单项式与多项式教案
单项式和多项式的教案

单项式和多项式的教案教案标题:探索单项式和多项式教学目标:1. 理解单项式和多项式的概念及其特点。
2. 能够识别和区分单项式和多项式。
3. 能够进行单项式和多项式的基本运算。
4. 能够应用单项式和多项式解决实际问题。
教学准备:1. 教师准备:教学课件、黑板、白板笔、单项式和多项式的示例、练习题、实际问题。
2. 学生准备:课本、笔记本、铅笔、橡皮擦。
教学过程:引入:1. 在黑板上写下单项式和多项式的定义,并解释其特点。
2. 通过示例,引导学生思考并区分单项式和多项式。
探索单项式:1. 让学生回顾单项式的定义,并通过示例解释单项式的各个部分(系数、字母、指数)的含义。
2. 给学生提供一些单项式的例子,并让他们识别和写出每个单项式的系数、字母和指数。
3. 引导学生进行单项式的基本运算,如加法、减法和乘法。
4. 提供一些练习题,让学生巩固单项式的概念和运算技巧。
探索多项式:1. 让学生回顾多项式的定义,并通过示例解释多项式的各个部分(项、项数、次数)的含义。
2. 给学生提供一些多项式的例子,并让他们识别和写出每个多项式的项、项数和次数。
3. 引导学生进行多项式的基本运算,如加法、减法和乘法。
4. 提供一些练习题,让学生巩固多项式的概念和运算技巧。
应用实际问题:1. 给学生提供一些实际问题,让他们能够应用单项式和多项式解决问题。
2. 引导学生分析问题,将问题转化为数学表达式,并通过单项式和多项式进行计算和求解。
3. 鼓励学生在解决实际问题过程中思考和讨论,培养他们的问题解决能力。
总结:1. 回顾单项式和多项式的概念和特点。
2. 强调单项式和多项式的基本运算技巧。
3. 提醒学生在解决实际问题时要灵活运用单项式和多项式。
扩展活动:1. 让学生自主查找更多关于单项式和多项式的例子,并进行分析和讨论。
2. 鼓励学生设计自己的实际问题,并用单项式和多项式解决。
评估方法:1. 教师观察学生在课堂上的参与和表现。
2. 教师布置练习题或小测验,检验学生对单项式和多项式的理解和运用能力。
《单项式与多项式相乘》教案

《单项式与多项式相乘》教案第一章:单项式与多项式的概念回顾1.1 回顾单项式的定义:一个数或字母的乘积称为单项式,如2x, 3y^2等。
1.2 回顾多项式的定义:由多个单项式通过加减运算组成的表达式,如ax^2 + bx + c等。
第二章:单项式与多项式的相乘规则2.1 介绍单项式与多项式相乘的规则:将单项式分别与多项式中的每一项相乘,将结果相加。
2.2 示例:假设要计算单项式3x与多项式2x^2 + 4x + 1相乘,则将3x分别与2x^2, 4x, 1相乘,将结果相加。
第三章:单项式与多项式相乘的计算步骤3.1 步骤1:将单项式与多项式中的每一项相乘。
3.2 步骤2:将乘积相加。
3.3 步骤3:简化结果,合并同类项。
3.4 示例:计算单项式-2x与多项式3x^2 + 5x 2相乘,按照步骤1、步骤2、步骤3进行计算。
第四章:单项式与多项式相乘的练习题4.1 设计一些练习题,让学生独立完成,加深对单项式与多项式相乘的理解。
4.2 练习题可以包括不同类型的单项式和多项式,以及不同难度的问题。
第五章:单项式与多项式相乘的应用题5.1 设计一些应用题,让学生将所学知识应用于实际问题中。
5.2 应用题可以涉及不同领域的实际问题,如面积、体积计算等。
第六章:单项式与多项式相乘的拓展概念6.1 介绍单项式与多项式相乘的拓展概念,如分配律的应用。
6.2 解释分配律:单项式乘以多项式中的每一项,将结果相加。
