幂级数和函数的分析性质2

合集下载

第四章 第二节 幂级数

第四章 第二节   幂级数

可沿K内曲线 逐项积分,且收敛 注1 (4.5)可沿 内曲线 逐项积分 且收敛 可沿 内曲线C逐项积分 半径与(4.5) 相同 相同. 半径与 即
或∫

C
z a
f ( z )dz = ∑ cn ∫ ( z − a ) n dz , C ⊂ {z : z − a < R} .
n =0


C
cn f (ζ )dζ = ∑ ( z − a ) n +1 . n= 0 n + 1
证明 设z是圆K内任一点,
因为级数∑ cn ( z1 − a ) 收敛,
n

a•
所以 lim cn ( z1 − a ) = 0,
n n →∞
n =0
•z
•z1
从而它的通项序列必有界, 即有正数M,使 从而它的通项序列必有界 即有正数 使
cn ( z1 − a) < M , (n = 1,2,L)
n
(3) 既存在使级数发散的复数, 也存在使级数收 敛的复数.
y
设 z = z1 时, 级数收敛;
收敛圆
z2

z = z2 时, 级数发散.
a•
收敛半径
R • z1.
如图: 如图 幂级数
cn ( z − a ) n ∑
n =0 ∞
x
的收敛范围是以点a为中心的圆域.
cn ( z − a )n 的收敛范围是何区域 问题1: 问题 幂级数 ∑ 的收敛范围是何区域?
n →∞
或lim n cn = l , (Cauchy-Hadamart)
n →∞
则幂级数∑ cn ( z − a ) 的收敛半径
n

幂级数

幂级数
设有
u n ( x ),
n 1

x I.
若 x0 I 时 ,
u n ( x0 )
n 1
收敛 , 则称 x 0 为
un ( x)
n 1

的收敛点 .
若 x0 I 时 ,
u n ( x0 )
n 1
发散 , 则称 x 0 为
un ( x)
n 1
收敛区间 [ 1, 1), 绝对收敛区间 ( 1, 1).
一般地,对于幂级数都可以采用达朗贝尔判别法
例4 解



( x 5) n
n
的收敛区间
.
n 1
令 y x 5, 则

lim

( x 5) n
| a n 1 | | an |
n

n 1


y
n
n 1
n
1
谁的收敛半径?
| x | 0 1,
n
故幂级数
an x
n0

在 ( , ) 上收敛 .

R .
n
lim
| u n 1 ( x ) | | un (x) |
|x|
( 3 ) 当 时 ,
x ( , 0 ) ( 0 , ) , 均有
an x
n0

n
,
都存在一个非负
当 | x | R 时 , 幂级数可能收敛
, 也可能发散
.
幂级数的收敛半径
我们称上述定理中的非负数 R 为幂级数


an x
n
的收敛半径.
x 0 处收敛时 , 规定 R 0.

