角平分线与平行线
当角平分线遇到平行线……

当角平分线遇到平行线……教学过程:在几何学习中,我们经常会遇到含有角平分线和平行线的问题,那么当角平分线遇到平行线会产生怎样的火花呢?接下来让我们一起来探索吧!试一试:1.如图,已知BD平分∠ABC ,且DE//BC ,则BE=DE吗?说明理由。
如果我们把其中一个条件和结论调换一下,还能成立吗?变式一:如图,已知DE//BC,且BE=DE,则BD平分∠ABC吗?说明理由。
变式二:如图,已知BD平分∠ABC ,且BE=DE,则DE//BC吗?说明理由。
总结:我们得到了这样一个基本图形:它的特征是:过角的平分线上一点作一条边的平行线与角的另一条边及角平分线围成的三角形是等腰三角形。
我们简单地表示为:当角平分线遇到平行线时,一这会产生等腰三角形。
角平分线+平行线等腰三角形角平分线+等腰三角形平行线平行线+等腰三角形角平分线热身训练看下列四个图,相等的角和平行线都已用记号标出,你能迅速地找出每个图中的等腰三角形吗?(1)(2)(3)(4)例1:如图,AB=AC,BD平分∠ABC,CD平分∠ACB。
问:(1)图中有几个等腰三角形?(2)若过D作EF∥ BC,则图中有几个等腰三角形?(3)线段EF与线段BE,CF有何数量关系?你能说明理由吗?(4) 若AB=4, 求△AEF的周长.变式1:如图,△ ABC中,BD平分∠ABC, CD平分∠ACB,过点D作EF∥ BC分别交AB,AC于点E,F.当AB=12,AC=8,你能求△AEF的周长吗?变式2:如图,△ABC中,∠ABC的平分线和一个外角的平分线CD交于点D,过点D作DE∥BC,交AB于点E,交AC于点F. 写出EF与BE,CF的数量关系,并说明理由.变式3:如图,△ABC的两个外角∠CBE与∠BCF的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F ,则EF与BE,CF三者有何数量关系?我们在折叠问题里也会遇到这类基本图形。
如图:把一张长方形纸片ABCD沿对角线BD对折,点C落在点C’处,BC’交AD于点O,若BC=9,CD=3,求OD的长。
三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型(解析版)

三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1图2图3条件:如图1,OO'平分∠MON,过OO'的一点P作PQ⎳ON. 结论:△OPQ是等腰三角形。
条件:如图2,△ABC中,BD是∠ABC的角平分线,DE∥BC。
结论:△BDE是等腰三角形。
条件:如图3,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.结论:△BOM、△CON都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE平分∠CBA,∠ACB=∠CDA=90°. 结论:三角形CEF是等腰三角形。
1(2023·浙江·八年级假期作业)如图,已知∠AOB,以点O为圆心,以任意长为半径画弧,与OA、OB分别于点C、D,再分别以点C、D为圆心,以大于12CD为半径画弧,两弧相交于点E,过OE上一点M作MN∥OA,与OB相交于点N,∠MOB=50°,则∠AOM=.【答案】25度/25°【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN∥OA,∴∠AOB=∠MNB=50°,由题意可知:OM平分∠AOB,∠AOB=25°.故答案为:25°.∴∠AOM=∠MOB=12【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.2(2023·浙江·八年级期中)如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于.【答案】13【分析】根据BO平分∠CBA,CO平分∠ACB,且ED∥BC,可得出OD=OB,OE=OC,所以三角形ADE的周长是AB+AC.【详解】解:∵BO平分∠CBA,CO平分∠ACB,∴∠DBO=∠OBC,∠OCE=∠OCB,由∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠EOC=∠ECO,∴DO=DB,EO=EC,·又∵AB=5,AC=8,∴ADE的周长=AD+DE+AE=AB+AC=13【点睛】本题主要考查了角平分线的定义、平行线的性质以及等腰三角形的判定,其中运用角平分线的定义和平行线的性质创造等腰三角形的条件是关键.3(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF 平分∠BCD交AD于F点,则EF的长为cm.【答案】1【分析】根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB,DF=DC,进而推出EF=AE+DF-AD.