6.3 示例:使用分配律计算单项式4x与多项式(2x + 3)相乘。
第七章:单项式与多项式相乘的技巧与策略7.1 提供一些技巧与策略,帮助学生更高效地解决单项式与多项式相乘的问题。
7.2 技巧1:先乘除后加减,按照运算顺序进行计算。
7.3 技巧2:先简化多项式,再进行相乘。
7.4 示例:运用技巧解决复杂的单项式与多项式相乘问题。
第八章:单项式与多项式相乘的错误分析8.1 分析学生在单项式与多项式相乘中常见的错误。
单项式和多项式教案

单项式和多项式教案第一章:单项式的概念与性质1.1 引入单项式的概念:引导学生从实际问题中抽象出单项式,如计算“3x^2 + 5xy 2x^3”中的单项式。
1.2 学习单项式的系数:解释单项式中的数字因数称为单项式的系数,如在单项式“4x^2”中,系数为4。
1.3 学习单项式的次数:定义单项式的次数为单项式中所有变量的指数之和,如在单项式“3x^2y^3”中,次数为5。
1.4 探究单项式的性质:引导学生发现单项式的系数和次数对单项式的性质的影响,如系数相同且次数相同的单项式可以相加或相减。
第二章:多项式的概念与性质2.1 引入多项式的概念:通过实际问题引导学生理解多项式的概念,如计算“ax^2 + bx + c”中的多项式。
2.2 学习多项式的项:解释多项式中的每一部分称为多项式的项,如在多项式“3x^2 + 2x 1”中有三项。
2.3 学习多项式的次数:定义多项式的次数为多项式中最高次单项式的次数,如在多项式“ax^2 + bx + c”中,次数为2。
2.4 探究多项式的性质:引导学生发现多项式的项数和次数对多项式的性质的影响,如多项式的次数决定了它的图像是一个抛物线。
第三章:单项式与多项式的运算3.1 学习单项式的加减法:引导学生利用合并同类项的法则进行单项式的加减法运算,如“2x^2 3x^2 = -x^2”。
3.2 学习单项式的乘法:解释单项式相乘的法则,如“3x^2 4x^3 = 12x^5”。
3.3 学习多项式的加减法:引导学生利用合并同类项的法则进行多项式的加减法运算,如“ax^2 + bx + c + dx^2 + ex + f = (a+d)x^2 + (b+e)x + (c+f)”。
3.4 学习多项式的乘法:解释多项式相乘的法则,如“(ax^2 + bx + c)(dx^2 + ex + f) = adx^4 + (ae+bd)x^3 + (af+be+cd)x^2 + (bf+ce)x + cf”。
七年级数学上册《单项式与多项式》教案、教学设计

3.提醒学生注意在解决实际问题时,要灵活运用所学知识,提高解题能力。
4.鼓励学生课后进行自主学习和探究,为下一节课的学习做好准备。
五、作业布置
为了巩固学生对单项式与多项式的理解,提高他们合并同类项的能力,特布置以下作业:
1.基础知识巩固:
-完成课本习题:课后练习题第1、2、3题,要求学生独立完成,巩固单项式与多项式的定义及合并同类项的基本方法。
-自主设计练习:请学生自己设计一道包含多个单项式的数学表达式,并运用合并同类项法则进行简化。
2.实践应用提高:
-生活实例应用:请学生收集家庭购物小票或价目表,将其中的商品价格用单项式表示,并进行同类项的合并,计算总价。
-数学问题解决:解决课后习题中的一些实际问题,如求解包含单项式与多项式的简单方程,让学生体会数学知识在实际问题中的应用。
3.拓展延伸思考:
-研究性问题:讨论并思考如何将合并同类项的法则应用于更复杂的代数表达式中,例如含有多个变量或不同指数的单项式。
-探究性问题:分组讨论,探究合并同类项法则在几何图形面积和体积计算中的应用。
4.阅读理解与反思:
