常微分方程理论在数学建模中的简单应用

合集下载

(完整版)常微分方程在数学建模中的应用.

(完整版)常微分方程在数学建模中的应用.

微分方程应用1 引言常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用.2 数学模型简介通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助.建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节.3 常微分方程模型3.1 常微分方程的简介微分方程的发展有着渊远的历史.微分方程和微积分产生于同一时代,如苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时就对简单的微分方程用级数来求解.后来,瑞士数学家雅各布·贝努、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程理论.纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系.如牛顿研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.而这些都证明微分方程在改造自然和认识自然方面有着巨大的力量.微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式.在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质.常微分方程是解决实际问题的重要工具.3.2 常微分方程模型示例数学模型按照建立模型的数学方法可以分为初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型和规划论模型等.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测他的未来性态时,通常要建立对象的动态模型,即微分方程模型.建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来.下面我们由浅入深地介绍一些微分方程模型.例1 细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长为400,那么,前12h后总数是多少?解:第一句话说的是在任何瞬间都成立的事实;第二句话给出的是特定瞬间的信息.如果我们用)y表示总数,第一句话告诉我们(tky dtdy = 它的通解为kt y Ae =A 和k 这两个常数可以由问题中第二句话提供的信息计算出来,即,100)0(=y (3.1) 和 ,400)24(=y (3.2) 其中t 的单位为小时.(3.1)意味着.100)0(0===A Ae y(3.2)意味着.400100)24(24==k e y它给出 .24)4(ln =k 故 .100)(244ln t e t y =要我们求的是200100)12(4ln )2412(==e y 个细菌.例 2 将室内一支读数为 60的温度计放到室外.10min 后,温度计的读数为 70;又过了10min ,读数为 76.先不用计算,推测一下室外的温度.然后利用牛顿的冷却定律计算出正确的答案.牛顿的冷却定律或称加热定律是:将温度为T 的物体放进处于常温m 的介质中时,T 的变化速率正比于T 与周围介质的温度差.在这个数学模型中,假定介质足够大,从而,当放入一个较热或较冷的物体时,m 基本上不受影响.实验证明,这是一个相当好的近似.解 显然,对于这个题首先要做的是了解牛顿定律的含义,这已经做过了。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用
数学建模是指运用数学方法和技巧分析和解决实际问题的过程。

在数学建模中,常微分方程是一个重要的工具,它用于描述许多实际问题中的变化和发展。

下面将介绍常微分方程在数学建模中的应用。

常微分方程可以用来描述许多自然科学和工程科学中的变化和发展过程。

描述物理学中的运动、天文学中的行星运动和混合和反应过程等。

它们还可以用于解决实际问题,如人口增长、疾病传播、金融模型和生态系统动力学等。

常微分方程的一个重要应用领域是物理学。

在经典力学中,可以通过常微分方程来描述物体在外力作用下的运动。

牛顿第二定律可以用常微分方程的形式表示为:
m*d^2x/dt^2 = F(x,t)
其中m是物体的质量,dx/dt是物体的速度,F(x,t)是物体受到的外力。

这个方程可以用来研究物体的运动轨迹和速度随时间的变化。

常微分方程在工程科学中也有广泛的应用。

热传导方程可以用常微分方程的形式表示为:
d(theta)/dt = k*d^2(theta)/dx^2
其中theta是温度分布,t是时间,k是热传导系数,x是空间位置。

这个方程可以用来研究材料中的温度分布和传热过程。

在生物学和生态学中,常微分方程被用来描述生物种群的增长和相互作用。

Lotka-Volterra方程可以用常微分方程的形式表示为:
dN/dt = r*N - a*N*P
dP/dt = -b*P + c*N*P
其中N是捕食者的数量,P是猎物的数量,t是时间,r、a、b和c是常数。