【详解】∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD-AD=3+3-5=1cm.故答案为:1.【点睛】本题考查了平行四边形的性质,关键是运用角平分线的概念和平行线的性质,由等角推出等边.4(2023.江苏八年级期中)如图,已知:在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的角平分线交AD与F,交AB于E,FG⎳BC交AB于G.AE=4cm,AB=12cm,则BG=,GE=.【答案】4cm;4cm.【详解】过E作EH垂直BC交BC于H点,易证△AEC≌△EHC;由角度分析易知∠AEF=∠AFE,即AE=AF,则有EH=EA=AF;又可证△AGF≌△BHE,则AG=EB=12-4=8,则BG=8-4=4,GE=4.【点睛】这道题主要讲解角平分线加射影模型必出等腰三角形的模型.角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC中,若AD是∠BAC的平分线。
角平分线+平行应用模型的构造

角平分线+平行应用模型的构造一、近几年中考题往往由平行线,角平分线来推证同一三角形两个角相等,从而推证两边相等。
或者由其中两个条件推证另一个条件已知:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论.1、如图,AC和BD相交于O,且AB∥DC,OA=OB,求证:OC=OD.OD CBA2.如图,△ABC中,AM,CM分别是角平分线,过M作DE∥AC求证:AD+CE=DE3.如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于ECE=20cm,求CD的长。
4.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,5.则图中等腰三角形的个数()(A)1个(B)3个(C)4个(D)5个AEB CD第16题EFCBAD5如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( )A.5 B.4 C . 3 D .26、如图,四边形ABCD 中,AD∥BC ,∠ABD =30o,AB=AD ,DC ⊥BC 于点C ,若BD =2,求CD 的长。
二 由平行线想到全等三角形和等腰三角形。
例. 如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
并证明这个命题(只写出一种情况)①AB=AC ②DE=DF ③BE=CF已知:EG ∥AF,_______,_________. 求证:___________. 证明:GFEDCBA1、已知:如图,△ABC 中,AB=AC ,D 点在AB 上,E 点在AC 的延长线上,且BD=CE ,连接DE ,交BC 于F.求证:DF=EF.C第6题FECDBA三、当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等要证明两条线段的和与一条线段相等时常用的两种方法:(1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。
平面几何平行线与角平分线

平面几何平行线与角平分线在平面几何中,平行线和角平分线是非常常见的概念和性质。
平行线是指在同一个平面上,永不相交的两条直线,而角平分线是指将一个角分成两个相等的角的直线或线段。
本文将探讨平面几何中平行线和角平分线的性质及应用,帮助读者更好地理解和运用这些概念。
一、平行线的性质与应用1. 平行线的定义与判定平面几何中,平行线的定义是指在同一个平面上的两条直线,永不相交。
判断两条直线是否平行有多种方法,其中常用的有以下两种:(1)平行线判定法一:同位角相等法。
当两条直线分别与第三条直线相交时,同位角(即对顶角)相等,则可以判定这两条直线是平行的。
(2)平行线判定法二:内错角相等法。
当两条直线分别与一条横穿它们的第三条直线相交时,内错角(即内角和相等)相等,则可以判定这两条直线是平行的。
2. 平行线的性质(1)平行线之间的距离始终相等。
对于平行线上的任意两点A和B,与这两点对应的垂直平分线始终相等。
(2)平行线之间的夹角始终相等。
对于平行线上的任意两个交线形成的相邻内错角、相邻同位角都相等。
(3)等于同一直线与另一条平行线相交所得内错角的外角,也叫同旁外角,等于一个直角(即90°)。
3. 平行线的应用平行线的概念与性质在日常生活和实际应用中得到广泛运用。
以下列举几个应用示例:(1)建筑工程设计中,平行线可以帮助建筑师确定水平线,确保建筑物的水平度。
(2)地图绘制中,经纬线相互平行,能够清晰表示地球表面的地理位置。
(3)公路和铁路的设计和施工中,平行线的概念被用来保证道路或铁轨的平直和行车的顺畅。
