哈工大《飞行器设计综合实验》高桦实验一

合集下载

《飞行控制技术综合实践》多旋翼高级阶段HIL仿真实验

《飞行控制技术综合实践》多旋翼高级阶段HIL仿真实验

《飞行控制技术综合实践》多旋翼高级阶段HIL仿真实验课程名称:飞行控制技术综合实践实验项目名称:多旋翼高级阶段HIL仿真一、Rflysim仿真平台介绍RflySim采用基于模型设计(Model-Based Design,MBD)的思想,可用于无人系统的控制和安全测试。

因MATLAB/Simulink支持MBD的整个设计阶段,所以选择它们作为控制/视觉/集群算法开发的核心编程平台;同时,因Python是免费的且有丰富的视觉处理库,支持它作为顶层视觉与集群算法开发。

除了MATLAB/Simulink 和Python,RflySim还有其他开源的软件和工具,也包括为此专门设计的软件和工具。

1.RflySim是一套专门为教育和研究打造的基于Pixhawk /PX4 和MA TLAB/Simulink的快速开发平台。

2.基于Windows平台,一键安装。

3.采用基于模型的开发理念,应用软件在环(SIL)和硬件在环(HIL)仿真加速开发过程。

4.RflySim允许开发者无需接触C++,而是直接使用MATLAB/Simulink设计底层控制器(如姿态控制器和位置控制器)和顶层应用(如顶层决策和自主飞行),并直接将其部署到多旋翼自驾仪上。

5.可以很方便的修改多旋翼模型的参数来适配你自己的多旋翼飞行器进而采用SIL和HIL验证控制算法。

二、Rflysim仿真平台(1)Rflysim环境配置1.获取安装包,从官方途径获取最新.iso的镜像,用Windows资源管理器来加载镜像2. 启用WSL子系统功能:开启WSL子系统功能:双击“0.UbuntuWSL\ En ableWSL.bat”脚本(先关闭杀毒软件以免拦截),在“用户账户控制”窗口点击“是”,即可自动开启WSL子系统。

电脑首次执行本命令,需要在弹出窗口中输入“Y”来确认并重启电脑。

3. 一键安装脚本:点击MATLAB的“浏览文件夹”按钮,定位到刚才加载iso镜像得到文件夹,鼠标右键OnekeyScript.p ,点击“运行”按钮(或在窗口输入OnekeyScript 命令)4. 推荐安装配置-首次运行(2)单机控制接口实现1.Pixhawk固件还原(需联网)方法如下:1)打开QGC地面站软件,断开Pixhawk;2)如下图所示,点击工具栏齿轮图标进入载具设置页面,再点击“Firmware”(固件)标签进入固件烧录页面;3)用USB 线连接Pixhawk 自驾仪到电脑,此时软件会自动识别Pixhawk 硬件,如下图所示所示,在界面右侧弹出固件配置窗口,勾选第一项“PX4 ***”,然后点击“确定”,QGC 开始自动下载(需联网,无法联网请参考下一页使用本地固件)并安装最新的PX4 固件到Pixhawk中;2.Pixhawk硬件在环仿真模式4•完成固件烧录后,自驾仪会自动重启并连接到QGC上;此时,如右图所示,进入“Airframe(机架)”标签页,选择机架类型为“HILQuadcopterX”,然后点击右上角的“ApplyandRestart”(应用并重启)按钮,此时自驾仪会自动重启;•重启后QGC会自动寻找串口并连接到Pixhawk,此时查看各个配置页,确保Pixhawk进入硬件在环仿真模式。

哈工大飞行器制造课程设计

哈工大飞行器制造课程设计

哈工大飞行器制造课程设计一、概述飞行器制造课程设计是哈工大航空航天学院飞行器制造工程专业的重要实践环节。

该课程设计的目标是培养学生掌握飞行器制造的基本技能和知识,提高学生的工程实践能力,为未来的工作和研究打下坚实的基础。

二、设计任务学生需要在规定的时间内,完成以下任务:1.设计并制作一个小型无人机(微型飞行器);2.进行飞行控制系统的设计和实现;3.进行地面测试和飞行试验;4.编写设计报告,包括设计方案、设计图纸、实验数据和结论等。