数学分析第十四章幂级数

数学分析第十四章幂级数

第十四章 幂级数 ( 1 0 时 )§1 幂级数( 4 时 )幂级数的一般概念.型如∑∞=-00)(n nnx x a和∑∞=0n n nx a的幂级数.幂级数由系数数列}{n a 唯一确定.幂级数至少有一个收敛点.以下只讨论型如∑∞=0n n n x a 的幂级数.幂级数是最简单的函数项级数之一.一. 幂级数的收敛域:Th 1(Abel 定理)若幂级数∑nnxa 在点0≠=x x 收敛, 则对满足不等式|| ||x x <的任何x ,幂级数∑n n x a 收敛而且绝对收敛;若在点x x =发散,则对满足不等式|| ||x x >的任何x ,幂级数∑n n x a 发散.证∑n n x a 收敛, {n n x a }有界.设|n n x a |≤M , 有|n nnn n n Mr xx x a x a ≤⋅=|||||,其中 1 ||<=xxr .∑+∞<n Mr ⇒∑∞+< ||n n x a . 定理的第二部分系第一部分的逆否命题. 幂级数∑nnxa 和∑-n nx x a)(0的收敛域的结构.定义幂级数的收敛半径R. 收敛半径 R 的求法. Th 2 对于幂级数∑nnxa , 若∞→n limρ=nn a ||, 则ⅰ> +∞<<ρ0时, R ρ1=; ⅱ> ρ=0时+∞=R ; ⅲ> ρ=∞+时0=R .证 ∞→n lim=nn n x a ||∞→n lim||||||x x a nn ρ=, (强调开方次数与x 的次数是一致的).⇒ ……由于∞→n lim⇒=+ ||||1ρn n a a ∞→n lim ρ=n n a ||, 因此亦可用比值法求收敛半径.幂级数∑n nx a 的收敛区间: ) , (R R - .幂级数∑nnxa 的收敛域: 一般来说, 收敛区间⊂收敛域. 幂级数∑nnxa 的收敛域是区间) , (R R -、] , (R R -、) , [R R -或] , [R R -之一.例1 求幂级数∑2n x n的收敛域 . ( ] 1 , 1 [- )例2 求幂级数 ++++nx x x n22的收敛域 . ( ) 1 , 1 [- ) 例3 求下列幂级数的收敛域:⑴ ∑∞=0!n n n x ; ⑵ ∑∞=0!n nx n .例4 求级数∑∞=-02)1(n nnn x 的收敛域 .Ex[1]P 50—51 1.二. 幂级数的一致收敛性:Th 3 若幂级数∑nnxa 的收敛半径为R ,则该幂级数在区间) , (R R -内闭一致收敛.证 ∀] , [b a ⊂) , (R R -, 设} || , || max {b a x =, 则对∈∀x ] , [b a , 有|| ||n n nn x a x a ≤, 级数∑nn x a 绝对收敛, 由优级数判别法⇒ 幂级数∑n n x a 在], [b a 上一致收敛.因此,幂级数∑nnxa 在区间) , (R R -内闭一致收敛.Th 4 设幂级数∑n n x a 的收敛半径为R ) 0 (>,且在点R x =( 或R x -= )收敛,则幂级数∑nnxa 在区间] , 0 [R ( 或] 0 , [R - )上一致收敛 .证 nnn nn R x R a x a ⎪⎭⎫⎝⎛=.∑nn R a 收敛, 函数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛nR x 在区间] , 0 [R 上递减且一致有界,由Abel 判别法,幂级数∑nn xa 在区间] , 0 [R 上一致收敛.易见,当幂级数∑nnxa 的收敛域为] , [R R -(R ) 0>时,该幂级数即在区间] , [R R -上一致收敛 .三. 幂级数的性质:1. 逐项求导和积分后的级数:设∑∞=='1)(n nn x a ∑∞=-11n n n xna , *)∑⎰∞==1n xnn dt t a *)*11,1∑∞=++n n n x n a*) 和 **)仍为幂级数. 我们有 Th 5 *) 和 **)与∑nn xa 有相同的收敛半径 . ( 简证 )注: *) 和 **)与∑n nxa 虽有相同的收敛半径(因而有相同的收敛区间),但未必有相同的收敛域, 例如级数∑∞=1n nn x .2. 幂级数的运算性质: 定义 两个幂级数∑∞=0n nnx a和∑∞=0n n n x b 在点0=x 的某邻域内相等是指:它们在该邻域内收敛且有相同的和函数. Th 6∑∞=0n nnx a=∑∞=0n n n x b ) 1 ( , +∞<≤=⇔n b a n n .Th 7 设幂级数∑∞=0n nnx a和∑∞=0n n n x b 的收敛半径分别为a R 和b R , },min{b a R R R =, 则ⅰ>∑∑=nn n n x a x a λλ, λ , ||a R x <— 常数, 0≠λ.ⅱ>∑∞=0n nnx a+∑∞=0n nn x b =n n n n x b a )(0+∑∞=, R x ||<.ⅲ> (∑∞=0n nnx a)(∑∞=0n nn x b )=nn n x c ∑∞=0, ∑=-=nk k n k n b a c 0, R x ||<.3. 和函数的性质: Th 8 设在) , (R R -(R ) 0>内∑∞=0n n nx a=)(x f . 则ⅰ> )(x f 在) , (R R -内连续; ⅱ> 若级数∑n nR a (或∑-nnR a ) ()收敛, 则)(x f 在点R x =( 或 R x -=)是左( 或右 )连续的;ⅲ> 对x ∀∈) , (R R -, )(x f 在点x 可微且有 )(x f '=∑∞=-11n n nx na;ⅳ> 对x ∀∈) , (R R -, )(x f 在区间 ] , 0 [x 上可积,且⎰=xdt t f 0)(∑∞=++011n n n x n a . 注:当级数∑∞=++011n n n R n a 收敛时,无论级数∑∞=0n n nx a在点R x =收敛与否,均有⎰=Rdt t f 0)(∑∞=++011n n n R n a.这是因为:由级数∑∞=++011n n nR n a 收敛,得函数⎰=xdt t f 0)(∑∞=++011n n n x n a 在点R x =左连续, 因此有⎰=R dt t f 0)(∑∞=++011n n nR n a . 推论1 和函数)(x f 在区间) , (R R -内任意次可导, 且有)(x f '= ++++-1212n n x na x a a , ……+++=+x a n a n x fn n n 1)()!1(!)(.注: 由系1可见, )(x f 是幂级数的和函数的必要条件是)(x f 任意次可导.推论2 若∑∞=0n n nx a=)(x f , 则有,!)0( , ,!2)0( ,1)0( ),0()(210n f a f a f a f a n n =''='== 例5 验证函数∑∞==0!2)(n nn n x x f 满足微分方程 R ∈=-'-''x y y y ,02.验证 所给幂级数的收敛域为) , (∞+∞-.=')(x f ∑∞=-=-11)!1(2n n n n x ∑∞=+=01!2n n n n x ∑∞==0)(2!22n nn x f n x . ⇒ )(4)(2)(x f x f x f ='='', 代入, ⇒ 02=-'-''y y y .例6 由于x-11+++++=n x x x 21, )1,1(-∈x . 所以+++++=--122321)1(1n nx x x x , )1,1(-∈x . ,)1(232)1(!223+-++⋅+=--n x n n x x )1,1(-∈x .⎰∑⎰∑∞=∞=+++++++=+==-=-x n xn n n n n x x x n x dt t dt t x 00001211211111ln ,)1,1(-∈x Ex [1]P 50—51 4 , 5, 6 .§2 函数的幂级数展开( 4 时 )一. 函数的幂级数展开:1. Taylor 级数: 设函数)(x f 在点0x 有任意阶导数.Taylor 公式和Maclaurin 公式.Taylor 公式:∑=+-=nk n k k x R x x k x fx f 000)()()(!)()( n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000-++-''+-'+= +)(x R n .余项)(x R n 的形式:Peano 型余项: )(x R n ()nx x )(0-= ,(只要求在点0x 的某邻域内有1-n 阶导数,)(0)(x fn 存在)Lagrange 型余项: )(x R n ξξ ,)()!1()(10)1(++-+=n n x x n f 在x 与0x 之间. 或 )(x R n ()0 ,)()!1()(1000)1(++-+-+=n n x x n x x x fθ1<<θ.积分型余项: 当函数)(x f 在点0x 的某邻域内有1+n 阶连续导数时, 有 )(x R n ⎰-=+x x nn dt t x t f n 0))((!1)1(. Cauchy 余项: 在上述积分型余项的条件下, 有Cauchy 余项 )(x R n ()10 ,)()1()(!11000)1(≤≤---+=++θθθn n n x x x x x f n .特别地,0x 0=时,Cauchy 余项为 )(x R n ξξξ ,))((!1)1(x x f n n n -=+在0与x 之间. Taylor 级数: Taylor 公式仅有有限项, 是用多项式逼近函数. 项数无限增多时, 得+-++-''+-'+n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000 ∑∞=-=00)()(!)(n n n x x n x f, 称此级数为函数)(x f 在点0x 的Taylor 级数. 只要函数)(x f 在点0x 无限次可导, 就可写出其Taylor 级数. 称0x =0时的Taylor 级数为Maclaurin 级数, 即级数∑∞=0)(!)0(n nn x n f. 自然会有以下问题: 对于在点0x 无限次可导的函数)(x f , 在)(x f 的定义域内或在点0x 的某邻域内, 函数)(x f 和其Taylor 级数是否相等呢 ?2. 函数与其Taylor 级数的关系: 例1 函数)(x f x-=11在点0=x 无限次可微. 求得,)1(!)(1)(+-=n n x n x f )1(≠x , !)0( )(n fn =. 其Taylor 级数为 =+++++ nx x x 21∑∞=0n n x .该幂级数的收敛域为) 1 , 1 (-.仅在区间) 1 , 1 (-内有)(x f =∑∞=0n n x .而在其他点并不相等,因为级数发散.那么,在Taylor 级数的收敛点,是否必有)(x f 和其Taylor 级数相等呢?回答也是否定的.例2 函数⎪⎩⎪⎨⎧=≠=-. 0, 0, 0 , )(21x x e x f x在点0=x 无限次可导且有.0)0()(=n f因此Taylor 级数0≡,在) , (∞+∞-内处处收敛.但除了点0=x 外,函数)(x f 和其Taylor 级数并不相等.另一方面,由本章§1 Th 8推论2(和函数的性质)知:在点0x 的某邻域内倘有)(x f =∑∞=-00)(n nnx x a, 则)(x f 在点0x 无限次可导且级数∑∞=-00)(n n n x x a 必为函数)(x f 在点0x 的Taylor 级数.综上, 我们有如下结论:⑴ 对于在点0x 无限次可导的函数)(x f , 其Taylor 级数可能除点=x 0x 外均发散, 即便在点0x 的某邻域内其Taylor 级数收敛, 和函数也未必就是)(x f .由此可见,不同的函数可能会有完全相同的Taylor 级数. ⑵ 若幂级数∑∞=-0)(n nn x x a在点0x 的某邻域内收敛于函数)(x f , 则该幂级数就是函数)(x f 在点0x 的Taylor 级数.于是, 为把函数)(x f 在点0x 的某邻域内表示为关于)(0x x -的幂级数,我们只能考虑其Taylor 级数.3. 函数的Taylor 展开式:若在点0x 的某邻域内函数)(x f 的Taylor 级数收敛且和恰为)(x f ,则称函数)(x f 在点0x 可展开成Taylor 级数(自然要附带展开区间.称此时的Taylor 级数为函数)(x f 在点0x 的Taylor 展开式或幂级数展开式.简称函数)(x f 在点0x 可展为幂级数.当0x = 0 时, 称Taylor 展开式为Maclaurin 展开式.通常多考虑的是Maclaurin 展开式.4. 可展条件: Th 1 (必要条件) 函数)(x f 在点0x 可展⇒)(x f 在点0x 有任意阶导数.Th 2 (充要条件) 设函数)(x f 在点0x 有任意阶导数.则)(x f 在区间) , (00r x r x +-内等于其Taylor 级数(即可展)的充要条件是:对) , (0r x x ∈∀, 有0)(lim =∞→x R n n .其中)(x R n 是Taylor 公式中的余项.证 把函数)(x f 展开为n 阶Taylor 公式, 有)(|)()(|x R x S x f n n =- ⇒ )(x f )(lim ⇔=∞→x S n n 0)(lim =∞→x R n n .Th 3 (充分条件) 设函数)(x f 在点0x 有任意阶导数, 且导函数所成函数列)}({)(x f n 一致有界, 则函数)(x f 可展. 证 利用Lagrange 型余项, 设 M x fn ≤|)(|)(, 则有) ( , 0)!1(||)()!1()(|)(|1010)1(∞→→+-⋅≤-+=+++n n x x M x x n f x R n n n n ξ.例3 展开函数)(x f ,3223++-=x x x ⅰ> 按x 幂; ⅱ> 按) 1 (+x 幂. 解 ; 1) 1 ( , 3) 0 ( , 32)0()0(23)0(-=-=++-=f f x x x f, 1432+-='x x f ; 8) 1 ( , 1) 0 (=-'='f f46-=''x f , ; 10) 1 ( , 4) 0 (-=-''-=''f f 6='''f , ; 6) 1 ( , 6) 0 (=-'''='''f f 0)()4(==== n ff.所以,ⅰ> 323223!3)0(!2)0()0()0()(x x x x f x f x f f x f +-+='''+''+'+=. 可见,x 的多项式)(x P n 的Maclaurin 展开式就是其本身. ⅱ> 32)1(!3)1()1(!2)1()1)(1()1()(+-'''++-''++-'+-=x f x f x f f x f 32)1()1(5)1(81+++-++-=x x x . Ex [1]P 58 1, 3⑴.二. 初等函数的幂级数展开式:初等函数的幂级数展开式才是其本质上的解析表达式.为得到初等函数的幂级数展开式,或直接展开,或间接展开. 1. =xe ∑∞=0,!n nn x ) , (∞+∞-∈x . ( 验证对∈∀x R ,x n e x f =)()(在区间] , 0 [x ( 或] 0 , [x )上有界, 得一致有界. 因此可展 ).=xa ∑∞==0ln ,!ln n n n ax n a x a) , (∞+∞-∈x .2. =x sin ∑∞=++-012)!12() 1 (n n nn x , ) , (∞+∞-∈x .=x cos ∑∞=-02)!2() 1 (n nnn x , ) , (∞+∞-∈x .可展是因为⎪⎭⎫ ⎝⎛+=a n x x fn πsin )()(在) , (∞+∞-内一致有界.3. 二项式 mx )1(+的展开式:m 为正整数时, mx )1(+为多项式, 展开式为其自身;m 为不是正整数时, 可在区间) 1 , 1 (-内展开为m x )1(+ ++---++-++=n x n n m m m m x m m mx !)1()2)(1(!2)1(12 对余项的讨论可利用Cauchy 余项. 具体讨论参阅[1]P 56.进一步地讨论可知(参阅Г.М.菲赫金哥尔茨《 微积分学教程》第二卷第二分册.): 当1-≤m 时, 收敛域为) 1 , 1 (-; 当01<<-m 时, 收敛域为] 1 , 1 (-; 当0>m 时, 收敛域为] 1 , 1 [-.利用二项式mx )1(+的展开式, 可得到很多函数的展开式. 例如 取1-=m , 得 +-+-+-=+1n n x x x x) 1 (112, ) 1 , 1 (-∈x . 取21-=m 时, 得 +⋅⋅⋅⋅-⋅⋅+-=+32642531423121111x x x x, ] 1 , 1 (-∈x . 间接展开: 利用已知展开式, 进行变量代换、四则运算以及微积运算, 可得到一些函数的展开式.利用微积运算时, 要求一致收敛.幂级数在其收敛区间内闭一致收敛,总可保证这些运算畅通无阻.4. +-+-+-=+-n x x x x x n n 132) 1 (32)1ln(∑∞=--=11) 1 (n n n n x .] 1 , 1 (-∈x .事实上, 利用上述x+11的展开式, 两端积分, 就有 ⎰=+=+xt dt x 01)1ln( ∑⎰∞==-00) 1 (n x n n dt t ∑∞=++-011) 1 (n n n n x ∑∞=--=11) 1 (n n n n x , ) 1 , 1 (-∈x . 验证知展开式在点1=x 收敛, 因此, 在区间] 1 , 1 (-上该展开式成立.5. =+-+-= 753753x x x x arctgx ∑∞=++-012,12) 1 (n n nn x ] 1 , 1 [-∈x . 由=+211x ∑∞=∈-02 ,) 1 (n n n x x ) 1 , 1 (-. 两端积分,有 ⎰⎰∑⎰∑∞=∞=-=⎪⎭⎫ ⎝⎛-=+=xx n x n n n n n dt t dt t t dt arctgx 00002022)1()1(1 =∑∞=++-012,12) 1 (n n n n x 验证知上述展开式在点1±=x 收敛, 因此该展开式在区间] 1 , 1 [-上成立.例4 展开函数1431)(2+-=x x x f . 解 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛---=∑∑∞=∞=+0013211131321)(n n n n n x x x x x f ∑∞=+<-=0131 || , ) 13 (21n n n x x . 例5 展开函数xe x xf )1()(+=. 解 =+=x x xe e x f )(∑∞=+0!n nn x ∑∞=+=01!n n n x ∑∑∞=∞=-+01)!1(!n n n n n x n x =+1∑∞=1!n n n x ∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛-++=++11)!1(1!11)!1(n n n n x n n n x ∑∞==++=1!11n n x n n ∑∞=∞+<+0 || ,!1n n x x n n .Ex[1]P58 2 ⑴―⑼, 3⑵(提示) .友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。