二、角平分线的性质与应用1. 角平分线的定义与判定平面几何中,角平分线是指将一个角分成两个相等的角的直线或线段。
判断角平分线的方法有以下两种:(1)角平分线判定法一:作角平分线的垂直平分线。
如果一条直线垂直平分一个角,则这条直线是该角的角平分线。
(2)角平分线判定法二:同位角相等法。
当两条角平分线的同位角相等时,可以判定这两条直线是角的平分线。
角平分线等腰三角形平行线课件

02
等腰三角形的基本性质
等腰三角形的定义
等腰三角形是两边相等的三角形。 等腰三角形两底角相等。
等腰三角形的高、中线、角平分线三线合一。
等腰三角形的性质
两个底角相等,且每个底角的大 小为(180° - 顶角度数)/ 2。
顶角与底角的大小关系为:顶角 > 底角。
等腰三角形的中线、高线和角平 分线三线合一。
等腰三角形的判定
如果一个三角形有两边相等,则它是 等腰三角形。
如果一个三角形的中线、高线和角平 分线三线合一,则它是等腰三角形。
如果一个三角形有两个底角相等,则 它是等腰三角形。
03
平行线的基本性质
平行线的定义
平行线的定义
在同一平面内,两条永不相交的直线称为平行线。
平行线的表示方法
用符号“//”表示两条直线平行。
判定2
内错角相等则两直线平行 。如果∠3=∠4,则 AB//CD。
判定3
同旁内角互补则两直线平 行。如果∠5+∠6=180°, 则AB//CD。
04
角平分线等腰三角形和平行线的综合应 用
角平分线与等腰三角形的综合应用
总结词
利用角平分线性质和等腰三角形性质,解决几何问题。
详细描述
在几何问题中,常常需要综合运用角平分线性质和等腰三角形性质。角平分线性质指出,角平分线将相对边分成 两段相等的线段,而等腰三角形性质则说明等腰三角形两底角相等且对应的两腰相等。通过结合这两个性质,可 以解决一些复杂的几何问题,例如求角度、证明线段相等或进
性质1
同位角相等。当两条直线 被第三条直线所截,同位 角相等,即∠1=∠2。
性质2
内错角相等。当两条直线 被第三条直线所截,内错 角相等,即∠3=∠4。
角平分线四大模型(完整版)

角平分线四大模型模型一:这个模型的基本思想是过角平分线上一点P 作角两边的垂线。
如图中PA ⊥OA ,PB ⊥OB 。
容易通过全等得到PA=PB (角平分线性质)。
注意:题目一般只有一条垂线,需要自行补出另一条垂线。
甚至只给你一条角平分线,自行添加两条垂线。
例题1:AF 是△ABC 的角平分线。
P 是AF 上任意一点。
过点P 作AB 平行线交BC 于点D ,作AC 的平行线交BC 与点E 。
证明:点F 到DP 的距离与点F 到EP 的距离相等。
拓展,如果点P 在AF 延长线上,结论是否依然成立?例题2:如图正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值是__2√2__E模型二:这个模型的基础是,在角平分线上任意找一点P ,过点P 作角平分线的垂线交角的两条边与A 、B 。
这样就构造出了一个等腰三角形AOB ,即OA=OB 。
这个模型还可以得到P 是AB 中点。
注意:这个模型与一之间的区别在于垂直的位置。
并且辅助线的添加方法一般是延长一段与角平分线垂直的线段。
如图中的PB 。
例题1:如图,∠BAD=∠CAD ,AB>AC ,CD 垂直AD 于点D ,H 是BC 的中点。
求证:DH=1/2(AB-AC )提示:要使用到三角形中位线的性质,即三角形中位线是对应边的一半。
模型三:这个模型的基础是在角的两边分别截取OA=OB ,然后在对角线上取任意一点P ,连接AP ,BP 。
容易证得△APO ≌△BPO 。
注意:一般这样的模型最容易被孩子忽略,因为这个模型里没有的角度,因而对于孩子而言添出PB 这条辅助线是有难度的。
添加这条辅助线的基本思想是在ON 上截取OB ,使得AP=BP 。
从而构造出一个轴对称。
这样的模型一般会出现在截长补短里。
BBN例题1:在△ABC 中,∠C=2∠B ,AD 是△ABC 的角平分线,则AC ,CD ,AB 三条线段之间的数量关系为_AC+CD=AB __ 模型四:这个模型是在角平分线上任意找一个点P 。
平行线知识点梳理

考点卡片1.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.2.余角和补角(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3)性质:等角的补角相等.等角的余角相等.(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.3.对顶角、邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.4.垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质在平面内,过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.5.