-阅读材料:阅读教材中关于单项式与多项式的相关阅读材料,加深对概念的理解。
-反思日记:要求学生写一篇关于本节课学习的反思日记,内容包括学习收获、困惑和改进措施。
(四)课堂练习
1.设计不同难度层次的练习题,涵盖识别单项式、合并同类项等方面,让学生在练习中巩固所学知识。
2.引导学生运用合并同类项法则解决实际问题,如购物计算、求解方程等。
3.及时反馈:针对学生的解答,给予评价和指导,指出错误原因,提供解题思路。
(五)总结归纳
1.让学生回顾本节课所学内容,总结单项式与多项式的定义、合并同类项的法则等知识点。
单项式与多项式教案

单项式与多项式教案第一章:单项式的概念与性质1.1 引入单项式的概念:引导学生通过具体的例子,理解单项式的定义,即数字与字母的乘积。
1.2 掌握单项式的系数:解释单项式中数字因数叫做单项式的系数,并进行相关练习。
1.3 理解单项式的次数:引导学生了解单项式中,所有字母的指数和叫做这个单项式的次数,并进行相关练习。
1.4 探索单项式的性质:通过练习,让学生掌握单项式的大小比较、相等条件等性质。
第二章:多项式的概念与性质2.1 引入多项式的概念:通过具体的例子,让学生理解多项式的定义,即几个单项式的和。
2.2 理解多项式的项:解释多项式中每个单项式叫做多项式的项,并进行相关练习。
2.3 掌握多项式的次数:引导学生了解多项式中,最高次项的次数叫做这个多项式的次数,并进行相关练习。
2.4 探索多项式的性质:通过练习,让学生掌握多项式的相等条件、大小比较等性质。
第三章:单项式与多项式的运算3.1 单项式乘以单项式:引导学生理解单项式乘以单项式的运算规则,并进行相关练习。
3.2 单项式乘以多项式:解释单项式乘以多项式的运算规则,并进行相关练习。
3.3 多项式乘以多项式:引导学生理解多项式乘以多项式的运算规则,并进行相关练习。
3.4 单项式除以单项式:解释单项式除以单项式的运算规则,并进行相关练习。
3.5 多项式除以单项式:引导学生理解多项式除以单项式的运算规则,并进行相关练习。
第四章:单项式与多项式的应用4.1 求解含单项式的方程:通过具体的例子,让学生学会求解含有单项式的方程。
4.2 求解含多项式的方程:引导学生学会求解含有多项式的方程。
4.3 实际问题中的应用:通过实际问题,让学生运用单项式和多项式的知识解决问题。
第五章:单项式与多项式的进一步探讨5.1 同类项的概念:解释同类项的定义,即字母相同且相同字母的指数也相同的项。
5.2 合并同类项:引导学生掌握合并同类项的方法,并进行相关练习。
5.3 单项式的因式分解:解释单项式的因式分解方法,并进行相关练习。
单项式和多项式教案精选全文

一、教学内容:
1、用含字母的式子填空,看看列出的式子有什么特点。
⑴边长为a的正方形的表面积为,体积为;
⑵铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍,圆珠笔的单价是元;
⑶一辆汽车的速度是v千米/时,它t小时行驶的路程为千米;
⑷数n的相反数是。
⑸直径为m的圆面积是
2、像6 , ,2.5 ,tv,—n, 他们都是一个数字或字母的积,叫做单项式。单独一个数和字母也叫单项式。
A、 B、 C、 D、
二.填空题
1.当a=-1时, =;
2.单项式: 的系数是,次数是;
3.多项式: 是次项
4. 是次单项式;
5. 的一次项系数是,常数项是;
6.单项式 xy2z是_____次单项式.
7.当x=2,y=-1时,代数式 的值是;
8.多项式x3y2-2xy2- -9是___次___项式,其中最高次项的系数是,二次项是,常数项是.