第四节幂级数

第四节幂级数

lim
n
an1 xn1 an xn
l x
则由比值判别法有
13
机动 目录 上页 下页 返回 结束
(1)若l x 1,
即 x 1 (l 0), l
an xn 则绝对收敛;
n0
(2)若l x 1,即xFra bibliotek1 (l
0),
l
an xn 发散;
n0
(3)若l x 1,
即 x 1 (l 0), l
2
机动 目录 上页 下页 返回 结束
一. 函数项级数的概念
设 un ( x) (n 1, 2 , ) 为定义在区间 I 上的函数, 称
un ( x) u1( x) u2( x) un( x)
n1
为定义在区间 I 上的函数项级数 .
对 x0 I , 若常数项级数 un ( x0 ) 收敛, x0 称为其收 n1
我们称这种函数项级数为幂级数.
7
机动 目录 上页 下页 返回 结束
二.幂级数及其收敛性
形如 an xn a0 a1 x an xn
(9.4.1)
n0
与 an ( x x0 )n a0 a1( x x0 ) an ( x x0 )n
n0
(9.4.2)
的级数, 分别称为x的幂级数与(x - x0)的幂级数. 其中
S '( x) ( an xn ) (an xn ) nan xn1
n0
n0
n0
(3) 设幂级数 an xn 的和函数为S( x), 收敛半径为R, 则S(x) n0
在 (R, R) 内可积, 且
x s( x)dx
0
x 0
an xndx
n0

