典型污染物转归和效应
典型污染物在环境各圈层中的转归与效应

第六章典型污染物在环境各圈层中的转归与效应内容提要及重点要求:主要介绍了以重金属、持久性有机污染物(Persistent Organic Pollutants,POPs)为代表的持久性有毒污染物(Persistent Toxic Substances, PTS)等典型污染物在各圈层中的转归与效应。
要求了解这些典型污染物的来源、用途和基本性质.掌握它们在环境中的基本转化、归趋规律与效应。
地球环境是一个由大气、水体、土壤、岩石和生物等圈层组成的多介质体系,建立描述污染物在多介质环境中的迁移、转化和归趋规律,弄清化学污染物在这些介质中的浓度、持久性、反应活性以及分配的倾向,是研究污染物转归与效应的重要内容。
污染物在多介质环境中的过程研究主要包括以下几个方向:(1)水/气界面的物质传输:主要研究污染物从水中的挥发、大气复氧以及污染物在水体表面微层的富集行为。
(2)土壤/大气界面的物质传输:主要研究污染物从土壤的挥发和干、湿沉降污染物由大气向土壤的传输两部分。
(3)水/沉积物界面的物质传输:在多介质环境问题研究中,水/沉积物界面是比水/气界面更为复杂的界面,它是水体中水相与沉积物相之间的转换区,是底栖生物栖息的地带。
水/沉积物界面的物质传输,不仅涉及污染物的传输,而且还涉及水和沉积物本身的传输。
因此,污染物在该区域的积累和传输,在很大程度上影响着该污染物的物理、化学和生物行为。
概括说来,水/沉积物界面的化学物质传输是通过沉降、扩散、弥散、吸附、解吸、化学反应和底栖生物的作用等过程完成的。
第一节重金属元素重金属是具有潜在危害的重要污染物。
重金属污染的威胁在于它不能被微生物分解。
相反,生物体可以富集重金属,并且能将某些重金属转化为毒性更强的金属-有机化合物。
重金属元素在环境污染领域中其概念与范围并不是很严格。
一般是指对生物有显著毒性的元素,如汞、镉、铅、铬、锌、铜、钴、镍、锡、钡、锑等,从毒性这一角度通常把砷、铍、锂、硒、硼、铝等也包括在内。
典型污染物在环境各圈层中的转归与效应

典型污染物在环境各圈层中的转归与效应引言污染物是指那些不断通过人类活动排放到环境中的有害物质,包括大气、水体和土壤等环境。
典型的污染物主要包括大气中的二氧化硫、氮氧化物、水体中的重金属、有机物和土壤中的农药等物质。
这些污染物在环境中的转归和对环境的影响备受关注。
本文将重点讨论这些污染物在不同环境圈层中的转归和效应。
大气中的典型污染物二氧化硫二氧化硫主要来自燃煤、石油等燃烧过程,通过大气向土壤和水体传播。
在大气中,二氧化硫易与水蒸气和氧气反应形成硫酸等强酸性物质,导致酸雨的形成,对植物和建筑物造成损害。
此外,二氧化硫还参与臭氧和颗粒物的生成,对人类健康和环境造成危害。
氮氧化物氮氧化物主要来自汽车尾气和工业排放,对大气和水质均有影响。
氮氧化物在大气中与挥发性有机物反应形成臭氧,对人类健康影响较大。
此外,氮氧化物还是水体中富营养化的主要原因之一,引起水华的产生,破坏水生态系统平衡。
水体中的典型污染物重金属重金属是水体中的重要污染物之一,主要来源于工业废水排放和农业面源污染。
重金属如铅、镉等对水生生物和人类健康具有较大危害。
它们在水环境中具有很强的持久性和蓄积性,易被生物富集,加重水体污染。
有机物有机污染物包括各类化学品,如农药、兽药和工业化学品等。
这些有机物对水生生物和人类健康危害较大,有些有机物还对生态系统造成严重危害。
它们在水体中转移速度较慢,易富集在生物体内,引起食物链中毒现象。
土壤中的典型污染物农药农药是影响土壤质量的重要因素之一,主要来源于农田施用。
农药中的有机氯、有机磷等成分易残留在土壤中,并渗入地下水和河流中造成污染。
农药对土壤生物和植物生长产生危害,也对人类健康构成威胁。
总结与展望不同环境圈层中的典型污染物具有不同的转归和效应,但它们都对环境和人类健康造成危害。
因此,应该积极采取有效措施减少污染物排放,保护和改善环境质量。
以上是关于典型污染物在环境各圈层中的转归与效应的讨论,希望对读者有所启发。
最新典型污染物在环境各圈层中的转归与效应课件ppt