这个方程可以用来研究捕食者和猎物种群之间的相互作用和稳定性。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用目录摘要 (1)1引言 (2)2 常微分方程的发展概况 (2)3 数学建模简介 (3)4 常微分方程和数学建模结合的特点 (3)5 常微分方程在数学建模中的应用 (3)5.1 建立微分方程的方法 (4)5.2市场价格模型 (5)5.3广告模型 (7)5.4人口预测模型 (9)5.5混合溶液的数学模型 (11)5.6振动模型 (13)5.7教育问题模型 (16)6 总结 (19)参考文献 (20)常微分方程在数学建模中的应用摘要常微分方程是在17世纪伴随着微积分而发展起来的一门具有重要应用价值的学科.它是研究连续量变化规律的重要工具,是众多实际问题与数学之间联系的重要桥梁.在历史上,牛顿正是通过求解常微分方程证实了地球绕太阳运动的轨道是椭圆;天文学家通过常微分方程的计算,预见了海王星的存在.随着工业化的进展,常微分方程在航海、航空工业生产以及自然科学的研究中发挥了重要作用.计算机和计算技术的发展,使微分方程的求解突破了经典方法的局限,迈向数值计算和图像模拟,这为微分方程的应用提供了更为广阔的天地和有效手段,也使得建立数学模型显得尤为重要.本文主要从市场价格模型、广告模型、人口预测模型、混合溶液的数学模型、教育问题模型来论述常微分方程在数学建模中的应用。

关键字:常微分方程;数学建模;市场价格模型;广告模型;人口预测模型;混合溶液的数学模型;教育问题模型1引言在初等数学中,方程有很多种,比如线性方程、指数方程、对数方程、三角方程等,然而并不能解决所有的实际问题。

要研究实际问题就要寻求满足某些条件的一个或几个未知数方程。

这类问题的基本思想和初等数学的解方程思想有着许多的相似之处,但是在方程的形式、求解的具体方法、求出解的性质等方面依然存在很多不同的地方,为了解决这类问题,从而产生了微分方程。

常微分方程是许多理工科专业需要开设的基础课程,常微分方程与微积分是同时产生的,一开始就成为人类认识世界和改造世界的有力工具,随着生产实践和科学技术的发展,该学科已经演变发展为数学学科理论中理论联系实际的一个重要分支。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。