11.2 幂级数

11.2    幂级数

( 1 x 1)
( 1)n1 例6 求幂级数
n1

xn 的和函数. n
解 幂级数的收敛区间为 (1, 1] . xn n 1 S ( x) (1) , n n 1 1 n 1 n 1 ( 1 x 1) S ( x) (1) x 1 x n 1 x x 1 dx ln(1 x) 两边积分得 S ( x)dx 0 0 1 x 即
展开成 x 的幂级数.
f
(n )
(0)

( k 0 , 1 , 2 , ) ( 1)k , n 2 k 1
0,
n 2k
f ( x ) 的麦克劳林级数 f ( n ) (0) n (1) k 2 k 1 n! x (2k 1)!x n 0 k 0
2 2 n n 1

n
x 2 n(n 1) x n 2 x nxn 1 x 2 ( x n ) x( x n )
x2 x x 2 x x x 1 x 1 x (1 x) 3
n 1 n 1 n 1 n 1
特别当 x0 0 时,幂级数 ( n) f ( 0) n f ( n ) ( 0) n n! x f (0) f (0) x n! x n0 称为 f ( x ) 的麦克劳林(Maclaurin)级数。 定理4 设函数 f (x) 在点 x0 的某一邻域 内具有
收敛区间为 (,). 因为 x (,) 有
e e| x| | x |n1 n 1 | Rn ( x ) || x | 0( n ) ( n 1)! ( n 1)!
所以
x e n 例9 将
( n) 解: f ( x )