A.2个B.3个C.4个D5个
2.多项式-23m2-n2是()
A.二次二项式
B.三次二项式
C.四次二项式
D.五次二项式
3.下列说法正确的是()
A.3x2―2x+5的项是3x2,2x,5
B. - 与2x2―2xy-5都是多项式
C.多项式-2x2+4xy的次数是3
D.一个多项式的次数是6,则这个多项式中只有一项的次数是6
例:
多项式4x-5,次数最高的是4x,这个多项式的次数是1,
多项式6 -2x+7,次数最高的是二次项6 ,这个多项式的次数是2
一个多项式含有几项,就叫几项式。如4x-5是二项式,6 -2x+7, +ab+ 都是三项式。
《单项式与多项式相乘》教案

《单项式与多项式相乘》教案单项式与多项式相乘教案
一、教学目标
- 了解单项式与多项式的概念及特点
- 掌握单项式与多项式相乘的基本方法和技巧
- 能够应用所学知识解决实际问题
二、教学内容
1. 单项式与多项式的概念
- 单项式的定义和示例
- 多项式的定义和示例
2. 单项式与多项式的相乘
- 单项式与多项式相乘的基本思路
- 单项式与多项式相乘的具体步骤和方法
3. 相关练和应用
- 练单项式与多项式相乘的基本计算
- 应用所学知识解决实际问题
三、教学步骤
1. 导入
引入单项式与多项式的概念,通过例子让学生理解并掌握单项
式和多项式的定义。
2. 讲解
详细讲解单项式与多项式相乘的基本思路和步骤,通过示例演
示解题过程,引导学生理解和掌握相乘的方法和技巧。
3. 练
设计一些练题,让学生进行单项式与多项式相乘的基本计算练,巩固所学知识。
4. 应用
设计一些实际问题,让学生应用所学知识解决问题,培养学生
的应用能力和思维能力。
5. 总结
总结本节课的研究内容,强调重点和难点,激发学生的研究兴趣。
四、教学资源
- 教材、课件等教学资料
- 演示示例和练题
五、教学评价
- 教师在教学过程中的提问和引导
- 学生课堂表现和练成绩的评价
六、拓展延伸
在教学过程中,可以引导学生思考和探索单项式与多项式相乘的应用领域,扩展学生的数学思维和创造力。
单项式与多项式教案

单项式与多项式教案教案标题:单项式与多项式教案教案目标:1. 学生能够理解单项式和多项式的定义和特点。
2. 学生能够识别和区分单项式和多项式。
3. 学生能够进行单项式和多项式的加减法运算。
4. 学生能够应用单项式和多项式解决实际问题。
教学准备:1. 教师准备黑板、白板或投影仪等教学工具。
2. 教师准备单项式和多项式的示例问题。
3. 学生准备笔记本和铅笔。
教学步骤:引入:1. 教师通过提问的方式引导学生回顾代数表达式的概念和运算规则。
2. 教师向学生介绍今天的学习内容:单项式和多项式。
探究:3. 教师向学生解释单项式的定义和特点:单项式是只包含一个变量的代数表达式,由常数项和各项系数乘积的和组成。
4. 教师通过示例向学生展示单项式的不同形式,并请学生识别和区分单项式。
5. 教师引导学生思考单项式的加法和减法运算规则,并通过例题进行解释和练习。
6. 教师向学生解释多项式的定义和特点:多项式是由多个单项式相加或相减而成的代数表达式。
7. 教师通过示例向学生展示多项式的不同形式,并请学生识别和区分多项式。
8. 教师引导学生思考多项式的加法和减法运算规则,并通过例题进行解释和练习。
实践:9. 教师出示一些实际问题,要求学生应用单项式和多项式解决问题。
10. 学生个别或小组合作完成实际问题的解答,并向全班展示解题过程和答案。
总结:11. 教师与学生一起总结单项式和多项式的定义、特点和运算规则。
12. 教师鼓励学生提出问题和疑惑,并进行解答和讨论。
拓展:13. 教师布置相关的课后作业,要求学生练习单项式和多项式的加减法运算,并解决实际问题。
14. 教师鼓励学生利用互联网等资源进一步了解单项式和多项式的应用领域和相关知识。
评估:15. 教师通过课堂练习、作业和实际问题解答的表现评估学生对单项式和多项式的理解和应用能力。
教学延伸:教师可以引导学生进一步学习和探究多项式的乘法运算规则,并应用多项式解决更复杂的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.1 单项式与多项式(教案)
教学目标:
1.了解整式的有关概念,会识别单项式、多项式和整式。
2. 能说出一个单项式的系数和次数,多项式的项的系数和次数,以及多项式的项数和次数
3. 在参与对单项式、多项式识别的过程中,培养观察、归纳、概括和语言表达的能力。
教学重难点:
1、能说出单项式的系数、次数
2、能说出多项式每一项的系数、次数,及整个多项式是几次几项式。