它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。

举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。

这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。

这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。

因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。

常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。

它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。

此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。

尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。

例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。

在这些情况下,常微分方程可能不再适用。

因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e)(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ; (2)当m N N <<0时,01d d >⎪⎪⎭⎫⎝⎛-=N N N r t Nm ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N NN N r tN mm ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,tN d d 单减,即人口增长率tN d d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t NN 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=mN 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tp d d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tp α 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ①其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α.下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为p p p t p t c a +-=+-)(0e )()(α , 令+∞→t ,取极限得p t p t =+∞→)(lim这说明,市场价格逐步趋于均衡价格.又若初始价格p p =0,则动态价格就维持在均衡价格p 上,整个动态过程就化为静态过程;(2)由于tc a c a p p tp )(0e)()(d d +-+-=αα ,所以,当p p >0时,0d d <tp ,)(t p 单调下降向p 靠拢;当p p <0时,0d d >tp ,)(t p 单调增加向p 靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.三、混合溶液的数学模型 例 4 设一容器内原有100L 盐,内含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L 的淡盐水,同时以2L/min 的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.解 设t 时刻容器内的盐量为)(t x kg,考虑t 到t t d +时间内容器中盐的变化情况,在dt 时间内容器中盐的改变量=注入的盐水中所含盐量-抽出的盐水中所含盐量容器内盐的改变量为x d ,注入的盐水中所含盐量为t d 301.0⨯,t 时刻容器内溶液的质量浓度为tt x )23(100)(-+,假设t 到t t d +时间内容器内溶液的质量浓度不变(事实上,容器内的溶液质量浓度时刻在变,由于t d 时间很短,可以这样看).于是抽出的盐水中所含盐量为t tt x d 2)23(100)(-+,这样即可列出方程t t x t x d 1002d 03.0d +-=,即tx tx +-=100203.0d d .又因为0=t 时,容器内有盐10kg,于是得该问题的数学模型为d 20.03d 100(0)10x x t t x ⎧+=⎪+⎪⎨⎪⎪=⎩,, 这是一阶非齐次线性方程的初值问题,其解为24)100(109)100(01.0)(t t t x +⨯++=.下面对该问题进行一下简单的讨论,由上式不难发现:t 时刻容器内溶液的质量浓度为34)100(10901.0100)()(t tt x t p +⨯+=+=,且当+∞→t 时,01.0)(→t p ,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量1V 注入质量浓度为1C 的溶液 (指同一种类溶液,只是质量浓度不同),假定溶液立即被搅匀,并以2V 的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.首先设容器中溶质的质量为)(t x ,原来的初始质量为0x ,t =0时溶液的体积为2V ,在d t 时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即t V C t V C x d d d 2211-=,其中1C 是流入溶液的质量浓度, 2C 为t 时刻容器中溶液的质量浓度,,tV V V xC )(2102-+=于是,有混合溶液的数学模型11220d d (0)xC V C V tx x ⎧=-⎪⎨⎪=⎩,. 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.四、振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.例5 设有一个弹簧,它的上端固定,下端挂一个质量为m 的物体,试研究其振动规律. 解 假设(1)物体的平衡位置位于坐标原点,并取x 轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;(2)在一定的初始位移0x 及初始速度0v 下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;(3)物体在t 时刻的位置坐标为)(t x x =,即t 时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为tx hd d -,h 为阻尼系数;(5)当质点有位移)(t x 时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx -,其中k 为劲度系数;(6)在振动过程中受外力)(t f 的作用.在上述假设下,根据牛顿第二定律得)(d d d d 22x f kx tx htx m +--= , ①这就是该物体的强迫振动方程.由于方程①中, )(t f 的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为0d d 22=+kx tx m,令2ω=mk ,方程变为0d d 222=+x tx ω,特征方程为 022=+ωλ,特征根为ωλi 2,1±=,通解为 t C t C x ωωcos si n 21+=,或将其写为⎪⎪⎭⎫⎝⎛++++=t C C C t CCC CCx ωωcos sin 22212222112221图4()t t A ωϕωϕcos si n si n cos +=,)sin(ϕω+=t A 其中 2221C C A +=,22212sin C CC +=ϕ,22211cos CCC +=ϕ.这就是说,无阻尼自由振动的振幅2221C C A +=,频率mk =ω均为常数.2.有阻尼自由振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为0d d d d 22=++kx tx htx m,令2ω=mk ,δ2=mh ,方程变为0d d 2d d 222=++x tx tx ωδ,特征方程为0222=++ωδλλ,特征根 222,1ωδδλ-±-=.根据δ与ω的关系,又分为如下三种情形:(1)大阻尼情形, δ>ω.特征根为二不等实根,通解为ttC C x )(2)(12222eeωδδωδδ-+--+-+=(2)临界阻尼情形,ωδ=.特征根为重根,通解为tt C C x δ-+=e)(21这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t 的变化规律分别如图5和图6所示.图5 图6(3)小阻尼情形,δ<ω.特征根为共轭复根,通解为)sinC sinC (e 222221t t x t δωδωδ-+-=-将其简化为)sin(e 22ϕδωδ+-=-t A x t其中,cos ,sin ,22211222122221C C C C C C C C A ++=+=ϕϕ振幅A tδ-e随时间t 的增加而减小.因此,这是一种衰减振动.位移随时间t 的变化规律见图7.3.无阻尼强迫振动在这种情形下,设物体不受阻力作用,其所受外力为简谐力pt m t f sin )(=,此时,方程①化为pt m kx tx m sin d d 22=+,pt x tx sin d d 222=+ω,根据p i 是否等于特征根ωi ,其通解分为如下两种情形:(1)当ω≠p 时,其通解为 图7t C t C pt px ωωωcos sin sin 12122++-=,此时,特解的振幅221p-ω为常数,但当p 接近于ω时,将会导致振幅增大,发生类似共振的现象;(2)当ω=p 时,其通解为t C t C pt t px ωωcos sin cos 2121++-=,此时,特解的振幅t p21随时间t 的增加而增大,这种现象称为共振,即当外力的频率p 等于物体的固有频率ω时,将发生共振.4.阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,又受外力pt m x f sin )(=的作用,并设ωδ<,方程①变为pt x tx tx sin d d 2d d 222=++ωδ,特征根0,i 22≠-±-=δδωδλ,则p i 不可能为特征根,特解为pt B pt A x cos sin *+=,其中22222224)(pp pA δωω+--=,222224)(2pp pB δωδ+--=,还可将其化为*22222221[()sin 2cos ]()4x w p pt p pt w p pδδ=---+,由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当ω=p 时,pt px cos 21*δ-=,若δ很小,则仍会有较大的振幅;若δ比较大,则不会有较大的振幅.。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用首先是物理方面。