2.多氯联苯(PCBs)
(1)多氯联苯的结构与性质 • PCBs是一组由二个以上氯原子取代联苯分子中氢原
子而形成的氯代芳烃,共有209个异构体。
3
4
持久性有机污染物斯德哥尔摩公约 2004年11月11日起对我国生效
• POPs公约于2001年5月22日在瑞典斯德哥尔摩通 过,至今已有151个国家签署、83个国家批准。
• 通过这一过程实现了PCBs从大气向水体或土壤的转移。 • 气态和吸附态的PCBs都可以通过干、湿沉降过程或雨
水淋洗到达地球表面。
16
② PCBs在土壤中的迁移
❖土壤中PCBs的来源
– 主要来源于颗粒沉降; – 有少量来源于污泥作肥料,填埋场的渗漏以及在农药配
方中使用的PCBs等。 – 土壤中的PCBs含量一般比上面的空气中含量高出10
停产,到80年代初国内基本已停止生产PCBs,估计历年 累计产量近万吨。
10
(2) PCBs的来源与分布
②分布
❖PCBs在环境样品中广泛分布。 ❖PCBs由于挥发性低的,辛醇/水分配系数高, 在大
气和水中含量较低。
–大气中小于10ng/L, 水中小于2ng/L 。
❖PCBs易被颗粒物所吸附,在废水流入河口附近的沉 积物中,PCBs含量可高达2000-5000μg/kg。
• 其余的大部分则通过下列途径进入环境
– 随工业废水进入河流和沿岸水体; – 从密封系统渗漏或在垃圾场堆放; –在使用和处理(焚化含PCBs的物质)过程中,
通过挥发进入大气,然后经干、湿沉降转入湖 泊和海洋。
13
(3) PCBs在环境中的迁移与转化
①概况 ❖水体的PCBs极易被颗粒物所吸附,成为沉积物。 ❖近年来PCBs的使用量大大减少,但沉积物中的
典型污染物的转归与效应(ppt57张)

⒉多氯联苯(PCBS):
⑴ PCBS结构与性质:
3' 4' 5' 6' 联苯 2' 1' 1 6 5 2 3 4
Clm
Cln 多氯联苯 (1≤m+n≤10)
PCBS的全部异构体有210个。目前已鉴定出102个 。
PCBS纯化合物为晶体,混合物则为油状液体。粘
度随着Cl数增加而增大,溶解度随Cl数的增加而降低 。 PCBS耐酸、耐碱、耐腐蚀和抗氧化,对金属无腐 蚀、耐热和绝缘性能好,加热到1000-1400℃才完全分
②生物转化:
PCBS可通过代谢作用发生转化,转化速率随分子
中Cl的增多而降低。
★⑷多氯联苯的毒性与效应
PCBS可抑制水生植物的生长;大多数鱼种对PCBS
都很敏感。鸟类吸收PCBS后可引起肾、肝的扩大和损 坏,内部出血,脾脏衰弱等。 PCBS可诱导哺乳动物的肝脏腺瘤及癌症的发展。 PCBS进入人体后,可引起皮肤溃疡、囊肿及肝损伤、 白细胞增加等症。PCBS可通过母体转移给胎儿致畸。 PCBS目前唯一的处理方法是焚烧,焚烧多氯联苯
汞及其化合物挥发程度与化合物的形态及在水中的溶 2.0 氧化物 干空气中,RH≤1%
碘化物 干空气中 解度、表面吸附、大气的相对湿度等密切相关。 氟化物 氟化物 氯化甲基汞(液体) 醋酸苯基汞(固体) 醋酸苯基汞(固体) 硝酸苯基汞(固体) 硝酸苯基汞(固体) 半胱氨酸汞络合物 (固体) RH≤1% RH=70% 0.06%的 0.1mol/L 磷酸盐缓冲溶液, pH=5 在 RH≤1%的干空气中 在 RH=30%的干空气中 在 RH≤1%的干空气中 在 RH=30%的干空气中 湿空气中,RH 饱和 干空气中,RH≤1% 150 8 20 900 140 22 140 4 27 13 2
典型污染物在环境各圈层中的转归与效应概述