三、设计方案1.总体设计微型飞行器采用固定翼布局,翼展不超过250三n,总重量不超过50go采用电动推进系统,由微型无刷电机和螺旋桨组成。

飞行控制系统采用开源的Pixhawk飞控板,通过GPS实现定点悬停和自主导航。

5.结构设计机体结构采用轻质材料,如碳纤维复合材料或轻质铝合金。

机翼采用对称翼型,尾翼采用V型尾翼。

起落架采用折叠式设计,便于收纳和携带。

结构设计中需考虑强度、刚度和稳定性要求。

6.动力系统设计动力系统包括微型无刷电机、螺旋桨和电池。

根据飞行性能要求,选择合适的电机、螺旋桨和电池型号,并进行匹配优化。

同时需要考虑散热和噪音问题。

7.飞行控制系统设计飞行控制系统包括传感器、控制器和执行器。

传感器包括GPS.陀螺仪、加速度计和气压计等,用于获取飞行器的位置、姿态和高度信息。

控制器采用PiXhaWk飞控板,通过算法实现对飞行器的稳定和控制。

执行器包括舵机和电机驱动器等,用于实现对飞行器的操作和控制。

飞行控制系统的设计需要保证系统的稳定性和可靠性,防止出现失控和坠机等安全问题。

四、实验测试与结果分析在完成设计和制作后,需要进行地面测试和飞行试验,对微型飞行器的性能进行评估和分析。

具体测试内容包括:1.地面测试:对微型飞行器的各项性能指标进行测试,如起飞重量、最大速度、最大爬升率、续航时间等。

同时检查机载设备的正常运行情况,如GPS、传感器、控制器等。

2.飞行试验:在室外场地进行飞行试验,测试微型飞行器的实际飞行性能和稳定性。

飞行器动力工程《专业综合设计与制作》课程实践报告

飞行器动力工程《专业综合设计与制作》课程实践报告

《专业综合设计与制作》课程实践报告专业:飞行器动力工程指导老师:小组成员:日期:年月日目录一、小组团队成员具体工作 (3)二、专业设计与制作的对象描述 (4)三、专业基础理论及专业设计原理 (5)四、专业设计方案及方案分析 (15)1. ............................................................................................................................................. 设计方案. (17)1) .................................................................................................................................... 喷嘴壳体 (18)2) .................................................................................................................................... 旋流器 (18)3) .................................................................................................................................... 旋流室 (18)4) .................................................................................................................................... 喷口 (18)2. ............................................................................................................................................. 方案分析. (19)(1) 喷雾锥角a P (19)(2) 喷雾射程L (19)(3) 雾化粒度 (20)(4) 雾滴尺寸分布 (21)五、方案实施 (22)六、产品说明 (23)参考文献 (26)、小组团队成员具体工作Number!提出总体改进思路方向、分配组员任务、资料汇总、提出设计方案、进行方案分析、方案的实施。

高校飞行器制造工程专业的综合实验课程教学研究

高校飞行器制造工程专业的综合实验课程教学研究

a i t o cin a d n esa dn o h s e il k o e g wh n t e f ih l h bl i y f a t n u d rtn ig f te p cat n wld e o y e h y i s al e n t
e p rm e s x e i nt.
i d p n e te p r e t i h b l n o f u e h o o is s r s Th o r tc o o i s s re n e e d n x e i n swh c e o g t o rt c n l g e e i . e f u e h l g e e s m e n i i cu et e ar r f d g t l e i n a d m a u a t r g me h d me a h e o r n y d g t l n l d i a i i sg n n f c u i t o , t l e t t o mi g wa , i i h c t a d n s h f a
近 年 来 ,依 托 国防重 点学 科 、特 色 专 业 、 “1 2 1工程 ”、 “ 8 9 5工程 ”等 学科 建设 , 高校 飞 行 器 制 造 工 程 专业 加 大 了对 本 科 生 教 学 和 实 践 设 施 的 投 入 ,购 置 了一 大批 高 精 的软 硬 件 设 备 。但 本科 生 的专业 综合 实验课 却 未充分 利用 上
从飞机 制 造 百年历 史 可 以得 出结论 :人类在 制 造领 域 取得 的新 技术 、 新工 艺和 新方法 成 果 ,
都会 被积 极地 应用 到 飞机 制造过 程 中 ¨ 。作 为 培养 我 国 航 空航 天 制 造 骨 干 人 才 的 高 校 飞行 器

航天器综合测试作业【哈工大】

航天器综合测试作业【哈工大】

航天器综合测试作业1.卫星系统组成:结构与机构、电源与配电、测控(通信)、数管(综合电子)、姿态与轨道控制、热控、总体电路、有效载荷2.测试分类:(1)按研究阶段分类方案原理性验证、模样测试、正样测试、飞行试验。