在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。

例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。

这个方程可以用来描述物体的运动。

另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。

生物方面是另一个常见的应用领域。

生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。

而常微分方程可以很好地描述这些问题。

例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。

该模型使用了增长速率与细菌种群密度之间的关系。

通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。

此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。

经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。

例如,Solow增长模型是描述经济增长的常微分方程模型。

该模型考虑了资本积累和技术进步对经济增长的影响。

通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。

除了物理、生物和经济学,常微分方程还可以在其他领域中应用。

例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。

此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。

总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。

通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。

常微分方程在数学建模中的应用举例

常微分方程在数学建模中的应用举例

2021年 4 期 总第 609 期新一代New Generation常微分方程在数学建模中的应用举例梁中正 余伟豪 张慧清 林燕萍 陈创鑫 通讯作者(仲恺农业工程学院 计算科学学院 广东 广州 510225)摘 要:常微分方程是数学建模的必备知识之一,但在建模过程中却经常没有得到足够的重视。

本文从常微分方程在数学建模中的应用入手,用生活中的常见例子说明了常微分方程在数学建模中的重要作用,并揭示了常微分方程在数学建模中的应用性和有效性。

关键词:常微分方程;数学建模;应用常微分方程理论从创立至今已有300多年的历史,其发展与许多学科的发展息息相关,随着科学技术的迅猛发展,不同学科之间的相互渗透更为迅速,因此,常微分方程几乎在人类社会发展的每一个角落里都展示了自身无可代替的魅力,如天文学、生物学、物理学、经济学、医学等科学领域。

随着近年来计算机的高速发展,常微分方程作为数学学科的一个分支,它在现实生活中有着重要的应用。

常微分方程课程的特点是“从实践中来,到实践中去”。

微分方程是对自然科学和工程技术中各种不同系统的数学描述,在生物、经济、物理、化学等学科中都有微分方程的应用。

很多常微分方程反映的是物理、生物、化学以及气象中的关系模型,注重微分方程应用,把微分方程理论结果用于解释客观现象,可以培养学生的学习兴趣和积极性[1]。

数学建模是将实际问题转化为一个数学问题并利用数学的相关知识和方法以及计算机技术进行求解且对现实问题做出解释的一个过程。

也是对复杂现象进行分析、用数学语言描述其中的关系或规律并抽象出恰当的数学关系的一个过程。

常微分方程在数学建模中的应用和常微分方程的出现,将生产生活实际与数学理论巧妙地结合起来,给人们提供一种新的思维和解决问题的方式,把人们的理论从知识型向能力型转变。

正因为常微分方程的这种重要意义,才使它的应用越来越广泛[1]。

在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足常微分方程关系式的数学模型,需要我们通过求解常微分方程来了解未知函数的性质[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程理论在数学建模中的简单应用摘要:众所周知,自然界中一切物质都按照自身的规律在运动和演变,不同物质的运动规律总是在时间和空间中运动着的,虽然物质的运动形式千差万别,但我们总可以找到它们共性的一面,即具有共同的量的变化规律。

为了能够定性和定量的研究一些特定的运动和演变过程,就必须将物质运动和演变过程中相关的因素进行数学化。

这种数学化的过程就是数学建模的过程,即根据运动和演变规律找出不同变量之间互相制约、互相影响的关系式。

由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程。

微分方程描述的是物质运动的瞬时规律。

将常微分方程应用于数学建模是因为常微分方程理论是用数学方法解决实际问题的强有力的工具,是一门有着重要背景应用的学科,具有悠久的历史,系统理论日臻完善,而且继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题中。

关键词:常微分方程,常微分方程模型,稳定性,数学建模正:1数学建模简介对复杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模…。

与数学不同,构建数学模型的过程不仅要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。

所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。

对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。

但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。

同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。

2常微分方程和数学建模结合的特点通常在建立对象的动态模型时,应对不同的实际对象建立不同的并与之相适合的数学模型。

首先要具体的问题具体分析对建模的目的应该做出简化的假设,而后还要依照对可以类比的其它对象的规律或者其对象内在的微分方程进行解题并求出这一方程的解,这样才能将其结果反馈回实际的对象,然后再进行预测或控制,描述与分析。