典型污染物在环境各圈层中的转归与效应概述一、引言污染物的释放已经成为当代社会面临的一个严峻问题。
各种污染物经过排放后会进入大气、水体和土壤等环境圈层,对生态系统及人类的健康造成危害。
本文将探讨典型污染物在环境中的传播、转移和效应,以及可能的应对措施。
二、大气环境中的污染物大气是典型污染物传播的重要介质之一,大气中的污染物主要包括二氧化碳、氮氧化物、臭氧和颗粒物等。
这些污染物通过空气传播,对空气质量和气候产生影响,加剧全球变暖等问题。
三、水体环境中的污染物水体是另一个容易受到污染物侵袭的环境圈层,水中的污染物包括重金属、有机污染物、化学物质等。
这些污染物会对水质产生影响,损害水生态系统,威胁人类饮用水安全。
四、土壤环境中的污染物土壤是污染物的另一主要殖身之所,土壤中的化学污染物如农药、重金属等会经过降解或迁移导致土壤退化,影响农作物生长,还可能转移至水体和植物中造成进一步危害。
五、污染物的生物富集效应部分污染物会在环境中富集,并通过食物链逐级向上转移,最终积累到高级食物链中,造成食物链中生物的富集,例如水中生物体内富集的汞会对食肉动物和人类造成毒害。
六、污染物对生态系统的影响污染物对生态系统的危害是综合而复杂的,除了直接影响生物生长繁衍外,还可能破坏物种的生态平衡,导致生物多样性降低,影响整个生态系统的健康。
七、应对污染物的措施为了减少污染物对环境的危害,采取有效的污染物控制和治理措施至关重要。
这包括加强污染源监管、推动清洁能源发展、实施循环经济等举措,共同维护地球生态系统的可持续发展。
八、结论污染物在环境各圈层中的传播和效应是一个复杂的系统工程,需要全社会共同努力,科学合理地管理和应对污染物,以保护人类和生态环境的健康。
NSAttributedString以上是典型污染物在环境各圈层中的转归与效应的概述,希望能为读者提供一些启发和思考。
典型污染物在环境各圈层中的转归与效应

第六章典型污染物在环境各圈层中的转归与效应一、名词解释表面活性剂二、填空1、PAH在紫外光照射下很容易光解和氧化。
也可以被微生物降解。
2、气相汞的最后归趋是进入土壤和海底沉积物。
3、无机砷可以抑制酶的活性,三价无机砷可以与蛋白质的巯基反应。
4、含氢卤代烃与OH-自由基的反应是它们在对流层中消除的主要途径。
5、表面活性剂的生物降机理主要是烷基链上的甲基氧化(ω氧化)、β氧化、芳香环的氧化降解和脱磺化。
6、水中PCBs浓度为10-100ug/L时,便会抑制水生植物的生长;浓度为0.1-1.0ug/L时,会引起光合作用减少。
7、PCBs在环境中的主要转化途径是光化学分解和生物转化。
三、多项选择1、下列PCBs中,最不易被生物降解的是 D 。
A、联苯B、四氯联苯C、三氯联苯D、六氯联苯2、表面活性剂含有很强的 B ,容易使不溶于水的物质分散于水体,而长期随水流迁移。
A、疏水基团B、亲水基团C、吸附作用D、渗透作用3、氟利昂主要来源于ABCD 。
A、制冷剂B、飞机推动剂C、塑料发泡剂D、火山爆发四、简答题1.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?2.为什么Hg2+能在人体内长期滞留?举例说明它们可形成哪些化合物?3.简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。
4.表面活性剂有哪些类型?对环境和人体健康的危害是什么?5.根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些?6.试述PCDD是一具有什么化学结构的化合物?并说明其主要污染来源。
第六章 典型污染物在环境各圈层中的转归与效应

