01结构动力学基础
结构动力学 陈政清教授

结构动力学1.概论1.1应用范围(土木工程领域)正问题:地震.风震.移动荷载.动力机械反问题:结构参数与损伤识别地震:由基础传入.激发能量大.高度随机性.作用时间短.风振:可以事微振动.也可能事发散的.造成灾难性的后果。
(Tocoma桥)1940年后才被认识。
车振:列车质量大.恒/活载比小,车振明显:竖向行人振动:人荷载的特点:1.8~2.0步/秒动力荷载:机械周期性运动的不平衡力的激发.结构的振动土木工程师.必须要有很强的结构动力与稳定的意识。
1.2动力问题及其特点一.总的原则:惯性力不可忽略,即是动力问题。
例:一个茶杯.慢慢推它.往前移忽然推它.往后退因此.动力问题也可视为考虑惯性力的平衡问题.二.特点:1.位移不仅是位置的函数,而是时间的函数2. 惯性力荷载与加速度成正比。
F=ma=以后用上面一点表示对时间的数=3.惯性力与质量分布有关.例1.3结构动力学基本术语结构动力学:研究结构在平衡位置的往复振动的特性.一.确定性荷载确定性分析.P(t)有明确的函数表达式,任一时刻的P(t)的已知.例:简谐荷载P(t)=随机荷载随机性分析荷载的时间历程不确定,例如风荷载,可能的地震波,列车过桥的振动。
本课程只讨论研究确定性分析,它式基础,体现的动力学全部的概念与方法,某些随机性问题可以化为确定性分析。
如:地震分析,应用检测的地震波输入.随机荷载随机振动,变为确定性问题。
二.动力设计问题拟定结构解析模型数学模型动力分析动力实验验证动力修改本课程主要研究数学模型与动力分析两部分.三.解析模型(力学模型)3要素:简化假定.计算简图.结构参数表例:梁的解析模型承受横向荷载:平截面假定.直线法假设离散参数模型(集参数模型)集中刚度..集中质量连续参数模型(分布参数模型):刚度.质量均为连续函数为使问题简化,一般均将连续模型进一步简化为离散模型四.数学模型即解析模型的运动微分方程例:梁的运动方程:m+EI=P(t)建立方法以后讲解:有动力平衡法,虚位移法与达朗尔原理3种&&&&&&五.自由度(DOF:degree of freedom)所考虑的动力系统种位移变量的个数例:附:实变函数论知识:可数无穷.不可数无穷。
结构力学

结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在 动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容 一般比结构静力学复杂的多。(见结构动力学)
结构稳定理论
结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。
结构力学
基础学科
01 简介
03 发展简史 05 研究方法
目录
02 工作任务 04 学科体系 06 能量法
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科, 它是土木工程专业和机械类专业学生必修的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应 (外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位 移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通 常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计 算机进行结构计算的理论基础。
能量法
结构力学中的能量原理以内部和外部力量的能量或作业的形式表达应力,应变或变形,位移,材料特性和外 部影响之间的关系。由于能量是一个标量,这些关系为固体力学中可变形体的控制方程提供了方便和可选的方法。 它们也可以用于获得相当复杂系统的近似解,绕过了解一组控制偏微分方程的困难任务。
感谢观看
简介
结构力学是一门古老的学科,又是一门迅速发展的学科。新型工程材料和新型工程结构的大量出现,向结构 力学提供了新的研究内容并提出新的要求。计算机的发展,又为结构力学提供了有力的计算工具。另一方面,结 构力学对数学及其他学科的发展也起了推动作用。有限元法这一数学方法的出现和发展就和结构力学的研究有密 切关系。在固体力学领域中,材料力学给结构力学提供了必要的基本知识,弹性力学和塑性力学是结构力学的理 论基础。另外,结构力学与流体力学相结合形成边缘学科——结构流体弹性力学。
结构动力学01

1.1 对象与目的
1.结构动力学定义:研究结构在动荷载作用下的相应规律
的学科
2.研究对象和目的:结构动力学着重研究结构对于动荷载的 响应(如,位移、内力、速度、加速度等的时间历程)以便 确定结构的承载能力和动力学特性,或为改善结构的性能提 供依据,结构动力学是抗震设计的基础,也是减震、隔震措 施的理论依据。
1.2 任务
2.基本特点
①由于结构动力问题中的荷载随时间变化,显然动力问题不像 静力问题那样具有“单一”的解答,而必须建立相应于响应历 程中全部时间的一系列解答; ②如果结构仅承受静力荷载,则它的内力和位移仅仅依赖于 给定的外荷载,其平衡关系是外力和恢复力之间的平衡。但 是如果结构作用动力荷载,则结构所产生的位移和加速度有 关,这些加速度产生与其反向的惯性力,于是结构的恢复力不 仅要平衡外加动力荷载,还要平衡加速度引起的惯性力; ③动力问题中结构响应的大小,与荷载的大小和荷载随时间 的变化过程有关,如果荷载的干扰频率接近结构的固有频率, 尽管荷载的幅值不大,也会引起结构很大的振动响应即共振。
5.实用方法 一般情况下,较简单的结构体系可以直接判定。较复杂的结构体 系可以采用链杆法,即:加入最少数量的链杆,限制体系上所有 质点运动的方法来判定。体系的自由度数目=加入链杆数。
不考虑轴向变形,n=2
N=3
例题
1.4 结构动力特性
对于不同的结构,只要它们的动力特性相同,则在相同的动 荷载作用下它们的动力响应(位移、速度、加速度等)的 规律都是一样的,这和静力分析是不同的。因此结构动力 特性是结构动力分析的重要内容。结构的动力特性包括结 构的自振频率、结构的振型和结构的阻尼三个方面。
ak — 待定参数(广义坐标)。
2.广义坐标法
2022 年硕士研究生入学考试大纲841结构与岩土力学