数学建模也是一个分析问题、解决问题的创造性思维过程,它的内容来自于实践、结果应用于实践、方法结合于实践【2J,因此要选准切人点,才能有机地结合常微分方程的内容,充分体现数学建模的思想意图。

数学建模思想的培养不可能立竿见影,而是一个长期的过程。

而要我们脚踏实地认真去工作和钻研,纯粹数学的能力和数学建模能力是截然不同的,数学建模能力需要长期培养和锻炼才能形成。

应用微分方程理论在实际解决问题的过程中建立的数学模型,一般是动态数学模型,其结果极其简明,但整个推导过程却有点繁杂,不过还是能给人们以合理的解释。

由此笔者认为有机地将数学建模与常微分方程结合,必定能使常微分方程在实际应用过程中发挥更多更好的作用,以便能解决更多的实际问题,产生更好效益。

3常微分方程在数学建模中的应用在碰到实际问题时,应建立研究对象的数学模型。

建立数学模型首先应具体问题具体分析,对建立[收稿日期]2009一08—22【作者简介]肖勇(1967一),女,福建福安人,宁德职业技术学院高级讲师。

研究方向:高等数学教学。

数学模型的目的应作相应的假设和简化,而后依照其内在规律罗列出这种微分方程,求出其方程的解。

并将其结果进行描述、分析、预测或控制,最后回到实际对象中应用。

下面介绍几个微分方程建模的典型例子。

3.1常微分方程在新产品推广模型中的应用假设市场上要推出一新产品,t时刻的销量为X(t),新产品性能优良质量好,所以产品本身就是宣传品。

因而,t时刻产品销量的增量dx/dt与x(t)成正比,还应想到新产品销售有一定稳定的市场容量N,结果统计表明,dx/dt与尚未购买该新产品的顾客潜在的销售数量N—x(t)也成正比,因此就有以下逻辑斯谛模型dx/dt=l【)【(N—x),其中常数k>0为比例系数,分离变量、积分,可以解得逻辑斯谛曲线m)=奇持。

由宝=器及雾=号鲁舻,当o<x(t.)<N时’dx/dt>0僦是新产由此很多经济学专家和产品销售人士调查得出,许多新产品的销售曲线与逻辑斯谛曲线是相当接品销量x(t)单调也增加;当x(t’)=孚时,丽d2x=0;当x(t’)>孚时,丽d2x<0;当x(t’)<孚时,台>0,也就是当新产品销量达到消费者最大需求量N的一半时,新产品畅销最佳;当新产品销量不足N一半时,新产品销售速度不断增加;当新产品销量超过一半时,新产品销量速度就会慢慢减少。

近的。

从而可以深入对新产品的销售曲线性状进行分析,得出新产品在推出销售的前期要采取小量地生产,同时多加强宣传和广告力度,而当新产品消费者达到20%一80%之间时,新产品就可以大量的生产;当新产品消费者超过80%时候,那么企业就应选择适当时机转产,以求达到企业更好的效益。

3.2常微分方程在动力学模型中的应用动力学的基本定律是第二定律f=m,而动力学是微分方程源泉之一。

因此微分方程可以用来解决动力学的基本关系式。

人们都很清楚影响物体自由降落的两大因素是空气阻力和重力作用,所以物体下落速度与空气阻力成反比,物体下落的速度与重力成正比。

我们假设跳伞运动员质量为m,降落伞的速度与所受空气阻力成正比。

求降落伞下降速度1,=1,(t)的变化规律。

在这样的模型中,应用常微分方程可以很好地解决问题。

解假设空气阻力系数为k,再设时刻为t,物体的下落速度为1J,于是在这时刻t,物体所受的力为f=mg—kU。

从而,依据牛顿第二定律可得出微分方程m等=mg—kU,解出1J得1J=警+CO一}。

当t_+00时,有liml,(t)=学。

根据计算结果limv(t)=警,就可以为跳伞运动员设计保证安全降落的伞的直径大小,当跳伞运动员在天空中降落时就有足够长的停留时间,使得当跳伞运动员到达地面时的速度接近于常速mg/k,并且不会超过mg/k,这样跳伞运动员才能安全降落地面。

