希尔排序,快速排序,堆排序

合集下载

排序大全

排序大全

(共八种排序方法:直接插入排序,折半插入排序,冒泡排序,简单选择排序,希尔排序,快速排序,堆排序,归并排序)一.简单排序1.直接插入排序:a)思想:每次从后面无序表中取出第一个元素,通过循环比较把它插入到前面有序表的合适位置,使前面有序表仍然有序。

b)稳定性:稳定c)时空效率:时间复杂度:O(n^2) 空间复杂度:O(1)d)代码:/******************************************function: InsertSort 直接插入排序paramaters: list[] 形参数组length 数组长度(并非最大下标)******************************************/void InsertSort(int list[],int length){int temp,i,j;for(i=1;i<length;i++){if(list[i]<list[i-1]){temp=list[i];//保存小值list[i]=list[i-1];//大值向后移一位for(j=i-1;j>=1&&temp<list[j-1];j--){list[j]=list[j-1];}list[j]=temp;}}}2.折半插入排序:a) 思想:在插入第i个元素时,对前面的0~i-1元素进行折半,先跟他们中间的那个元素比,如果小,则对前半再进行折半,否则对后半进行折半,直到low>hight,找到插入位置low,然后把low到i-1的所有元素均后移一位,再把第i个元素放在目标位置low上。

b) 稳定性:稳定c) 时空效率:时间复杂度:O(n^2) 空间复杂度:O(1)d) 代码:/******************************************function: BInsertSort 折半插入排序又叫二分法插入排序paramaters: list[] 形参数组length 数组长度(并非最大下标)******************************************/void BInsertSort(int p[],int length){int i,j,low,high,m,temp;for(i=1;i<length;i++){temp=p[i];low=0;high=i-1;while(low<=high){m=(low+high)/2;if(p[i]<p[m])//插入点是high+1,而非m,因为有的循环m变化了,而m与high没有发生关系,//循环就结束了,他们的关系还保留在上一层,因此插入点应该用high来保存{high=m-1;}else low=m+1;}// 其实用low更方便点,不用再对low做任何改变/*for(j=i-1;j>=high+1;j--){p[j+1]=p[j];}p[high+1]=temp;*/for(j=i-1;j>=low;j--){p[j+1]=p[j];}p[low]=temp;}}3.冒泡排序:a) 思想:依次比较相邻的两个数,将小数放在前面,大数放在后面。

各种排序方法总结

各种排序方法总结

常用排序算法有哪些? 冒择路希快归堆(口诀):冒泡排序,选择排序,插入排序,希尔排序,快速排序,归并排序,堆排序; 冒泡排序冒泡排序(Bubble Sort ),是一种计算机科学领域的较简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

JAVA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 publicclassBubbleSort{publicvoidsort(int[]a){inttemp=0;for(inti=a.length-1;i>0;--i){for(intj=0;j<i;++j){if(a[j+1]<a[j]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}}}JavaScript1 2 3 4 functionbubbleSort(arr){vari=arr.length,j;vartempExchangVal;while(i>0)5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 {for(j=0;j<i-1;j++){if(arr[j]>arr[j+1]){tempExchangVal=arr[j];arr[j]=arr[j+1];arr[j+1]=tempExchangVal;}}i--;}returnarr;}vararr=[3,2,4,9,1,5,7,6,8];vararrSorted=bubbleSort(arr);console.log(arrSorted);alert(arrSorted);控制台将输出:[1, 2, 3, 4, 5, 6, 7, 8, 9]快速排序算法快速排序(Quicksort )是对冒泡排序的一种改进。

c++排序算法

c++排序算法

当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。

快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;1. 插入排序—直接插入排序(Straight Insertion Sort)基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。

即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

算法的实现:效率:时间复杂度:O(n^2).其他的插入排序有二分插入排序,2-路插入排序。

2. 插入排序—希尔排序(Shell`s Sort)希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。

希尔排序又叫缩小增量排序基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

操作方法:1.选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;2.按增量序列个数k,对序列进行k 趟排序;3.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。

仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

希尔排序的示例:算法实现:我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

各种排序方法总结

各种排序方法总结

选择排序、‎快速排序、‎希尔排序、‎堆排序不是‎稳定的排序‎算法,冒‎泡排序、插‎入排序、归‎并排序和基‎数排序是稳‎定的排序算‎法。

‎冒泡法‎:这‎是最原始,‎也是众所周‎知的最慢的‎算法了。

他‎的名字的由‎来因为它的‎工作看来象‎是冒泡:‎复杂度为‎O(n*n‎)。

当数据‎为正序,将‎不会有交换‎。

复杂度为‎O(0)。

‎直接插‎入排序:O‎(n*n)‎选择排‎序:O(n‎*n)‎快速排序:‎平均时间复‎杂度log‎2(n)*‎n,所有内‎部排序方法‎中最高好的‎,大多数情‎况下总是最‎好的。

‎归并排序:‎l og2(‎n)*n‎堆排序:‎l og2(‎n)*n‎希尔排序‎:算法的复‎杂度为n的‎1.2次幂‎‎这里我没‎有给出行为‎的分析,因‎为这个很简‎单,我们直‎接来分析算‎法:首‎先我们考虑‎最理想的情‎况1.‎数组的大小‎是2的幂,‎这样分下去‎始终可以被‎2整除。

假‎设为2的k‎次方,即k‎=log2‎(n)。

‎2.每次‎我们选择的‎值刚好是中‎间值,这样‎,数组才可‎以被等分。

‎第一层‎递归,循环‎n次,第二‎层循环2*‎(n/2)‎.....‎.所以‎共有n+2‎(n/2)‎+4(n/‎4)+..‎.+n*(‎n/n) ‎= n+n‎+n+..‎.+n=k‎*n=lo‎g2(n)‎*n所‎以算法复杂‎度为O(l‎o g2(n‎)*n) ‎其他的情‎况只会比这‎种情况差,‎最差的情况‎是每次选择‎到的mid‎d le都是‎最小值或最‎大值,那么‎他将变成交‎换法(由于‎使用了递归‎,情况更糟‎)。

但是你‎认为这种情‎况发生的几‎率有多大?‎?呵呵,你‎完全不必担‎心这个问题‎。

实践证明‎,大多数的‎情况,快速‎排序总是最‎好的。

‎如果你担心‎这个问题,‎你可以使用‎堆排序,这‎是一种稳定‎的O(lo‎g2(n)‎*n)算法‎,但是通常‎情况下速度‎要慢于快‎速排序(因‎为要重组堆‎)。

数据结构第9章 排序

数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。

如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。

2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。

如果排序依据的是主关键字,排序的结果将是唯一的。

3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。

4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。

内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。

整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。

本章仅讨论常用的内部排序方法。

5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。

6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。

对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。

因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。

辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。

理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。

7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。

在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插⼊、快排、归并、希尔、堆排序)这篇⽂章分析⼀下链表的各种排序⽅法。

以下排序算法的正确性都可以在LeetCode的这⼀题检测。

本⽂⽤到的链表结构如下(排序算法都是传⼊链表头指针作为参数,返回排序后的头指针)struct ListNode {int val;ListNode *next;ListNode(int x) : val(x), next(NULL) {}};插⼊排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *insertionSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.if(head == NULL || head->next == NULL)return head;ListNode *p = head->next, *pstart = new ListNode(0), *pend = head;pstart->next = head; //为了操作⽅便,添加⼀个头结点while(p != NULL){ListNode *tmp = pstart->next, *pre = pstart;while(tmp != p && p->val >= tmp->val) //找到插⼊位置{tmp = tmp->next; pre = pre->next;}if(tmp == p)pend = p;else{pend->next = p->next;p->next = tmp;pre->next = p;}p = pend->next;}head = pstart->next;delete pstart;return head;}};选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *selectSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//选择排序if(head == NULL || head->next == NULL)return head;ListNode *pstart = new ListNode(0);pstart->next = head; //为了操作⽅便,添加⼀个头结点ListNode*sortedTail = pstart;//指向已排好序的部分的尾部while(sortedTail->next != NULL){ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;//寻找未排序部分的最⼩节点while(p != NULL){if(p->val < minNode->val)minNode = p;p = p->next;}swap(minNode->val, sortedTail->next->val);sortedTail = sortedTail->next;}head = pstart->next;delete pstart;return head;}};快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition我们参考(选取第⼀个元素作为枢纽元的版本,因为链表选择最后⼀元素需要遍历⼀遍),具体可以参考这⾥我们还需要注意的⼀点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:void quicksort(vector<int>&arr, int low, int high){if(low < high){int middle = mypartition(arr, low, high);quicksort(arr, low, middle-1);quicksort(arr, middle+1, high);}}对左边⼦数组排序时,⼦数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采⽤前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题class Solution {public:ListNode *quickSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//链表快速排序if(head == NULL || head->next == NULL)return head;qsortList(head, NULL);return head;}void qsortList(ListNode*head, ListNode*tail){//链表范围是[low, high)if(head != tail && head->next != tail){ListNode* mid = partitionList(head, tail);qsortList(head, mid);qsortList(mid->next, tail);}}ListNode* partitionList(ListNode*low, ListNode*high){//链表范围是[low, high)int key = low->val;ListNode* loc = low;for(ListNode*i = low->next; i != high; i = i->next)if(i->val < key){loc = loc->next;swap(i->val, loc->val);}swap(loc->val, low->val);return loc;}};快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition,我们选取第⼀个节点作为枢纽元,然后把⼩于枢纽的节点放到⼀个链中,把不⼩于枢纽的及节点放到另⼀个链中,最后把两条链以及枢纽连接成⼀条链。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