幂级数的知识点总结

幂级数的知识点总结

幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。

我们将 $a_nx^n$ 称为幂级数的通项。

当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。

当 $x\neq0$ 时,幂级数可能发散,也可能收敛。

2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。

收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。

3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。

我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。

二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。

2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。

具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。

三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。

数学分析14.1幂级数

第十四章 幂级数1幂级数概念:由幂函数序列{a n (x-x 0)n }所产生的函数项级数∑∞=0n nn )x -(x a=a 0+a 1(x-x 0)+a 2(x-x 0)2+…+a n (x-x 0)n+…称为幂级数. 特别地,当x 0=0时,有∑∞=0n n n x a =a 0+a 1x+a 2x 2+…+a n x n +…一、幂级数的收敛区间定理14.1:(阿贝尔定理)若幂级数∑∞=0n n n x a 在x=x ≠0处收敛,则对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 收敛且绝对收敛;若幂级数∑∞=0n n n x a 在x=x 处发散,则对满足不等式|x|>|x |的任何x ,幂级数∑∞=0n n nx a发散.证:设级数∑∞=0n n n x a 收敛,从而数列{nn x a }收敛于0且有界,即存在某正数M ,使得|nn x a |<M (n=0,1,2,…). 又对任一个满足不等式|x|<|x |的x ,可设r=xx<1, 都有 |a n x n|=x x x a nn ⋅=|n n x a |x x <Mr n. 又级数∑∞=0n n Mr 收敛,∴对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 绝对收敛.设级数∑∞=0n nn x a 发散,若存在某一x 0,满足|x 0|>|x |且使∑∞=0n n 0n x a 收敛,则∑∞=0nnnxa绝对收敛,矛盾!∴对满足不等式|x|>|x|的任何x,幂级数∑∞=0nnnxa发散.注:由定理14.1可知,幂级数∑∞=0nnnxa的收敛域是以原点为中心的区间. 若以2R表示区间的长度,则称R为幂级数的收敛半径. R就是使得幂级数∑∞=0nnnxa收敛的收敛点绝对值的上确界. 所以幂级数∑∞=0nnnxa当R=0时,仅在x=0处收敛;当R=+∞时,在(-∞,+ ∞)上收敛;当0<R<+∞时,在(-R,R)上收敛;对一切满足不等式|x|>R的x,发散;在x=±R处,不确定. (-R,R)称为幂级数∑∞=0nnnxa的收敛区间.定理14.2:对于幂级数∑∞=0nnnxa,若n n∞n|a|lim→=ρ,则当(1)0<ρ<+∞时,幂级数∑∞=0nnnxa的收敛半径R=ρ1;(2)ρ=0时,幂级数∑∞=0nnnxa的收敛半径R=+∞;(3)ρ=+∞时,幂级数∑∞=0nnnxa的收敛半径R=0.证:对于幂级数∑∞=0nnnxa,∵n nn∞n|xa|lim→=nn∞n|a|lim→|x|=ρ|x|,根据级数的根式判别法,当ρ|x|<1时,∑∞=0nnnxa收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.注:也可由比式判别法|a ||a |lim n1n ∞n +→=n n ∞n |a |lim →=ρ,来求出幂级数∑∞=0n n n x a 的收敛半径.例1:求级数∑2nnx 的收敛半径R 及收敛域.解:记a n =2n 1, 则|a ||a |lim n1n ∞n +→=22∞n )1(n n lim +→=1,∴R=1. 又当x=±1时,2nn)1(±=2n 1,由级数∑2n 1收敛,知∑2n n x 在x=±1收敛.∴级数∑2nnx 的收敛域为[-1,1].例2:求级数∑nx n的收敛半径R 及收敛域.证:记a n =n1, 则|a ||a |lim n 1n ∞n+→=1n nlim ∞n +→=1,∴R=1. 又当x=1时,级数∑n 1发散;当x=-1时,级数∑n (-1)n 收敛.∴级数∑nx n的收敛域为[-1,1).注:级数∑∞=0n nn!x 与∑∞=0n n x n!的收敛半径分别为R=+∞与R=0.定理14.3:(柯西—阿达马定理)对幂级数∑∞=0n n n x a ,设ρ=n n ∞n|a |lim →,则 (1)当0<ρ<+∞时,R=ρ1;(2)当ρ=0时,R=+∞;(3)当ρ=+∞时,R=0.证:对于任意x,∵n n n ∞n|x a |lim →=n n ∞n |a |lim →|x|=ρ|x|, 根据级数的根式判别法,当ρ|x|<1时,∑∞=0n n n x a 收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.例3:求级数1+3x +222x +333x +442x +…+12n 1-2n 3x -+2n 2n 2x +…的收敛域.解:∵n n ∞n|a |lim →=21,∴R=2. 又当x=±2时,原级数都发散,∴原级数的收敛域为(-2,2).例4:求级数∑∞=1n 2n2n3-n x 的收敛域. 解:方法一:∵2n n ∞n|a |lim →=2n 2n ∞n 3-n 1lim →=2n 2n∞n 3n11lim 31-→=31,∴R=3.方法二:∵当n2n2n ∞n 3-n x lim →=n2n2n∞n 3n -1x lim 91→=9x 2<1,即|x|<3时,收敛.∴原级数的收敛半径为R=3.又当x=±3时,原级数=∑∞=1n 2n2n3-n 3=-1≠0,发散.∴原级数的收敛域为(-3,3).定理14.4:若幂级数∑∞=0n nn x a 的收敛半径为R(>0),则∑∞=0n n n x a 在它的收敛区间(-R,R)内任一闭区间[a,b]上都一致收敛.证:设x =max{|a|,|b|}∈(-R,R),则任一x ∈[a,b],都有|a n x n |≤|a n x n |. ∵∑∞=0n nn x a 在x 绝对收敛,由优级数判别法知∑∞=0n n n x a 在[a,b]上一致收敛.定理14.5:若幂级数∑∞=0n n n x a 的收敛半径为R(>0),且在x=R(或x=-R)收敛,则∑∞=0n n n x a 在[0,R](或[-R,0])上一致收敛.证:设幂级数∑∞=0n n n x a 在x=R 收敛,对于x ∈[0,R]有∑∞=0n n n x a =nn n n R x R a ⎪⎭⎫ ⎝⎛∑∞=.已知级数∑∞=0n nn R a 收敛,函数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛nR x 在[0,R]上递减且一致有界,即1≥R x ≥2R x ⎪⎭⎫ ⎝⎛≥…≥nR x ⎪⎭⎫⎝⎛≥…≥0. 由阿贝尔判别法知∑∞=0n n nx a在[0,R]上一致收敛. 同理可证:∑∞=0n n nx a在x=-R 收敛时,在[-R,0]上一致收敛.例5:考察级数∑n21)-(x n n的收敛域.解:∵|a ||a |lim n1n ∞n +→=|1)(n 2||n 2|lim 1n n ∞n ++→=1)2(n n lim ∞n +→=21,∴R=2.又当x-1=2时,原级数=∑n 1发散;当x-1=-2时,∑-n22)(n n =∑n (-1)n 收敛.∴x-1∈[-2,2),原级数的收敛域为[-1,3).二、幂级数的性质定理14.6:(1)幂级数∑∞=0n n n x a 的和函数是(-R,R)上的连续函数;(2)若幂级数∑∞=0n n n x a 在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.定理14.7:幂级数∑∞=0n n n x a 在收敛区间(-R,R)上逐项求导与逐项求积后分别得到幂级数:∑∞=1n 1-n n x na 与∑∞=++0n 1n n x 1n a ,它们的收敛区间都是(-R,R). 证法一:设x 0为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上任一不为零的点,由阿贝尔定理(定理14.1)的证明过程知,存在正数M 与r(<1), 对一切正整数n ,都有|a n x 0n |<Mr n . 于是|na n x 0n-1|=x n|a n x 0n |<0x M nr n .由级数比式判别法知级数∑n nr 收敛,根据级数的比较原则知,∑∞=1n 1-n nxna收敛. 由x 0为(-R,R)上任一点,知∑∞=1n 1-n n x na 在(-R,R)上收敛.若存在一点x ’,使|x ’|>R ,且幂级数∑∞=1n 1-n n x na 在x ’收敛,则必有一数x ,使得|x ’|>|x |>R ,由阿贝尔定理,∑∞=1n 1-n n x na 在x 处绝对收敛.但,取n ≥|x |时,就有|na n x n-1|=xn |a n x n |≥|a n x n |,由比较原则得幂级数∑∞=0n n n x a 在x 处绝对收敛,矛盾!∴幂级数∑∞=1n 1-n n x na 在一切满足不等式|x|>R 的x 都不收敛,即幂级数∑∞=0n n n x a 与其在收敛区间(-R,R)上逐项求导所得幂级数∑∞=1n 1-n nx na有相同的收敛区间(-R,R).又幂级数∑∞=0n nn x a 在收敛区间(-R,R)上逐项求积可得幂级数∑∞=++0n 1n n x 1n a , 即∑∞=0n nn x a 是由幂级数∑∞=++0n 1n n x 1n a 在其收敛区间上逐项求导所得, ∴它们也有相同的收敛区间(-R,R). 证法二:对于幂级数∑∞=0n n n x a ,R=1n n∞n a a lim+→. 对幂级数∑∞=1n 1-n n x na ,1n n ∞n1)a (n na lim +→+=1n n ∞na a 1n nlim +→⋅+=R. 对幂级数∑∞=++0n 1n n x 1n a,2n a 1n a lim 1n n∞n +++→=1n n ∞n a a 1n 2n lim +→⋅++=R. 得证!定理14.8:设∑∞=0n n n x a 在收敛区间(-R,R)上的和函数为f ,x ∈(-R,R),则:(1)f 在点x 可导,且f ’(x)=∑∞=1n 1-n n x na ;(2)f 在0与x 之间的这个区间上可积,且⎰x0f(t)dt=∑∞=++0n 1n n x 1n a .证法:由定理14.7知,∑∞=0n nn x a ,∑∞=1n 1-n n xna 和∑∞=++0n 1n n x 1n a 有相同的R. ∴总存在r ,使|x|<r<R ,根据定理14.4,它们在[-r,r]上都一致收敛. 根据逐项求导与逐项求积定理得证!推论1:记f 为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上的和函数,则在(-R,R)上f 具有任何阶导数,且可逐项求导任何次,即: f ’(x)=∑∞=1k 1-k k x ka ;f ”(x)=∑∞=2k 2-k k x1)a -k(k ;…;f (n)(x)=∑∞=n k n -k k x a n)!-(k k!;….推论2:记f 为幂级数∑∞=0n n n x a 在点x=0某邻域上的和函数,则{a n }与f在x=0处的各阶导数有如下关系:a 0=f(0), a n =n!(0)f (n),(n=1,2,…).三、幂级数的运算定义:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内有相同的和函数,则称这两个幂级数在该邻域内相等.定理14.9:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内相等,则它们同次幂项的系数相等,即a n =b n (n=1,2,…).定理14.10:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 的收敛半径分别为R a 和R b ,则λ∑∞=0n nn x a =∑∞=0n nn x λa , |x|<R a , λ为常数;记R=min{R a ,R b }, c n =∑=nk k -n k b a , 有∑∑∞=∞=±0n 0n nn nn x b x a =∑∞=±0n nn n )x b (a ;⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n n 0n n n x b x a =∑∞=0n n n x c . |x|<R.例6:几何级数∑∞=0n n x 在收敛域(-1,1)上有f(x)=x-11. 在(-1,1)上 逐项求导可得:f ’(x)=2x )-(11=∑∞=1n 1-n nx ; f ”(x)=3x )-(1!2=∑∞=2n 2-n 1)x -n(n . 在[0,x](x<1)上逐项求积可得:⎰xt -1dt=∑⎰∞=0n x 0n t dt ,从而可得: ln x -11=∑∞=++0n 1n 1n x (|x|<1), 其对x=-1也成立.注:可通过的逐项求导或逐项求积间接地求出级数的和函数.例7:求级数∑∞=1n n 21-n x n (-1)的和函数.解:由R=1n n ∞n a a lim +→=2n 21-n ∞n 1)(n (-1)n (-1)lim +→=2∞n 1n n lim ⎪⎭⎫⎝⎛+→=1, 且x=±1时,级数发散,知其收敛域为(-1,1). 记S(x)=∑∞=1n n21-n x n (-1)=x ∑∞=1n 1-n 21-n x n (-1)=xg(x), x ∈(-1,1),则⎰x)t (g dt=∑⎰∞=1n x1-n 21-n tn (-1)dt=∑∞=1n n1-n nx (-1)=x ∑∞=1n 1-n 1-n nx (-1)=xh(x),则⎰x)t (h dt=∑⎰∞=1n x1-n 1-n tn (-1)dt=∑∞=1n n1-n x (-1)=x ∑∞=1n 1-n 1-n nx (-1)=x1x+, x ∈(-1,1). ∴h(x)='⎪⎭⎫⎝⎛+x 1x =2x )(11+;g(x)=(xh(x))’='⎥⎦⎤⎢⎣⎡+2x)(1x =3x )(1x -1+; ∴原级数的和函数S(x)=xg(x)=32x)(1x -x +, x ∈(-1,1).