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.6.同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.7.平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.8.平行线的判定(1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(3)定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.9.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.10.命题与定理1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、定理是真命题,但真命题不一定是定理.4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.。
专题16 角平分线四大模型(解析版)

中考常考几何模型专题16 角平分线四大模型1、角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。
结论:PB=PA。
2、截取构造对称全等如图,P 是∠MON 的平分线上一点,点 A 是射线 OM 上任意一点,在 ON上截取 OB=OA,连接 PB。
结论:△OPB≌△OPA。
3、角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP⊥OP 于 P 点,延长 AP 于点 B。
结论:△AOB 是等腰三角形。
4、角平分线+平行线如图,P 是∠MO 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。
结论:△POQ 是等腰三角形。
模型精练:1.(2019•东平县二模)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°2.(2019•桂平市期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm3.(2020•浙江自主招生)如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定4.(2019•兰山区一模)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=11,则线段MN的长为.5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D,试说明:BF=2CD.6.如图,在△ABC中,∠ABE=2∠C,AD是∠BAC的平分线,BE⊥AD,垂足为E (1)若∠C=30°,求证:AB=2BE.(2)若∠C≠30°,求证:BE=12(AC﹣AB).7.(2019•沂源县期末)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,求证:∠ECA=40°.8.(2019•临洮县期末)已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AC+CD.9.(2019•自贡期中)如图,在四边形ABCD中,BC>BA,AD=DC,(1)若BD⊥CD,∠C=60°,BC=10,求AD的长;(2)若BD平分∠ABC,求证:∠A+∠C=180°.10.(2019•宜昌期中)(1)已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分线,交CB边的延长线于点D.求证:BD=AB+AC;(2)对于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图2,请你写出线段AC、AB、BD之间的数量关系并加以证明.11.(2019•潮南区期中)在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.12.(2019•蔡甸区校级月考)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.13.(2019•崇安区校级月考)如图,在梯形ABCD中,AD∥BC,AE平分∠BAD,BE平分∠ABC,且AE、BE交CD于点E.试说明AD=AB﹣BC的理由.14.(2019•江夏区校级月考)如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=25∠BAC,∠DCP=25∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=13∠BAP,∠DCQ=13∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.15.