k
sin(k k
/ 2)
根据Example3.5的结果,用性质计算傅里叶级数的系数
分析:原函数为x(t),本函数为g(t)
g (t )
x(t
1)
1 2
,周期方波的参数T
4,T1
1,
如果原函数的系数为ak,x(t 1)的系数为bk
bk
a e jk (2 / 4)1 k
在不连续点上,傅里叶级数的收敛趋势-吉伯斯现象
不连续点上收敛于不连续点的平均值 不连续点附近呈现起伏现象,起伏的峰值不随N增加而降低 峰值为不连续点差值的9%
吉伯斯现象的实际意义
不连续信号的傅里叶级数截断近似在接近不连续点有高频起伏 选择足够大的N,可以保证这些起伏的总能量可以忽略
2024/6/10
2024/6/10
信号与系统-第6讲
19
§3.5 连续时间傅里叶级数性质
(4)Example3.8 计算周期冲激串的傅里叶级数系数 根据性质计算周期方波的系数
周期冲激串可表示为x(t) (t kT ) k
ak
1 T
T / 2 (t)e jk 2t /T dt 1
T / 2
T
周期方波为g (t ),它的导数为q(t )
c0为直流分量, c0 2T1 / T
对照前面 例题验证
结果
20
§3.5 连续时间傅里叶级数性质
(5)Example3.9
1.x(t)是实信号
2.x(t)是周期信号,T 4,傅里叶级数系数ak
3.ak 0,k 1
4.傅里叶系数为bk
e
j
k
/
2
a
的信号是奇信号

(完整版)周期信号傅里叶级数

(完整版)周期信号傅里叶级数

C e dt T0 n0
j(nk )0t
n =
由{en (t)}的正交性得:
T0
0
e
dt j(nk )0t
T0
[n k]
T0 n=k 0 n不等于k
Ck
1 T
T
2 T
fT (t)e jk 0t dt
2
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t)
bn
2 T
T
2 T
2
f (t)sin n0tdt
(n = 1,2 )
纯余弦形式傅立叶级数
其中
f(t)
a0 2
n1
An
co( s n0t

n
An an2 bn2
n
arctg
bn an
a0 2
称为信号的直流分量,
An cos(n0+ n)称为信号的n次谐波分量。
例题1 试计算图示周期矩形脉冲信号的傅立叶级数展 开式。
Cn e jn0t
jn 2 t
Cn e T
n =
n =
物理含义:周期信号f(t)可以分解为不同频率虚指数信号之和。
其中
Cn
1 T
T
2 T
fT (t)e jn0t dt
(傅立叶系数)
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量
n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
若 f (t)为实函数,则有 Cn Cn
利用这个性质可以将指数Fourier级数表示写为
1
f (t) C0
Cne jn0t

傅里叶变换公式

傅里叶变换公式

连续时间周期信号傅里叶级数:⎰=T dt t x Ta )(1⎰⎰--==T tTjkT tjk k dt et x Tdt et x Ta πω2)(1)(1离散时间周期信号傅里叶级数:[][]()∑∑=-=-==Nn nN jk Nn njkwk e n x Ne n x Na /2110π连续时间非周期信号的傅里叶变换:()⎰∞∞--=dt e t x jw Xjwt )(连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ⎰∞∞-=π21)(连续时间周期信号傅里叶变换:∑+∞-∞=⎪⎪⎭⎫⎝⎛-=k k kw a jw X T 22)(πδπ连续时间周期信号傅里叶反变换:()dw e w w t x jwt ⎰∞∞--=0221)(πδπ离散时间非周期信号傅里叶变换:∑∞-∞=-=nnj e n x eX ωωj ][)(离散时间非周期信号傅里叶反变换:⎰=π2d e )(e π21][ωωωn j j X n x离散时间周期信号傅里叶变换:∑+∞-∞=-=kk k a X )(π2)e (0j ωωδω离散时间周期信号傅里叶反变换:[]ωωωδωd e n n j ⎰--=π20πl)2(π2π21][x拉普拉斯变换:()dt e t s Xst -∞∞-⎰=)(x拉普拉斯反变换:()()s j21t x j j d e s X st ⎰∞+∞-=σσπZ 变换:∑∞-∞=-=nnz n x X ][)z (Z 反变换: ⎰⎰-==z z z X r z X n x n nd )(πj21d )e ()(π21][1j π2ωω。