习题1、求下列幂级数的收敛半径与收敛区域:(1)∑nnx ;(2)∑⋅n 2n2n x ;(3)∑n 2x (2n)!)(n!;(4)∑n n x r 2(0<r<1); (5)∑1)!-(2n )2-(x 1-2n ;(6)nn n )1x (n )2(3+-+∑;(7)∑+⋯++n x )n1211(;(8)∑n n 2x 2. 解:(1)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散,∴原级数的收敛域为(-1,1).(2)R=1n n ∞n a a lim +→=n 21n 2∞n 2n 21)(n lim ⋅⋅++→=2. 又当x=±2时,原级数收敛, ∴原级数的收敛域为[-2,2].(3)R=1n n∞n a a lim+→=2)]![(2n ]1)![(n (2n)!)(n!lim 22∞n ++→=2∞n 1)(n 1)2)(2n (2n lim +++→=4. 又当x=±4时,|u n |=n 24(2n)!)(n!=(2n)!)2(n!2n ⋅=(2n)!]![(2n)!2=!1)!-(2n !(2n)!>12n +→∞ (n →∞), ∴原级数发散. ∴收敛域为(-4,4).(4)∵n n ∞n |a |lim →=nn ∞n2r lim →=0,∴R=+∞,收敛域为(-∞, +∞).(5)R=1n n ∞na a lim +→=1)!-(2n 1)!(2n lim ∞n +→=1)2n(2n lim ∞n +→=+∞,收敛域为(-∞, +∞).(6)R=1n n ∞n a a lim +→=1n 1n nn ∞n )2(3)2(3n 1n lim ++→-+-+⋅+=1n n∞n 3233321n 1n lim +→⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⋅+=31. 又当x=31时,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=4,原级数发散. 当x=-31,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=2,原级数发散. ∴x+1∈(-31,31),原级数的收敛域为(-34,-32). (7)∵1=n n 1n ⋅≤n n1211+⋯++≤n n →1 (n →∞),∴R=1. 又当x=±1时,n ∞n)1()n1211(lim ±+⋯++→≠0,∴原级数发散. ∴原级数的收敛域为(-1,1).(8)∵n1n ∞nu u lim +→=22n n1n 1)(n ∞n x 22xlim ⋅++→=2x lim 12n ∞n +→=⎪⎩⎪⎨⎧>∞+=<1|x |1|x | ,211|x | 0,,,∴R=1, 且当x=±1时,原级数收敛. ∴原级数的收敛域为[-1,1].2、应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):(1)∑∞=++0n 12n 12n x ;(2)∑∞=1n n nx ;(3)∑∞=+1n nx )1n (n ;(4)∑∞=1n n 2x n . 解:(1)∵R=1n n ∞n a a lim +→=12n 32n lim ∞n ++→=1,又当x=±1时,级数∑∞=+±0n 12n 1发散; ∴幂级数的和函数S(x)定义在(-1,1),且S ’(x)=∑∞=+'⎪⎪⎭⎫ ⎝⎛+0n 12n 12n x =∑∞=0n 2nx =2x 11-, ∴S(x)=⎰x 02t -1dt =21ln x -1x 1+, x ∈(-1,1). (2)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n nnx =x ∑∞=1n 1-n nx =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n nt dt=∑∞=1n n x =x 11-,∴f(x)='⎪⎭⎫ ⎝⎛-x 11=2x )1(1-. ∴S(x)=2x )1(x-, x ∈(-1,1). (3)∵R=1n n ∞na a lim +→=2)1)(n (n 1)n(n lim ∞n +++→=1,又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且⎰xS(t)dt=∑⎰∞=+1n xn1)t n(n dt=∑∞=+1n 1n nx=x ∑∞=1n nnx =22x)1(x -. ∴S(x)='⎥⎦⎤⎢⎣⎡-22x)1(x =3x )1(2x-, x ∈(-1,1). (4)∵n n ∞n|a |lim →=n 2∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n n2x n =x ∑∞=1n 1-n 2x n =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n 2t n dt=∑∞=1n n nx =2x )1(x -,∴f(x)='⎥⎦⎤⎢⎣⎡-2x)1(x=3x )1(x 1-+. ∴S(x)=32x)1(x x -+, x ∈(-1,1).3、证明:设f(x)=∑∞=0n nn x a 当|x|<R 时收敛,若∑∞=++0n 1n nR 1n a 也收敛,则 ⎰Rf(x )dx=∑∞=++0n 1n n R 1n a . 应用这个结论证明:⎰+10x 11dx=ln2=∑∞=+1n 1n n 1(-1).证:∵∑∞=++0n 1n n R 1n a 收敛,补充定义f(x)=∑∞=++0n 1n n R 1n a , x=R.则f(x)=∑∞=0n nn x a , x ∈(-R,R]. ∴⎰R0f(x )dx=∑⎰∞=0n R0nn x a dx=∑∞=++0n 1n nR 1n a . 对幂级数∑∞=1n 1-n 1-n x(-1)=x 11+, 又当x=1时,∑∞=+1n 1n n 1(-1)收敛,∴⎰+10x 11dx= ln2=∑∞=+1n 1n n 1(-1).4、证明:(1)y=∑∞=0n 4n (4n)!x 满足方程y (4)=y ;(2)y=∑∞=0n 2n )(n!x 满足方程xy ”+y ’-y=0. 证:(1)∵n n ∞n|a |lim →=n ∞n (4n)!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡1n 4n (4n)!x =∑∞=1n 1-4n 1)!-(4n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡1n 1-4n 1)!-(4n x =∑∞=1n 2-4n 2)!-(4n x ;y ”’='⎥⎦⎤⎢⎣⎡∑∞=1n 2-4n 2)!-(4n x =∑∞=1n 3-4n 3)!-(4n x ;y (4)=∑∞='⎥⎦⎤⎢⎣⎡1n 3-4n 3)!-(4n x =∑∞=1n 1)-4(n 1)]!-[4(n x =∑∞=0n 4n (4n)!x =y. (2)∵n n ∞n|a |lim →=n 2∞n )(n!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡0n 2n )(n!x =∑∞=0n 1-n n!1)!-(n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡0n 1-n n!1)!-(n x =∑∞=0n 2-n n!2)!-(n x . 则 xy ”+y ’=x ∑∞=1n 2-n n!2)!-(n x +∑∞=1n 1-n n!1)!-(n x =∑∞=1n 21-n ]1)!-[(n x =∑∞=0n 2n )(n!x =y. ∴xy ”+y ’-y=0.5、证明:设f 为∑∞=0n n n x a 在(-R,R)上的和函数,若f 为奇函数,则原级数仅出现奇次幂的项,若f 为偶函数,则原级数仅出现偶次幂的项. 证:∵f(x)=∑∞=0n nn x a , x ∈(-R,R);∴f(-x)=∑∞=0n n n n x a (-1).若f 为奇函数,即f(-x)=-f(x),则∑∞=0n nn nx a (-1)=-∑∞=0n n n x a 得(-1)n a n =-a n ,当n=2k-1时,成立;当n=2k 时,a 2k =0. 即f(x)=∑∞=1k 1-2k 1-2k x a .若f 为偶函数,即f(-x)=f(x),则∑∞=0n nn nx a (-1)=∑∞=0n n n x a 得(-1)n a n =a n ,当n=2k 时,成立;当n=2k-1时,a 2k-1=0. 即f(x)=∑∞=0k 2k 2k x a .6、求下列幂级数的收敛域:(1)∑+n n n b a x (a>0,b>0);(2)nn x n 112∑⎪⎭⎫ ⎝⎛+.解:(1)∵R=1n n ∞n a a lim +→=n n 1n 1n ∞n b a b a lim ++++→=max{a,b},又当|x|=R 时, nn n∞n b a R lim +→=1≠0,∴原级数的x=±R 发散,收敛域为(-R,R). (2)∵n n ∞n|a |lim →=n n ∞n 2n 11lim ⎪⎭⎫⎝⎛+→=n∞n n 11lim ⎪⎭⎫⎝⎛+→=e ,∴R=e 1, 又当x=±e 1时,nn ∞n e 1n 11lim 2⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛+→≠0,∴原级数在x=±e 1发散, 收敛域为(-e 1,e1).7、求下列幂级数的收敛半径:(1)n n n x n](-1)[3∑+;(2)a+bx+ax 2+bx 3+… (0<a<b).解:(1)∵n n ∞n|a |lim →=n n∞n n 4lim →=n ∞nn4lim →=4,∴R=41. (2)∵n n ∞n|a |lim →=n ∞n b lim →=1,∴R=1.8、求下列幂级数的收敛半径及其和函数:(1)∑∞=+1n n 1)n(n x ;(2)∑∞=++1n n 2)1)(n n(n x ;(3)∑∞=+2n n2x 1n )1-n (. 解:(1)R=1n n ∞na a lim +→=1)n(n )2n )(1n (lim ∞n +++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=+1n n 1)n(n x =∑∞=++1n 1n 1)n(n x x 1=x 1f(x).∵f ”(x)='⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎥⎦⎤⎢⎣⎡+∑∞=+1n 1n 1)n(n x =∑∞='⎪⎪⎭⎫ ⎝⎛1n nn x =∑∞=0n n x =x -11. ∴f ’(x)=⎰xt-11dt=-ln(1-x);f(x)=⎰--x 0)t 1ln(dt=(1-x)ln(1-x)+x. 又当x=1时,S(1)=∑∞=+1n 1)n(n 1=⎪⎭⎫ ⎝⎛+-→1n 11lim ∞n =1;当x=0时,S(0)=0. ∴S(x)=⎪⎪⎩⎪⎪⎨⎧==≠<≤-+ 0x ,0 1x ,10x 1x 1,1x)-ln(1x x-1且. (2)R=1n n ∞na a lim +→=2)1)(n n(n )3n )(2n )(1n (lim ∞n +++++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=++1n n 2)1)(n n(n x =∑∞=+++1n 2n 22)1)(x n(n x x 1=2x 1f(x). ∵f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡++1n 2n 2)1)(x n(n x=∑∞=++1n 1n 1)n(n x =x ∑∞=+1n n 1)n(n x =(1-x)ln(1-x)+x.∴f(x)=t]t)-t)ln(1-[(1x 0+⎰dt=-21(1-x)2ln(1-x)+43x 2-21x.又当x=0时,S(0)=0;当x=1时,S(1)=f(1)=41.∴S(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠<≤-+- 0x ,0 1x ,410x 1x 1,432x 1-x)-ln(12xx)-(122且 . (3)R=1n n ∞n a a lim +→=1)(n n 2)(n )1-n (lim 22∞n ++→=1. 又当x=±1时,原级数发散. ∴收敛域为(-1,1). 记S(x)=∑∞=+2n n 2x 1n )1-n (=∑∞=++2n 1n 21n x 1)-(n x 1=x 1f(x). f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡+2n 1n 21n x 1)-(n =∑∞=2n n 2x )1-n (=x 2∑∞=2n 2-n 2x )1-n (=x 2g(x). ⎰xg(t)dt=∑⎰∞=2n x2-n 2t)1-n (dt=∑∞=2n 1-n x )1-n (=x ∑∞=2n 2-n x )1-n (=xh(x).⎰xh(t)dt=∑⎰∞=2n x2-n t)1-n (dt=∑∞=2n 1-n x =∑∞=1n n x =x-1x. ∴h(x)='⎪⎭⎫⎝⎛x -1x =2x )-(11;g(x)='⎥⎦⎤⎢⎣⎡2x)-(1x =3x )-(1x 1+;f(x)='⎥⎦⎤⎢⎣⎡+332x)-(1x x =42x)-(1x 42x +; 又当x=0时,S(0)=0;∴S(x)=⎪⎩⎪⎨⎧=<+0x 0,1|x |,x )-(1x424.9、设a 0, a 1, a 2,…为等差数列(a 0≠0). 试求: (1)幂级数∑∞=0n nn x a 的收敛半径;(2)数项级数∑∞=0n nn2a 的和数. 解:记等差数列a 0, a 1, a 2,…的公差为d ,则a n =a 0+nd ,a n =a 0+(n+1)d ,R=1n n∞n a a lim +→=1)d n (a nd a lim 00∞n +++→=1. ∴幂级数∑∞=0n n n x a 有收敛区间(-1,1). 记S(x)=∑∞=0n nn x a =∑∞=+0n n0nd)x (a = a 0∑∞=0n nx +d ∑∞=0n n nx =x 1a 0-+2x )1(dx-,当x=21∈(-1,1)时,S(21)=∑∞=0n nn 2a =2a 0+2d=2a 1. ∴(1)幂级数∑∞=0n nn x a 的收敛半径R=1; (2)数项级数∑∞=0n n n2a 的和数S=2a 1.。