(2019•东湖区校级月考)(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC =10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.中考常考几何模型专题16 角平分线四大模型1、角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线与平行线编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(角平分线与平行线)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为角平分线与平行线的全部内容。
专题一 角平分线与平行线一、教学目标:1、知识与技能:使学生掌握角平分线与平行线结合应用时,等量间的迁移关系。
2、过程与方法:培养学生观察图形,研究问题的能力,掌握等量代换的技巧。
3、情感态度与价值观:渗透分类讨论的思想,指导相应的学习方法,使学生不仅学会数学,而且会学数学。
二、教学重点、难点:1、教学重点:综合掌握角平分线和平行线间的关系.2、教学难点:等量关系的确定。
三、教学方法:引导发现、练习提高 四、教学手段:多媒体电脑、黑板 五、具体内容: (一)复习引入例1 如图1, 已知△ABC 中,∠BAC 的外角∠EAC 的平分线交BC 延长线于D .求证:。
设计思想:融合平行、相似、角平分线.分析:从问题来看,本题需要证明的是一个比例式,显然要与三角形“相似"挂钩,构造相似的方法可以过点C 作AD 的平行线,这样既可以有相似,又可以使“平行”、“角平分线”结合起来,构成等量关系.DC BDAC AB证明思路:过点C 作CF ∥AD 交AB 于F , 可证明AF =AC 。
由△BFC ∽△BAD得。
经等量代换得. 即。
点拨:这道题辅助线的添加是个关键,需要联系着相似和平分线两个角度来构造等腰三角形.例2 (09抚顺)已知:如图所示,直线与的平分线交于点,过点C 作一条直线与两条直线分别相交于点.(1)如图1所示,当直线与直线垂直时,猜想线段之间的数量关系,请直接写出结论,不用证明; (2)如图2所示,当直线与直线不垂直且交点都在的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由; (3)当直线与直线不垂直且交点在的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD 、BE 、AB 之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.设计思想:这道题会用到“平行线间同旁内角角平分线形成夹角为90°”,这是关于角平分线非常普遍的应用环境之一。
BD BCBA BF =BD DCAB AC =DC BDAC AB =MA N BM AB ∠∥,N B A ∠C l MA NB 、D E 、l MA AD BE A B 、、lMA DE 、AB lMA DE 、AB NM M N M NNM D CClCE CD AE BBABAl BA 图2图1备用备用解:(1) (2)成立.分析一:直接找三条线段的关系并不好找,我们的间接手段有两个:一是截长,将三段转化为四段,确定一对等量,证明另一对等量;二是补短,将三段转化为两段,证明等量.在这道题目当中,采取截长的方法即可证明全等.解法思路一:如图2-1,在上截取,连接. 现证明△ADC ≌AGC 。
.再证。
. .. 。
分析二:这道题也可以受第(1)问的启发,构造角平分线上点向角两边的垂线段,以利用角平分线的性质得线段的等量关系。
解法思路二:如图2-2,过点C 作直线,垂足为点F ,交于点G .作,垂足为点.由(1)得. 由, 得CF=CH=CG.. 。
.分析三:有“角平分线”“平行线”的时候,我们还可以构造等腰三角形.为了制造内错角,延长BC 交AM 于F 就可以了,在这个图形中,既可以得到△ABF 是等腰三角形,又可以在△ABFAD BE A B +=AD BE A B 、、AB AG A D =CG 56∴∠=∠6790∠+∠=°5890∴∠+∠=°78∴∠=∠B G C B E C ∴△≌△B GB E ∴=A D B E A G B G ∴+=+A D B E A B∴+=F G A M ⊥BN C H A B ⊥H A F B G A B +=1234∠=∠∠=∠,C F DC G E ∴△≌△D F E G ∴=A D B E A F B G A B ∴+=+=利用三线合一得到等量关系。
解法思路三:如图2-3,延长,交AM 于点.,.,。
可证△AFC ≌△ABC 。