根据实际情况还可能增加应用阶段的飞行试验、飞行前检验(2)按系统规模分类元器件级测试、设备级测试、分系统级测试、整星测试3.测试系统组成:计算机、测量、激励、匹配转换器、被测设备4.测试系统发展趋势:(1)50年代非电量转换为电量测量(2)60年代电子测量替代机械开关测量(3)70年代计算机辅助测量(4)80年代微处理器自动测量(5)90年代分布式测量(6)00年代网络测量(7)10年代智能测量、嵌入式测量最终测试目标将是全自主、嵌入式、智能测试、免测试(省去人工干预)5.根据测试项目设计测试方法(1)蓄电池充放电功能测试方法:首先对充电控制器设定一条充电控制曲线(V-T曲线),然后使SAS通过星上充电控制器对电池充电,并监测充电电流及充电控制器的充电状态,当充电控制器结束对蓄电池的充电后,按照上述方法计算并判断电池的充电量是否已达到电池的额定容量。

(2)蓄电池放电功能测试方法采用模拟负载或卫星其他分系统作为负载,使用蓄电池供电,将蓄电池充满,观测放电过程,同时避免过放电。

6.蓄电池过充过放的危害(1)蓄电池过充电的危害蓄电池充电电流大于蓄电池可接受电流时会过充电,产生电解水的副反应,发生热量,使电池温度不正常升高,若不加以控制,会造成大量失水、电容量下降、变形等故障。

(2)蓄电池过放电的危害蓄电池放电到标准终止电压的时候内阻会变大,电池电解液浓度会变得非常稀薄,进而严重损害蓄电池的电气性能及循环使用寿命。

7.电源系统测试应注意的问题(1)太阳电池阵模拟器:模拟太阳阵输出电功率,作为电源使用由计算机程控,模拟卫星进出阴影状态,设置试验状态(2)星表插头:连接太阳阵模拟器到卫星,供电通道,检测火工品状态,火工品保险控制,蓄电池充电、状态监测(3)脱落插头:卫星供电线,设备开关控制线,火工品状态监视线(4)控制台:显示母线电压,负载电流,开关状态,手动控制(5)火工品电路:直接由蓄电池组供电,保证火工品大电流放电的需要;压紧行程开关保护,在星箭分离前处于断开状态,避免干扰及误指令;火工品加电/断电开关,磁保持继电器控制,火工品工作前接通,火工品动作执行后断开;火工品启动开关,非磁保持继电器控制,指令指令期间处于接通状态;回路保护插头,保护装置,卫星对运载对接后接通;静电泄漏保护电阻,为火工品提供静电泄漏通路,避免静电干扰引起误爆。

哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论

哈工大航天学院课程-空间飞行器动力学与控制-第1课-绪论

“礼炮1号”空间站
空间飞行器动力学与控制 第一课 绪论
1981年4月,世界上第一 架垂直起飞、水平着陆、可 重复使用的美国航天飞机 “哥伦比亚号”试飞成功, 标志着航天运载器由一次性 使用的运载火箭转向重复使 用的航天运载器的新阶段, 标志着人类在空间时代又上 了一层楼,进入了航天飞机 时代。
美国“哥伦比亚号”航天飞机
空间飞行器动力学与控制 第一课 绪论
人类自20世纪60年 代开始探测火星的尝试。 大约半数火星探测任务 成功。 2008年05月25日 , 美国“凤凰”号火星探 测器成功降落在火星北 极区域,其核心任务是 寻找水和生命痕迹。 2008年11月,凤凰 号与地面控制中心失去 联络。
“凤凰”号挖掘臂挖掘火星土壤的情景
空间飞行器动力学与控制 第一课 绪论
1988年11月15日,前苏联的暴风雪号航天飞机从 拜科努尔航天中心首次发射升空,47分钟后进入距 地面 250公里的圆形轨道。它绕地球飞行两圈,在 太空遨游三小时后,按预定计划于 9时25分安全返 航,准确降落在离发射点12公里外的混凝土跑道上, 完成了一次无人驾驶的试验飞行。
“水手2号”探测器
空间飞行器动力学与控制 第一课 绪论
1966年1月,前苏联两艘载人飞船第一次在轨道上成功 交会对接,并实现了两位航天员从一艘飞船向另一艘飞船 的转移。
前苏联“联盟号”载人飞船
前苏联“上升号”载人飞船
空间飞行器动力学与控制 第一课 绪论
1971年4月19日,前苏联“礼炮1号”空间站入 轨成功,其质量约18t,总长14m,轨道高度200~ 250 km,轨道倾角51.6º ,成为人类第一个空间站。
空间飞行器动力学与控制 第一课 绪论
13~14世纪,中国的火箭技术与其他火药兵器一 同传到阿拉伯国家和印度,后又传入欧洲。至18世 纪后期,印度军队在抗击英国和法国军队的多次战 争中就曾大量使用火药火箭并取得了成功结果,由 此推动了欧洲火箭技术的发展。 曾在印度作战的英国人康格里夫(William Congreve)在19世纪初对印度火箭作了改进,他确定 了黑火药的多种配方,改善了制造方法并使火箭系 列化,最大射程可达3km。这些初期火箭的原理都 成为了近代火箭技术的最初基础。