高等数学:第七讲 幂级数的和函数


s(x) ( an x n ) (an x n ) nan x n1 x R, R
n1
n1
n1
幂级数的和函数的求法
总结:当 n 在分母时,利用性质2,先求
导,后积分.
当 n 在分子时,利用性质1,先积
分,后求导.
例题2:
求幂级数 n1
1 n
xn
的和函数
S
(
x)
.

an
1 n
,
所以,收敛半径 R 1
f
x
x
s(t)dt
x
[
nt n1]dt
x nt n1dt xn
0
0
0
n1
n1
n1
因为: xn
x
n1 1 x
所以
S x
f
x
1
1 x2
x (1,1)
谢谢
un (x2 ) S2
n1
幂级数的和函数的概念xDSຫໍສະໝຸດ un(x) S xn1
我们称 S x 为函数项级数 un(x)的和函数,
此函数的定义域就是级数
un
(
x)
n的1 收敛域.
n1
特别地,当级数是幂级数anxn 时,它对
n0
应的和函数S x 称为幂级数的和函数.该函数
的定义域就是幂级数 anxn的收敛域.
收敛区间 (1,1)
由性质2得
Sx (
1 xn )
( 1 xn )
x n 1
n1 n
n1 n
n1
由例1得: xn1
1
所以
n1
1 x
S
x
x 0
S
'(t)dt