教学过程:
预习案
让学生举手口答以下定义,不对的让同组学生纠正,同组都不会的让其它组回答,答对的加
探究案
下面让我们逐一进行探究。
探究一:整式
找一小组上黑板板书答案,不同意见的同组修改,有问题的别组订正。
填空:(1)卖报的李阿姨从报社以每份0.35元的价格购进a 份《晚报》,以每份0.5元的价格售出b 份(b<a ),那么她此项卖报的收入是(0.5b-0.35a )元。
(2)从书店邮购每册定价为a 元的图书,邮费为书价的5%,邮购这种图书需付款(a(1+5%))元
(3)某建筑物的窗户,上半部为半圆形,下半部为矩形,已知矩形长、
宽分别为a 、b,这扇窗户的透光面积是(ab+28
1
a ∏)。
教师补充第五章中学过的代数式
回答:观察下面所得到的代数式,以及在第5章中所学过的代数式
它们分别含有哪些运算?加减乘除。
对于字母来说,只含有加减乘除运算的代数式叫做整式。
a b 35.050.0-a 05.1a ab 2
81π+22a r +πn 342c ab +
探究二:单项式
认识了整式,让我们继续探究整式中的内容
1. 其中,不含有加减运算的整式叫做单项式,单独的一个字母或数也是单项式。
找出下列代数式中哪些是整式?哪些是单项式?(写题号)
(1)(2)(3)(4)(5)
(6)(7)(8)(9)
(10)(11)(12)
(1)(3)(5)(6)(7)(9)(10)(11)(12)是整式,(3)(7)(11)(12)是单项式。
继续研究单项式中的内容
2. 单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数。
⑴3x 2,c ab ah 2,3
1
-的系数分别为3,31-,1次数分别为2,2,4。
⑵ 中的字母有x,y,z ,各字母的指数分别是2,3,1 ,则该单项式 的次数为6。
探究三:多项式
几个单项式的和叫做多项式,多项式中的每一个单项式叫做项,其中,不含字母的项叫做常数项,多项式中次数最高项的次数叫做多项式的次数。
如:多项式
有两项为2a 和b a 3-,项的次数分别为1和4, 所以,多项式 是四次两项式。
ab
a 22-2
31
2+-m n 21b
a +2
2
2b a +a
45-a
a
23
7312
-x 3
2+
x x
3-a
05.1z y x 3
23
2b a a 32-b a a 32-
1.说出下列多项式是由哪几项组成的,它们分别是几次多项式?(1)(2)(3)(4)(5)(6)
2. 说出下列单项式的系数和次数:
(1)(2)(3)(4)(5)(6)
3.已知多项式 ,回答下列问题: (1)这个多项式有几项?指出它所有的项;四项 y x 321-
、23x 、xy 2、3
2
- (2)这个多项式的次数最高项是哪一项?写出它的系数和次数;y x 321-、2
1
-、4
(3)这个多项式有常数项吗?如果有,是哪一项?有、3
2-
训练案
本节课的基本内容已学完,下面我们训练来巩固一下
1、下列代数式中,①②③⑥是单项式,④是多项式,①②③④⑥是整式。
(考
查整式、单项式、多项式的定义)
① -3x ② mn 21 ③ a ④ mn 21
+5m ⑤ x 1 ⑥ 107
2、指出下列单项式的系数和次数(考查单项式的系数和次数)
① b a 2
1
② -4x 2y ③ m ④ 12
3、① -x 2-xy-2y ② 5a 2-7b 2 -2
1
ab ③ 2πx 2-7x -6
1、指出以上各式每一项的系数和次数(考查多项式的项、系数、次数)
2、指出以上各式是几次几项式 4.判断(综合考察)
⑴ 单项式x 的系数是0 ,次数是0
⑵ 单项式212R π 的系数是1
2,次数是3
⑶ 单项式23
8x y -的系数是-3,次数是2
⑷单项式222310a b -⨯的系数是 -3 ,次数是4
123+-y x 5322+-a a b a a 32-2
37xy -3
223b ab b a a -+-3
23y xy x +-ab 2m -y x 21.0-3
22
abc
-2
xy
bc
a 2π32
232123-
++-xy x y x
⑸单项式的22
9x y
系数是-9,次数是4 ⑹单项式的232
3a b c对字母b是三次单项式
5、(2分)已知多项式-1
3
x2y+3x2+2x2y2-
2
1
,回答下列问题:(考查多项式
的项、系数、次数和常数项)
(1)这个多项式有几项?
(2)这个多项式的最高次项是哪一项?写出它的次数和系数;(3)这个多项式有常数项吗?如果有,是哪一项?
课后作业:习题 P128 A组 1.2.3.4。