希尔排序,快速排序,堆排序
张柯1403 #include<iostream>
using namespace std;
int n; //全局变量,保存顺序表的长度
void Copy(int L[],int a[]) //为开始输入数据提供备份,
{
int i;
for(i=1;i<=n;i++)
a[i]=L[i];
}
void ShellInsert(int L[],int dk) //希尔排序算法
{
int i,j;
for(i=dk+1;i<=n;++i)
if(L[i]<L[i-dk])
{
L[0]=L[i];
for(j=i-dk;j>0&&L[0]<L[j];j-=dk)
L[j+dk]=L[j];
L[j+dk]=L[0];
}
}
void ShellSort(int L[],int dt[],int t)
{
int k;
for(k=0;k<t;++k)
ShellInsert(L,dt[k]);
}
int Partition(int L[],int low,int high) //快速排序算法
{
L[0]=L[low];
while(low<high)
{
while(low<high&&L[high]>=L[0])--high;
L[low]=L[high];
while(low<high&&L[low]<=L[0])++low;
L[high]=L[low];
}
L[low]=L[0];
return low;
}
void QSort(int L[],int low=1,int high=n)
{
int pivo;
if(low<high)
{
pivo=Partition(L,low,high);
QSort(L,low,pivo-1);
QSort(L,pivo+1,high);
}
}
void HeapADjust(int L[],int s,int m) //以下三个函数为堆排序{
int rc,j;
rc=L[s];
for(j=2*s;j<=m;j*=2)
{
if(j<m&&L[j]<L[j+1])++j;
if(rc>=L[j])break;
L[s]=L[j];s=j;
}
L[s]=rc;
}
void CreatHeap(int L[])
{int i;
for(i=n/2;i>0;--i)
HeapADjust(L,i,n);
}
void HeapSort(int L[])
{
int x,i;
CreatHeap(L);
for(i=n;i>1;i--)
{
x=L[1];
L[1]=L[i];
L[i]=x;
HeapADjust(L,1,i-1);
}
}
void Display(int a[]) //输出排序后的结果
{
int i;
for(i=1;i<=n;i++)
cout<<a[i]<<" ";
cout<<endl;
}
main()
{
int L[100],i,dt[20],t,a[100],b[100];
cout<<"请输入要进行排序的个数:";
cin>>n;
cout<<"请输入各项数据:";
for(i=1;i<=n;i++)
cin>>L[i];
Copy(L,a);
Copy(L,b);
cout<<"接下来,我们进行希尔排序"<<endl;
cout<<"请输入希尔排序的趟数:";
cin>>t;
cout<<"请输入各趟排序的间隔:";
for(i=0;i<t;i++)
cin>>dt[i];
ShellSort(L,dt,t);
cout<<"希尔排序的结果为:";
Display(L);
QSort(a);
cout<<"快速排序结果为:";
Display(a);
cout<<"堆排序结果为:";
HeapSort(b);
Display(b);
}。

相关文档
最新文档