3.3常微分方程在流体混合数学模型中的应用我们在生产实验中时常会碰到这样的情况:实验容器里装有含物质A的流体。

假设时刻为to,流体体积是V。

,物体A的质量是】【o(浓度已知)。

今以速度1J2(单位时间的流量)放出流体,而同时又要以速度v。

注入浓度为c。

的流体,试求时刻t时容器内物质A的质量及流体的浓度。

我们把这种问题称之为流体混合问题。

其实这种问题如果用常微分方程来处理就会很直观和方便:设在时刻t,容器内物质A的质量为X=x(t),浓度为c:,时间dt后,容器内物质A的质量就增加了d)【,于是,就有关系式dx=c11,1dt—e2xJ2dt。

由cz2瓦了南,可僭.面dx=一瓦了南x+c,Vt。

所要求的物体A在t时刻的质量问题,就可51以用常微分方程转化为求方程(詈=一瓦了吉旨4-C110])满足初始条件x(o)=xo的解的问题。

3.4常微分方程在传染病模型中的应用模型I在最简单数学模型里面,设时刻t的传染性疾病病人数x(t)是连续、可微函数,而且每个传染性疾病病人每天有效接触(指的是足够使人致传染性疾病的接触)的人数为常数入,考察t到t+△t内传染性疾病病人人数的增加,就有x(t+At)一x(t)=舡(t)At,又再设t=0时有x个传染性疾病病人,即得微分方程警=k,x(o)=Xo,它的解为x(t)=xoen。

从以上的结果表明,随时间t的增加,传染性疾病病人的人数x(t)也不断增长,与实际不相符,表明建模失败。

这一失败的原因是:传染性疾病病人有效接触到的人群中,有传染性疾病病人也有健康人,只有健康人才可能被传染为传染性疾病病人,因此在改进的数学模型里必须区别传染性疾病病人和健康人这两种人。

模型2假设条件是:1)考察传染性疾病传播期内所在地方的总人数N不变,我们不考虑迁移也不考虑人员生死,把人员分为已感染者和易感染者两类,下面称传染性疾病病人与健康人。

时刻t这两种人在总人数中所占比例分别记作s(t)和i(t)(其中s(t)+i(t)=1)。

2)每天每个传染性疾病病人有效接触的平均人数是常数入(入称为日接触率)。

当健康人与传染性疾病病人有效接触时,足够使健康人受传染而变成传染性疾病病人。

由假设条件,每天每个病人可使b(t)个健康者变为传染性疾病病人,那么传染性疾病病人数为Ni(t),由此每天共有kNs(t)i(t)个健康者被感染,所以kxsi就是传染性疾病病人数Ni(t)的增长率,因而有Ni‘lx=入虬,可解得Logistic模型罢=Ⅺ(1一i),i(0)=i0。

Logistic模型的解为i(t)=二10——1』—一。

当i=÷时dg/dt达到最大值t。

=入。

1lIl(÷一1)。

这时候传染性疾病病人增加是最快l+(÷一一1)e—n10的,也是各个医院的门诊量最多的时间,由此我们可以预测着传染病高峰的即将来到,这也是各级医疗卫生部门应高度关注的时候。

t。

与入成反比,由此日接触率入表示该地方的卫生水准,入越小卫生水准越高。

因此提高卫生水准、改善卫生保健设施足可延迟传染病高峰的降临。

此时所建的数学模型才与生活实际相符合。

4小结文章对常微分方程在数学建模中的应用作了简单的探究,并对数学建模与常微分方程的特点作了一些有益的分析。

从建模的过程来看,建立一种数学模型,就是数学理论更好地指导实际生活的过程。

当然,纯粹以运用数学理论为目的的建模并不是建模的目的,真正的建模目的是为了将不容易解决的生产生活实际中的难题用数学来解决。

常微分方程在数学建模中的应用和常微分方程的出现,将生产生活实际与数学理论巧妙地结合起来,给人们提供一种新的思维和解决问题的方式,把人们的理论从知识型向能力型转变。

正因为常微分方程的这种重要意义,才使得它的应用会越来越广泛。

[参考文献】[1]王高雄.常微分方程[M].[2]姜启源,谢金星,叶俊.数学建模[M].[3]李文林.数学史教程【M].。

相关文档
最新文档