2022年硕士研究生招生考试大纲考试科目名称:结构与岩土力学考试科目代码:841一、考试要求结构与岩土力学考试大纲适用于北京工业大学城市建设学部(0814)土木工程01岩土工程、结构工程、防灾减灾工程及防护工程、桥梁与隧道工程、土木工程材料、土木工程建造与管理、(0859)土木水利(专业学位)01岩土工程、结构工程、防灾减灾工程及防护工程、桥梁与隧道工程、土木工程材料、土木工程建造与管理的硕士研究生招生考试。
考试科目含结构力学和土力学两门课程。
结构力学是土木工程、水利工程等学科的重要专业基础课,考试内容主要包括:静定结构分析、超静定结构分析、结构动力学基础、矩阵位移法和结构稳定分析,要求考生对其中的基本概念有很深入的理解,系统掌握结构力学中基本理论和分析方法,具有综合运用所学知识分析问题和解决问题的能力。
土力学考试要求考生深入理解和系统掌握土力学的基本概念、基本原理和解决土工问题的基本分析方法,具备综合运用所学知识分析问题和解决问题的能力。
二、考试内容1、结构力学考试内容(1)熟练掌握静定结构分析,包括内力分析和位移计算。
(2)熟练掌握超静定结构分析,主要是力法、位移法。
(3)熟练掌握结构动力学基础,主要包括单自由度体系自由振动和强迫振动分析、多自由度体系自由振动分析。
(4)熟练掌握矩阵位移法,包括等效结点荷载计算、单元分析、整体分析和求解内力。
(5)熟练掌握结构稳定分析,包括静力法和能量法。
2、土力学考试内容1.土的组成掌握土颗粒级配及评价指标,矿物成分,颗粒形状;结合水特点、自由水、土中气;黏土矿物表面的带电性质;土的结构和构造。
2.土的物理性质和分类掌握土的三相组成、土的三相比例指标及其换算,粘性土的物理特及其指标,无粘性土的密实度,土的胀缩性、湿陷性和冻胀性,土的工程分类及分类原则。
3.土的渗透性及渗流掌握渗透定律、渗透系数的测定及其影响因素,渗流力,渗流速度,渗透变形与控制。
4.土中应力掌握土的竖向和水平向自重应力计算,存在地下水时的分层土的自重应力计算,基底压力与基底附加压力计算,地基附加应力计算,非均匀和各向异性地基中的附加应力的分布特点。
工程结构的抗震和抗风设计(1)

通过在地基上设置滚轮或球体等滚动元件,使建筑物在地震时发生滚动,从而减轻地震力 对结构的作用。
消能减震技术及应用
金属耗能器
利用金属的塑性变形能力,吸收和消耗地震或风振产 生的能量。
摩擦耗能器
通过摩擦产生热量来消耗振动能量,降低结构的动力 反应。
粘弹性阻尼器
利用粘弹性材料的耗能特性,减轻结构在地震或风荷 载作用下的振动。
结构体系选择
采用刚度大、阻尼比高的结构体系,如框架-核心筒结构 、钢框架-支撑结构等,提高结构的整体抗风能力。
加强构件设计
对关键构件如柱子、梁、楼板等进行加强设计,提高其承 载力和变形能力。
大跨度桥梁抗风措施
桥塔设计
采用合理的桥塔形状和截面形式,提高桥塔的稳 定性和抗风能力。
主梁设计
通过优化主梁截面形状和气动布局,减小风致振 动和涡激振动对桥梁的影响。
耗能装置
在桥梁关键部位设置耗能装置,如金属屈服耗能器、摩擦耗能器等 ,通过耗能来减轻地震对桥梁的破坏。
结构冗余度设计
通过增加桥梁结构的冗余度,如设置多余墩柱、加强横梁联系等,提 高桥梁的整体性和抗震性能。
地下结构抗震措施
土体加固
对地下结构周围的土体进行加固处理,如注浆、高压旋喷桩等, 提高土体的承载力和抗震性能。
的能量。
消能减震技术
利用阻尼器、耗能支撑等装置吸收 和消耗地震能量,降低结构的地震 反应。
结构优化
通过改进结构形式、增强构件刚度 、提高连接性能等手段,提升结构 的整体抗震能力。
桥梁结构抗震措施
减隔震支座
在桥梁墩台与上部结构之间设置减隔震支座,实现地震时桥梁上部 结构的相对位移,减小地震力对桥梁的影响。
结构动力学-习题解答