砷在环境中转化模式
砷污染与健康—地方砷中毒
地方性砷中毒是由于原生地质 原因或其它非人为因素引起的 环境中砷含量较高,居民长期 摄入少量砷而引起的砷中毒。
1)饮水型砷中毒 2)燃煤型砷中毒
无机砷可抑制酶的活性,与蛋白质结合,抑制线粒体的呼 吸作用等,同时还引起染色体及器官的异常。
6.2有机污染物
砷在生物体中的分布
植物体中的砷主要来自土壤和水体。陆生植物的砷 含量多数少于1ppm(干重),而海洋植物和海藻则 要比陆生植物明显偏高。不同地域的植物砷含量可 以相差很大。但最近也有研究者发现某些特殊植物 中的砷含量可以高达数千ppm。 动物体中的砷含量与其生活环境紧密相关。 通常海洋动物体中的砷含量高于陆地或淡水动物体 的含量。 正常人体内砷的平均浓度为5ppb,但也有资料认为 是0.1ppb。
汞与人类健康
美国的研究指出,十二分之一或将近5百万名妇女体内 的汞含量高于安全标准,每年可能有高达30万名新生 儿因为汞污染其智力和神经系统受到影响,而在全球, 这一数据可能高达千百万。
水俣病事件
时间地点:1953年日本九 州水俣 原因:食用含有甲基汞的 鱼 汞污染和汞中毒是一个久 远而现实的问题。鉴于此, WHO及各国政府将其列 为首先考虑的环境污染物.
假单胞菌属能够降解甲基汞,也可以将Hg2 + 还原 为金属汞。
汞在环境中的循环
6.1.2 砷—砷在环境中的分布
砷的来源:
据估计每年由自然原因释放的砷约为8×106千克,而由人为 活动释放到环境中的砷则高达24×106千克
自然来源
岩石矿物
土壤的风化 人为来源
火山喷发
温泉
工业生产:冶炼、制药 化石燃料和薪材燃烧 农药使用
典型污染物在环境各圈层中的转归与效应精品PPT课件

❖土壤中PCBs的损失
– 生物降解和可逆吸附都不能造成PCBs的明显减少, – 挥发过程是引起PCBs损失的主要途径。
• PCBs的挥发速率随着温度的升高而升高,但随着土壤中粘土 含量和联苯氯化程度的增加而降低。
17
③PCBs在水体中的迁移
❖水体中PCBs的来源
– 主要通过大气沉降和随工业、城市废水向河、 湖、沿岸水体的排放等方式进入水体。
– Poster等人研究表明: 雨水中只有9% 的PCBs 处于真正溶解状态,80%是束缚在亚微粒上的 吸附态。
15
① PCBs在大气中的迁移
❖大气中PCBs的损失途径
– 直接光解和与OH、NO3 等自由基及O3 作用。
• 全世界每年约有0.6%的PCBs由于OH 基反应而消失。
– 雨水冲洗和干、湿沉降。
❖水体中PCBs的存在形态
– 除小部分溶解外,大部分附着在悬浮颗粒物上, 最终沉降到底泥。
– 底泥中的PCBs含量一般要较上面的水体高 1~2数量级。
• 它是继1987年《保护臭氧层的维也纳公约》和 1992年《气候变化框架公约》之后,第三个具有 强制性减排要求的国际公约。
• 2004年6月25日,十届全国人大常委会第十次会 议批准公约;
• 2004年8月13日,我国政府向联合国交存了批准、 接受、核准和加入书。
5
持久性有机污染物斯德哥尔摩公约 2004年11月11日起对我国生效
• 根据公约规定,缔约方须在公约对缔约方 生效当日起计的两年内制定国家实施方案 并尽快组织实施。
• 我国需要采取必要的法律和行政措施
– 禁止和消除有意生产的POPs的生产和使用, 并严格控制其出口;
– 促进包括最佳可行技术和最佳环境实践的应用; – 查明并以安全、有效和对环境无害化方式处置