.可证△FCD ≌△BCE.。
.(3)不成立.存在.当点D 在射线AM 上、点E 在射线BN 的反向延长线上时(如图3-1),。
当点D 在射线AM 的反向延长线上,点E 在射线AM 上时(如图3—2),。
点拨:这道题中涉及的基本方法和图形很多,第一,平行线间同旁内角两条角平分线夹角成90°;第二,平行线与角平分线结合可得相等线段关系,这也是常用的;第三,当问题涉及到三条线段时,可采取截长补短的方法.例 3 (09烟台中考)如图1,直角梯形ABCD 中,AD ∥BC ,,且CD =2AD , tan ∠ABC =2,过点D 作DE ∥AB ,交∠BCD 的平分线于点E ,连接BE .BC FA MB N∥54∴∠=∠34∠=∠53∴∠=∠A F A B∴=C F C B ∴=D F B E∴=A D B E A D D F A F A B∴+=+==A D B E A B-=BE A D A B -=90B C D ∠=°(1)求证:; (2)将△BCE 绕点C ,顺时针旋转得到△DCG ,连接EG..求证:CD 垂直平分EG 。
(3)延长BE 交CD 于点P ,求证:P 是CD 的中点.设计思想:融合平行线、角平分线、全等.分析:题目中,是很好的证明CD 与BC 相等的间接条件.延长交于,那么正切关系就可以给CD 用,再用正切得到的2倍关系,和条件CD 与AD 的2倍关系结合用,就可得第(1)问结论。
第(2)问显然要证明两组线段的等量关系,根据全等和旋转即可得到。
第(3)问中的中点,即关系,显然与第(1)问有关,CD=2AD ,因此只要证明DP=AD就可以了,因此可以连结BD 构造全等三角形。
证明:(1)延长交于.,, .在中, ,,即. ,.,即. (2)平分, BC CD =90°2t a n 2CD A DA B C =∠=,DE BC F21DE BC FA DB C∥AB D F ∥A D B F A BCD F C ∴=∠=∠,Rt D C F △t a n t a n 2D F CA B C ∠=∠=2CD CF∴=2CD C F =22C D A D B F==B F C F ∴=1122B C B F C F C DC D C D∴=+=+=BC CD =CEB C D ∠.由(1)知,BC=CD ,CE=CE ,。
.由图形旋转的性质知:CE=CG , BE=DG . ∴DE=DG 。
都在的垂直平分线上, 垂直平分.(3)连接.由(2)知, . .. .,. 由(1)知. ,. 又,,., .是的中点.点拨:这道题还是大量运用了平行和角平分线的关系,这种等量变换在做题中会经常遇到. (三)练习∴B C E D C E ∠=∠B C E D C E ∴△≌△B E D E∴=C D ∴,EG CD ∴EG BD BE D E =12∴∠=∠A B D E∥32∴∠=∠13∴∠=∠A D B C∥4D B C ∴∠=∠B C C D =D B CB D C ∴∠=∠4B D P∴∠=∠B DB D=B A DB P D ∴△≌△D P A D∴=12A D C D=12D P C D∴=P∴CD练习1.(09重庆中考)如图,直线分别与直线、相交于点、,已知,平分交直线于点.则=( )B A .60°B .65°C .70°D .130°练习2.如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为( )C(A)9(B)10。
5 (C )12 (D )15练习3.(09广州中考)如图,在ABCD 中,AB = 6,AD = 9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =,则ΔCEF 的周长为( )A(A )8 (B )9.5 (C )10 (D )11.5练习4.如图,在Rt△ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,F 为BE 的中点,连结DF 。
若DF =3,DE =2,则AC 长为 。
练习5。
(09赤峰中考)如图,在四边形ABCD中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线.证明:∵BF 是∠ABC 的平分线,∴∠1=∠2. 又∵AB=BC ,BF=BF ,∴△ABF ≌△CBF 。
∵FA=FC 。
∴∠3=∠4。
EF AB CD GH 1250∠=∠=°GM H G B ∠CD M3∠2438又∵AF∥DC,∴∠5=∠3。
∴∠4=∠5。
∴CA是∠DCF的平分线。
(四)总结在有关角平分线的题目中,平行线会经常涉猎到,因此关于它们相联系的专题练习还是很有必要的。
这节课应从基础的角平分线与平行线构成的基本等量关系入手,让学生先确定图形意识,再投入提升练习.(五)反思由于融合平行线和角平分线的题目图形关系比较基础,因此也会比较好找,因此可以引导学生通过在图形上标注条件,找到角之间的等量关系。