连续时间信号与系统的傅里叶分析

连续时间信号与系统的傅里叶分析

连续时间信号与系统的傅里叶分析连续时间信号与系统的傅里叶分析是一种非常重要的数学工具和技术,广泛应用于信号处理、通信系统、控制系统等领域。

通过傅里叶分析,我们可以将一个复杂的时域信号分解成一系列简单的正弦函数(或复指数函数)的叠加,从而更好地理解和处理信号。

在傅里叶分析中,我们首先需要了解傅里叶级数和傅里叶变换两个概念。

傅里叶级数是将一个周期信号分解成一系列正弦和余弦函数的叠加。

对于一个连续时间周期为T的周期信号x(t),其傅里叶级数表示为:x(t) = a0/2 + ∑ {an*cos(nω0t) + bn*sin(nω0t)}其中,n为整数,ω0为角频率(ω0 = 2π/T),an和bn为信号的系数。

傅里叶级数展示了信号在频域上的频谱特性,即信号在不同频率上的成分。

通过傅里叶级数,我们可以得到信号的基频和各个谐波分量的振幅和相位信息。

而对于非周期信号,我们则需要使用傅里叶变换来分析。

傅里叶变换可以将一个非周期信号分解成一系列连续的正弦和余弦函数的叠加。

对于一个连续时间信号x(t),其傅里叶变换表示为:X(ω) = ∫ x(t)*e^(-jωt) dt其中,X(ω)为信号在频域上的频谱表示,ω为角频率,e为自然对数的底。

通过傅里叶变换,我们可以将信号从时域转换到频域,从而得到信号在不同频率上的成分。

同时,我们还可以通过逆傅里叶变换将信号从频域再转换回时域。

傅里叶分析的重要性在于它能够提供信号在时域和频域之间的转换关系,从而可以更好地理解信号的特性和行为。

通过傅里叶分析,我们可以确定信号的频谱特性、频率成分等信息,从而在信号处理、通信系统设计等方面进行相应的优化和调整。

除了傅里叶级数和傅里叶变换,还有诸如快速傅里叶变换(FFT)、傅里叶变换对(FT pair)、功率谱密度(PSD)等相关概念和技术。

这些工具和技术在实际应用中非常有用,例如在音频处理、图像处理、雷达信号处理等方面经常被使用。

总之,连续时间信号与系统的傅里叶分析为我们提供了一个强大的数学工具,能够将信号从时域转换到频域,揭示信号的频谱特性和频率成分,为信号处理和系统设计提供了有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三连续周期性时间信号的傅里叶级数
一、实验目的:
1. 进一步掌握MATLAB子函数的表示方法
2. 深刻理解傅里叶级数的信号分解理论及收敛性问题
3. 理解周期性信号的频谱特点。

二、实验原理
傅里叶级数
设有连续时间周期信号,它的周期为T,角频率,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1. 三角形式的傅里叶级数:
式中系数,称为傅里叶系数,可由下式求得:
[
2. 指数形式的傅里叶级数:
式中系数称为傅里叶复系数,可由下式求得:
周期信号频谱具有三个特点:
(1)离散性,即谱线是离散的;
(2)谐波性,即谱线只出现在基波频率的整数倍上;
(3)收敛性,即谐波的幅度随谐波次数的增高而减小。