数学分析(下)14-2函数的幂级数展开

§2 函数的幂级数展开由泰勒公式知道, 可以将满足一定条件的函数表示为一个多项式与一个余项的和. 如果能将一个满足适当条件的函数在某个区间上表示成一个幂级数, 就为函数的研究提供了一种新的方法.一、泰勒级数二、初等函数的幂级数展开式返回xx()(0)0,1,2,, nf n==定理14.11设f 在点0x 具有任意阶导数, 那么f 在区间00(,)x r x r -+上等于它的泰勒级数的和函数的0||x x r -<x 充分条件是: 对一切满足不等式的, 有lim ()0,n n R x ®¥=()n R x 0x 这里是f 在点泰勒公式的余项.本定理的证明可以直接从第六章本定理的证明可以直接从第六章§§3泰勒定理推出.如果f 能在点0x 的某邻域上等于其泰勒级数的和函数, 则称函数f 在点0x 的这一邻域内可以展开成泰勒级数, 并称等式¢¢() f x二、初等函数的幂级数展开式例2求k 次多项式函数2012()kk f x c c x c x c x=++++ 的幂级数展开式.解由于()!,,(0)0,,n n n c n k fn k £ì=í>îlim ()0,n n R x ®¥=总有因而¢¢()(0)(0)k f f例4()sin ,f x x =对于正弦函数有-¥+¥上有同样可证(或用逐项求导), 在(,)R=, 且用比式判别法容易求得级数(5)的收敛半径1当10-<<时, 因拉格朗日型余项不易估计, 故改x+-ln(1)x(1,1]这就证得在上下面讨论a不等于正整数时的情形, 这时(1)()1nn a a a q ---æön(7)1a =-当式中时就得到1 x(1)ln(1)--0x x例8求函数在处的幂级数展开x=n ¥x用类似方法可得1211æö复习思考题作业P63-64:2(1)(6)(9);3(1)(3)。

幂级数


n= 0


cn x n ,
cn+1 c n +1 x n +1 = lim | x | = L | x |, lim n n→ ∞ c n n→ ∞ cn x
1 当 L | x |< 1 即 x < 时,由比较判别法可知 (1) 若 0 < L < +∞ , L ∞ ∞ 1 n n c x c x 绝对收敛; 当 L x > 1 即 > 时, x ∑ n 发散; ∑ n L n= 0 n= 0
n =1
收敛点的全体称为函数 项级数 发散点的全体称为函数 项级数
n =1 ∞
∑ an ( x ) 的

收敛域在收敛域上,函数项级数的和是 x 的函数 S ( x ), 通常称 S ( x ) 为函数项级数
n =1
∑ an ( x ) 的

和函数,
其定义域即为收敛域。 记为
Rn ( x ) = S ( x ) − S n ( x )

称为
n =1
∑ an ( x ) 的 余和.
n→ ∞

并且
lim Rn ( x ) = 0.
二. 幂级数及其收敛性
定义 2 函数项级数
n= 0 ∞
∑ cn ( x − a )n = c0 + c1 ( x − a ) + c2 ( x − a )2 + L
简称为函数项级数。 称为定义在区间 I 上的 函数项无穷级数 ,
对于任一确定的值 x0 ∈ I,则
n =1
∑ a n ( x0 )
∞ n =1 ∞

为常数项级数.
若 若
n =1 ∞ n =1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


n 1
xn n
2
x
x2 2

x3 3

1 , s ( x ) 1 x x 1 x
x (1,1), 对上式等号两端从0到 x积分,有
高州师范学院
幂级数和函数的分析性质
§9.3 幂级数

x
0
s ( t )dt

x
1 1 t
0
dt
即 s ( x ) s ( 0 ) ln( 1 x )
na n x n 1
n 1

( 2 ) x ( r , r ), 和函数 s ( x ) 在[0, x ]可积分 , 并 且有逐项积分公式 :
x

0
s ( t ) dt


x
0
( a n t ) dt
n n0


n0

x
0
a n t n dt
n1
n0

§9.3 幂级数
例 5 (1)求级数
( 1) n1
n 1

xn 的和函数. n
解 l lim |
n
( 1) n
n 1 ( 1)

n
n 1
| 1
收敛半径r 1
设它的和函数是s( x ), 即 x ( 1,1), 有
s( x )
( 1)
n 1
n
n2 n1
| 1
收敛半径r 1
设它的和函数是s( x ), 即 x ( 1,1), 有
s( x ) ( n 1) x n 1 2 x 3 x 4 x
2 3
n0
x (1,1), 从 0到 x逐项积分,有

x
0
s( t )dt dt 2tdt 3t 2 dt

x
s( t ) t
0
dt

x
0
dt 4 tdt 9 t 2 dt
0 0
x
x
x 2x 3x
2 3
x (1 2 x 3 x 2 )
由例 5,有
高州师范学院
x
s( t ) t
0
dt
x (1 x ) 2
幂级数和函数的分析性质
§9.3 幂级数
幂级数和函数的分析性质
§9.3 幂级数
例 6 、求幂级数 n 2 x n的和函数.
n 1

解: l lim |
n
( n 1) 2 n
2
| 1
收敛半径r 1
设它的和函数是s( x ), 即 x ( 1,1), 有
s( x ) n 2 x n x 4 x 2 9 x 3 16 x 4
0 0 0
x
x
x
高州师范学院
幂级数和函数的分析性质
§9.3 幂级数

x
0
s( t )dt x x x
2 3
x 1 x
对上式两端求导,有
s( x )
1 (1 x ) 2
x ( 1,1),
( n 1) x
n0

n

1 (1 x ) 2
高州师范学院
§9.3 幂级数
定理 5 ⑴ 若幂级数∑an x 的收敛半径为r,则它
n
的和函数s(x)在(-r , r )连续;
⑵ 若幂级数∑an x 在收敛区间的右端点x = r ( 或左端点 x = -r ) 收敛,则其和函数在端点r(-r) 左(右)连续.
n
高州师范学院
幂级数和函数的分析性质
定理 6
设幂级数
a n x n 的收敛半径为 r , 和函数
n0

为 s ( x ) , 则 x ( r , r ), 有
(1) 和函数 s ( x ) 在收敛区间 ( r , r ) 内可导 , 并 且有逐项求导公式:
n s ( x ) ( a n x ) ( a n x ) n n0 n0
对上式两端求导,有
s( x ) x 1 x (1 x ) 3
s( x )
x (1 x ) (1 x ) 3

x ( 1,1),
n
n0
2
x
n
x (1 x ) (1 x ) 3
高州师范学院
幂级数和函数的分析性质
n0
s( x ) x
高州师范学院
n x
2 n 1ຫໍສະໝຸດ n 11 4 x 9 x
2
幂级数和函数的分析性质
§9.3 幂级数
x s( x ) s( x ) 将函数 在 0作连续开拓(x 0时,定义 1) x x
lim
x0
s( x )
1
x (1,1), 从 0到 x逐项积分,有
显然 s ( 0 ) 0,
s ( x ) ln( 1 x ),
x ( 1,1),
( 1) n 1
n 1

xn n
ln( 1 x ).
高州师范学院
幂级数和函数的分析性质
§9.3 幂级数
( 2 ) ( n 1) x n
n0
解: l lim |
an
x n1
§9.3 幂级数
推论 :设幂级数∑an x 在收敛区间(-r , r )内的 和函数是 s(x),则在(-r , r )内 s(x) 有任意阶导数,且
n
可逐项求导任意次,即
s( x )
a
n0
n0

n
x
n
s ( x ) ( a n x n ) ( a n x n ) na n x n 1
n0 n 1


s ( x ) ( na n x
n0


n 1
)
n ( n 1)a n x n 2
n 2

s ( k ) ( x ) n( n 1)( n 2 ) ( n k 1)a n x n k
n k
高州师范学院
幂级数和函数的分析性质
相关文档
最新文档