哈工大4系飞行器控制实验指导书word资料38页

哈工大4系飞行器控制实验指导书word资料38页

飞行器控制实验指导书控制科学与工程教学实验中心2005年3月目录一、实验目的和意义二、实验的基本要求三、Matlab语言基础四、实验项目(一) 实验一飞行器纵向稳定系统综合设计(二) 实验二飞行器侧向稳定器观测器的设计(三) 实验三飞行器爬升率与空速的保持与指令控制(四) 实验四飞行器3维飞行动画仿真实验一、实验目的和意义作为航天学院的学生,掌握飞行器控制方面的知识是必要的。

仅仅通过课堂教学,学生很难切实地掌握飞行器控制的知识,很难熟练地应用飞行器控制的方法。

为了使学生更深刻地理解飞行器控制方面的知识,开设本实验是必要的。

通过飞行器控制实验,可以使学生更直观地理解课堂上学到的理论,使学生能真正做到理论与实际相结合,会应用课堂上所学到的理论来进行飞行器控制系统的设计,同时,使学生掌握用Matlab来进行飞行器控制系统分析与设计的方法。

二、实验的基本要求1.要求学生能较熟练地使用控制系统分析设计软件(Matlab)来进行系统分析与设计。

2.要求学生能熟练地使用Matlab软件进行编程,并在该软件环境下进行调试。

3.要求学生掌握模态控制理论(模态可控、模态可观结构分析;模态控制器设计,模态观测器设计),并编制相应的matlab函数。

4.要求学生能使用所编制的程序进行飞行器控制系统的分析与综合。

三、Matlab语言基础(一) matlab软件的编程环境1.找到MatlabMatlab软件应用程序的图标为,matlab软件被正确安装后,可以将该图标拖曳到桌面上或快捷工具栏中以方便使用。

2.启动Matlab点击Matlab图标会弹出如下窗口(二) 飞行器控制实验中要用到的matlab语句1.赋值语句:A=[0 1 0;0 0 1;-6 -11 -6]2.矩阵的维数:[行,列]=size(A)3.矩阵的秩:n=rank(A)4.矩阵的逆:B=inv(A)5.求特征值和特征向量:[V,eva]=eig(A') V为A T的广义模态矩阵,eva=diag(1,…,n)6.矩阵的转置:A因为是实数阵所以转置可以用A’,A’是A的共扼转置而U,V等复数阵的转置要用conj(V’);7.子阵的抽取:A(i:j,m:n); A(:,1);A(i,j)8.矩阵四则运算:(维数要一致)表达式与标量数值运算同9.循环语句:for i=1:1:n+1程序行end10.条件判断:if(a~=b)程序行end11.结果显示控制:语句后面加“;”则不显示结果。

航天器总体设计作业【哈工大】

航天器总体设计作业【哈工大】

2017年《航天器总体设计》课程作业1.嫦娥三号探测器航天工程系统的组成及各自的任务嫦娥三号探测器由月球软着陆探测器(简称着陆器)和月面巡视探测器(简称巡视器)组成。

(1)探测器系统:主要任务是研制嫦娥三号月球探测器。

嫦娥三号探测器由着陆器和巡视器组成。

着陆月面后,在测控系统和地面应用系统的支持下,探测器携带的有效载荷开展科学探测。

(2)运载火箭系统:主要任务是研制长征三号乙改进型运载火箭,在西昌卫星发射中心,将嫦娥三号探测器直接发射至近地点高度200公里、远地点高度约38万公里的地月转移轨道。

(3)发射场系统:主要任务是由西昌卫星发射中心承担嫦娥三号发射任务。

发射场系统通过适应性改造,具备长征三号乙改进型火箭的测试发射能力。

(4)测控系统:主要任务是对运载火箭、探测器在各个飞行阶段以及探测器在月面工作阶段的测控、轨道测量、月面目标定位以及落月后着陆器和巡视器的控制。

(5)地面应用系统:主要任务是根据科学探测任务,提出有效载荷配置需求;制定科学探测计划和有效载荷的运行计划,监视着陆器和巡视器有效载荷的运行状态,编制有效载荷控制指令和注入数据,完成有效载荷运行管理。