周期信号的MATLAB表示
周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

在Matlab中有多种进行数值积分运算的方法,我们采用quadl函数,它有两种其调用形式。

(1) y=quadl(‘func’, a, b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

(2) y=quadl(@myfun, a, b)。

其中“@”符号表示取函数的句柄,myfun表示所定义函数的文件名。

例:
用MATLAB计算脉冲宽度T1 = 2;周期T = 4的周期性脉冲信号的复傅里叶级数,分别画出N = -2:2, -10:10, -50:50, -200:200的傅里叶级数展开及合成,观察吉普斯效应。

画出T = 4, T =8下的双边谱
A.首先创建一个子函数singRect(t, T1),表示单个脉冲信号,时间为t,宽度为T1。

function y = singRect(t, T1)
y = (abs(t) <= T1);
end
B.创建傅里叶积分的被积子函数
function y = rectExp(t, k, w)
y = (abs(t) <= 1) .* exp(-1j*k*w*t);
end
C.创建子函数用于傅里叶级数计算及合成
function [x, ak] = fourierSeries(N, t)
T1 = 1;
T = 4; w = 2 * pi/T;
ak = zeros(1, 2 * N + 1);
for i = 1:2*N+1 %傅里叶分解,计算傅里叶系数ak
ak(i) = quadl(@(t)fsInt(t, i - N - 1, w, T1), -2, 2)/T;
end;
x = 0;
for i = 1:2*N + 1 %傅里叶级数合成
x = x + ak(i) * exp(1j*(i - N - 1)*w*t);
end
end
D.创建main函数,计算不同N下的傅里叶级数及合成。

T1 = 1;
T = 4;
t = -T/2:0.001:T/2;
figure,
subplot 221,
N = 2;
[x, ak] = fourierSeries(N, t);
plot(t, singRect(t, T1), 'k');
hold on ;
plot(t, real(x), 'r'); title('N = 2'); xlim([-2 2]);
subplot 222, N = 10;
[x, ak] = fourierSeries(N, t); plot(t, singRect(t, T1), 'k'); hold on ;
plot(t, real(x), 'r'); title('N = 10'); xlim([-2 2]);
subplot 223, N = 50;
[x, ak] = fourierSeries(N, t); plot(t, singRect(t, T1), 'k'); hold on ;
plot(t, real(x), 'r'); title('N = 50'); xlim([-2 2]);
subplot 224, N = 200;
[x, ak] = fourierSeries(N, t); plot(t, singRect(t, T1), 'k'); hold on ;
plot(t, real(x), 'r'); title('N = 300'); xlim([-2 2]);
运行结果如下图所示,可以看到明显的Gibbs 效应,随着N 的增加,合成越接近于原信号,但Gibbs 效应仍然存在。

N = 2
N = 10
N = 50
N = 300
T1 = 1, T = 8
T1 = 1, T = 4
上图是不同T下的频谱,可以看到T越大,谱线越密。

四、作业
计算连续周期性三角波的傅里叶级数,设周期为 T = 5s,画出N = 5;N = 10;N = 100;N = 300时的傅里叶级数合成图。

并画出T = 5,10,20的傅里叶系数a k。

function y=FsIntegralFunc(t,k,T,width)
w=2*pi/T
y=tripuls(t,width,0).*exp(-1j*k*w*t);
end
function ak=fourierSeries(t,k,T,width)
ak=quadl(@(t)FsIntegralFunc(t,k,T,width),-T/2,T/2)/T;
end
N=input('please Input N= ');
k=-N:N
width=4;
T=5;
t=-T/2:0.01:T/2;
w=2*pi/T;
ak=zeros(1,length(k));
x=0;
N=10
figure;
for m=-N:N;
ak(m+N+1)=fourierSeries(t,m,T,width);
x= x + ak(m+N+1) * exp(1j*m*w*t);
end
stem(k,real(ak),'k');
title('傅里叶系数ak')
xlabel('T=5');
figure('name','信号的合成');
plot(t,tripuls(t,width,0));
hold on;
plot(t,x,'r');
title(‘N= ’)
T=5
傅里叶系数ak
T=10
傅里叶系数ak
T=20。

相关文档
最新文档