7-1(a)试求图示体系的自振频率与周期。
解
11
5 48
l3 EI
;
3.098
EI ml 3
;
l/2
T 2.027
ml 3 ;
7-6 某结构在自振10个周期后,振幅降为原来初始位移的10% (初位移为零),试求其阻尼比。
解: 1 ln10 0.0366 2 10
8-1试求图示梁的自振频率和振型。 m
y1(t)
解
EI 2m
a
a
y2
(t
)
a
12
21
1 4
a3 EI
a
I 2 m 0
11m1 1/ 2
m212
0
m1 21
22m2 1/ 2
1 1.153
a/2
2 0.181
令
1
11m1
2
1 1/ 2
0
1/ 4 1/3 2 4 / 3 5 / 24 0
x11 / x21 3.277; x12 / x22 0.61
;
9l / 64 (a)
5l / 32
11.817
EI ml 3 ;
l/2
T 0.531
ml3 ;
(b)
EI
7-1(c)试求图示体系的自振频率与周期。
m 刚性杆
解 由右面竖杆的平衡可求出铰处约束力。
EI
由水平杆的平衡:
结构动力学的刚度系数柔度系数通用课件

扭曲刚度系数计算
扭曲刚度系数定义
01
扭曲刚度系数是衡量结构在扭曲载荷下抵抗变形的能力的系数。
扭曲刚度系数的计算公式
02
扭曲刚度系数可以通过结构材料的弹性模量和截面极惯性矩计
算得出。
扭曲刚度系数的物理意义
03
扭曲刚度系数越大,表示结构在扭曲载荷下的变形越小,结构
的抗扭能力越强。
复合受力下的刚度系数计算
分析方法
通过对处理后的数据进行统计分析、曲线拟合、模式识别等,可以进一步分析结构的动力学特性,包括固有频率、 阻尼比等参数。此外,还可以通过对比不同结构的响应数据,评估不同结构的动力学性能。
实验结果及讨论
实验结果
实验测得了不同结构在不同激振条件下的响 应数据,包括加速度和位移。通过对数据进 行处理和分析,得到了不同结构的刚度系数 和柔度系数以及相关的动力学参数。
刚度系数和柔度系数是结构动力学中两个重要的概念,可以反映结构的刚度和柔度性质。
本文通过理论和实例分析,对结构动力学中的刚度系数和柔度系数进行了详细阐述,并介绍了它们在工 程实际中的应用和意义。
对未来研究的展望
随着科学技术的发展,结构动力学的研究领域将不断扩大,对刚度系数和柔度系数 的认识也将更加深入。
复合受力下的柔度系数的计算
复合受力下的柔度系数可以通过结构在复合力作用下的变形量进行计算。
03
复合受力下的柔度系数的影响因素
复合受力下的柔度系数受到材料性质、截面形状、边界条件等因素的影
响。
04
刚度系数与柔度系数的应用
在结构设计中的应用
刚度系数
在结构设计中,刚度系数是用来衡量结构抵抗变形的能力。通过计算和分析刚度 系数,可以确定结构的稳定性、承载能力和振动特性。
结构动力学有限元法

100%
动力响应分析
研究车辆、风、地震等外部激励 下桥梁的动力响应,评估其安全 性能。
80%
稳定性分析
分析桥梁在极端载荷下的稳定性 ,确保其正常工作。
建筑结构的抗震分析
地震作用下的结构响应
通过有限元法模拟地震对建筑 结构的作用,计算结构的位移 、加速度等响应。
结构抗震性能评估
根据计算结果评估建筑结构的 抗震性能,优化设计以提高其 抗震能力。
局限性
由于结构动力学有限元法需要进行大量的数值计算和存储,因此 对于大规模复杂结构的分析可能会面临计算效率和精度方面的问 题。此外,对于一些特殊结构和复杂工况,可能需要采用特殊的 建模和分析方法。
04
结构动力学有限元法的应用实例
桥梁结构的动力学分析
80%
桥梁结构的模态分析
通过有限元法计算桥梁的固有频 率和振型,了解其自振特性。
结构减震设计
利用有限元法进行减震设计, 如设置隔震支座、阻尼器等, 降低地震对结构的影响。
机械设备的动态特性分析
01
设备模态分析
02
设备振动分析
03
设备优化设计
通过有限元法分析机械设备的固 有频率和振型,了解其动态特性。
研究机械设备在工作过程中的振 动情况,分析其振动原因和影响。
根据动态特性分析结果,优化机 械设备的设计,降低振动和噪声。
用于分析电磁场的分布和变化规律,如电机、变 压器、天线等。
流体动力学
用于模拟流体在各种条件下的流动特性,如航空 、航海、管道流动等。
热传导分析
用于分析温度场的变化和热量传递规律,如热力 管道、电子设备等。
有限元法的研究意义
提高工程设计的可靠性和安全性