2.我国载人航天工程系统的组成及各自的任务(1)航天员系统:主要任务是选拔、训练航天员,并在载人飞行任务实施过程中,对航天员实施医学监督和医学保障。

研制航天服、船载医监医保设备、个人救生等船载设备。

(2)空间应用系统:主要任务是研制用于空间对地观测和空间科学实验的有效载荷,开展相关研究及应用实验。

(3)载人飞船系统:主要任务是研制“神舟”载人飞船。

“神舟”载人飞船采用轨道舱、返回舱和推进舱组成的三舱方案,额定乘员3人,可自主飞行7天,具有出舱活动和交会对接功能,可与空间实验室和空间站进行对接并停靠飞行半年。

(4)运载火箭系统:主要任务是研制满足载人航天要求的大推力长征二号F型运载火箭,对长征系列运载火箭进行多方面改进设计,控制系统采用冗余技术,增加故障检测、逃逸救生等功能,增加运载火箭的可靠性、安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验题目
卫星姿态控制物理仿真实验
二、实验目的
1、掌握飞行器姿态控制系统的光纤陀螺传感器和喷气执行机构、飞行器姿态模拟单轴气浮实验转台、数字信号处理器DSP控制器的功能、性能及应用方法;
2、通过演示实验,掌握飞行器姿态控制物理仿真实验原理;
3、掌握控制算法和DSP软件开发技术及用C语言在飞行器姿态控制物理仿真专业技术中的应用编程及实验方法。

三、实验任务
1、以喷气装置作为执行机构,编写C语言,进行软件设计、编程和实验调试。

2、完成单轴陀螺定姿的转台闭环控制实验,进行姿态角机动20°的控制。

四、实验控制系统原理及框图
图1 飞行器姿态控制实验转台系统框图
单轴气浮实验转台控制系统原理主要是通过敏感器件(如陀螺,码盘等)测量转台姿态角及角速度等
信息,通过DSP 控制系统软件计算与理想(设定)状态的误差,并形成控制信息,操纵执行机构(如喷气装置,飞轮等),使转台回到设定位置。

五、控制算法及说明:
喷气控制单回路姿态控制动力学方程为:
d j T T J +=θ ,()0
0θθ=t ,()00θθ =t 式中,0θ、0θ 为姿态角、姿态角速度的初值,且0
0θθ =。

喷气推力器取为理想继电特性,并以线性姿态角θ作为反馈信号,当不计姿态角给定量(0=r θ)时,有控制方程
0,0>-θj T
()=t T j
0,0<+θj T
式中,0j T 为()t T j 的幅值。

系统的方框图如图2所示。

图2 喷气推理器取为理想继电特性的单回路姿态稳定系统方框图
研究非线性控制系统常用的一种分析方法是相平面法,即在有姿态角θ和姿态角速度θ 构成的直角坐标平面(相平面)上,研究θ与θ 间的运动轨迹(相轨迹),进而可获得关于系统过渡过程时间、超调量、极限环等主要姿控指标。

图3 理想喷气推理器的单回路姿态稳定系统的相轨迹
图4 相平面法的DSP 实现原理图
控制算法为
0,≤+s U
=U
0,>-s U
式中,U 为输出的控制量,f θ为角度预期值,M 为气浮转台的力矩,J 为气浮转台的转动惯量。

J
M S f /21ωωθθ+-=
六、软件流程图
图6 控制软件流程图
七、实验程序:
见附一。

八、实验结果分析:
数据结果(附表二和附表三):
根据实验数据可以知道,实验成功地实现了对卫星单轴姿态控制物理仿真的闭环控制功能,我们的理想机动角度为10°,实际的稳定角度为9.95°。

误差:9.95100.051f θθθ∆=-=-=<︒
,满足控制精度要求
相对误差:0.05100%0.5%10f e θ
θ∆==⨯=。

动态特性分析:
根据实验记录的数据我们知道:峰值角度为9.95°机动时间 5.1t s =。

波形图分析:卫星从初始姿态-0.33°开始机动,喷皮控制系统开始工作,由于一开始喷气产生的力矩比较小,姿态角缓慢地接近0°。

工作到3s 时,喷气产生的力矩比较大,姿态角上升的比较快,当机动到
5.1s 时,卫星机动结束,卫星姿态角也趋于稳定。

相关文档
最新文档