北京市朝阳区2014年中考二模数学试卷 有答案
北京市朝阳区中考数学二模试题(1)

F ECBA北京市朝阳区2014年中考数学二模试题一、选择题(本题共32分,每小题4分)1.2014北京车展约850 000的客流量再度刷新历史纪录,将850 000用科学记数法表示应为A .85×106B .8.5×106C .85×104D .8.5×1052.23-的倒数是( )A .32-B .23-C .32 D .233.一个多边形的内角和是外角和的3倍,则这个多边形的边数为A .6B .7C .8D .9 4.数据1,3,3,1,7,3 的平均数和方差分别为 A .2和4B .2和16C .3和4D .3和245.若关于x 的一元二次方程mx 2+3x +m 2-2m =0有一个根为0,则m 的值等于 A .1 B .2 C .0或2 D .0 6.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,则AB 的长为A .30 mB .24mC .18mD .12m7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P 1,摸出的球上的数字小于4的概率记为P 2;摸出的球上的数字为5的概率记为P 3.则P 1、P 2、P 3的大小关系是A .P 1<P 2<P 3B .P 3<P 2<P 1C .P 2<P 1 <P 3D .P 3<P 1<P 2 8.如图,在三角形纸片ABC 中,∠ABC =90°,AB =5,BC =13,过点A 作直线l ∥BC ,折叠三角形纸片ABC ,使点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随着移动,并限定M 、N 分别在AB 、BC 边上(包括端点)移动,若设AP 的长为x ,MN 的长为y ,则下列选项,能表示y 与x 之间的函数关系的大致图象是N M B二、填空题(本题共16分,每小题4分) 9.若分式41-+x x 值为0,则x 的值为________. 10.请写出一个多边形,使它满足“绕着某一个点旋转180°,旋转后的图形与原来的图形重合”这一条件,这个多边形可以是 .11.如图,菱形ABCD 的周长为16,∠C =120°,E 、F 分别为AB 、AD 的中点.则EF 的长为 .12.把长与宽之比为2的矩形纸片称为标准纸.如果将一张标准纸ABCD进行如下操作:即将纸片对折并沿折痕剪开,则每一次所得到的两个矩形纸片都是标准纸(每一次的折痕如下图中的虚线所示).若宽AB =1,则第2次操作后所得到的其中一个矩形纸片的周长是_________;第3次操作后所得到的其中一个矩形纸片的周长是_________;第30次操作后所得到的其中一个矩形纸片的周长是_________.三、解答题(本题共30分,每小题5分)13.已知:如图,点E 、F 在AC 上,且AE =CF ,AD ∥BC ,AD =CB .求证: DF =BE .14.计算:︒+-+--30tan 220145310.15.解分式方程:xx x -=+--23123 .第一次第二次第三次…16.已知50x y -=,求222232x y x yx xy y x y-+⋅-++的值.17.列方程或方程组解应用题:母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?18.已知关于x 的一元二次方程3x 2-6x +1-k =0 有实数根,k 为负整数. (1)求k 的值;(2)若此方程有两个整数根,求此方程的根.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,AB =34,∠DAB =90°,∠B =60°,AC ⊥BC .(1)求AC 的长.(2)若AD=2,求CD 的长.20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图 男生引体向上成绩条形统计图根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分. ①所抽测的男生引体向上得分..的平均数是多少? ②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?21.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是»BD的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB . (1)求证:AC 是⊙O 的切线; (2)若2cos 3C,AC =6,求BF 的长.22.类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P 是斜坐标系xOy 中的任意一点,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,如果M 、N 在x 轴、y 轴上分别对应的实数是a 、b ,这时点P 的坐标为(a ,b ).(1)如图2,在斜坐标系xOy 中,画出点A (-2,3);(2)如图3,在斜坐标系xOy 中,已知点B (5,0)、C (0,4),且P (x ,y )是线段CB 上的任意一点,则y 与 x 之间的等量关系式为 ;(3)若(2)中的点P 在线段CB 的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N .(图1)xPy NOM(图2)x-1y1O 1(图3)P (x ,y )CB OxyF OADBC(1)当21=m 时, _____MN PM =;(2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明; (2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,25.如图,在平面直角坐标系中xOy ,二次函数y =ax 2-2ax +3的图象与x 轴分别交于点A 、B ,与y 轴交于点C ,AB =4,动点P 从B 点出发,沿x 轴负方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线BC ,垂足为Q .设P 点移动的时间为t 秒(t >0),△BPQ 与△ABC 重叠部分的面积为S . (1)求这个二次函数的关系式; (2)求S 与t 的函数关系式;(3)将△BPQ 绕点P 逆时针旋转90°,当旋转后的△BPQ 与二次函数的图象有公共点时,求t 的取值范围(直接写出结果).P EC 图2 C B 图1 yxN MOPy x A C B O数学试卷参考答案及评分标准 2014.6一、选择题(本题共32分,每小题4分)1.D 2.A 3.C 4.C 5.B 6.B 7.D 8.C二、填空题(本题共16分,每小题4分)9.-1 10.答案不唯一,如平行四边形 11.2312.1+2,222+,14122+ (第1、2每个空各1分,第3个空2分) 三、解答题(本题共30分,每小题5分) 13. 证明:∵ AE =CF ,∴ AE +EF =CF +EF .即 AF =CE .…………………… 1分 ∵ AD ∥BC ,∴ ∠A =∠C .…………………… 2分 又∵AD =BC ,…………………… 3分 ∴ △ADF ≌△CBE .…………… 4分 ∴ DF =BE .……………………… 5分14. 解:原式13531323=-+-+? ………………………………………… 4分 =112. …………………………………………………………………… 5分 15. 解:将方程整理,得331022x x x -++=--. 去分母,得 x -3+3+x -2 = 0. ……………………………………………2分解得 x = 1. (3)分经检验 x = 1是原分式方程的解. ………………………………………………4 分∴原分式方程的解为x = 1. …………………………………………………………5 分16. 解:原式=2()()3()x y x y x yx y x y+-+⋅-+ ……………………………………………2 分 =3x yx y+-. …………………………………………………………3 分 ∵ x -5y =0,∴ x =5y . …………………………………………………………………4分 ∴ 原式=5325y yy y+=-.…………………………………………………………5分17. 解:设一支康乃馨的价格是x 元,一支百合的价格是y 元. …………………1分根据题意,得 3234,2336.x y x y ì+=ïí+=ïî ……………………………………………3分解得 6,8.x y ì=ïí=ïî ……………………………………………………4分答:一支康乃馨的价格是6元,一支百合的价格是8元.………… …………5分18. 解:(1)根据题意,得Δ≥0.………………………………………………………………………1分即26-)(-4×3(1-k )≥0.解得 k ≥-2 .………………………………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………………………………………3分 (2)当k =-1时,不符合题意,舍去;…………………………………………4分当k =-2时,符合题意,此时方程的根为x 1=x 2=1.……………………5分四、解答题(本题共20分,题每小题5分) 19.解:(1)在Rt△ABC 中,∵AB =34,∠B =60°,∴AC =AB ·sin60°=6. …………………………2分(2)作DE ⊥AC 于点E ,∵∠DAB =90°,∠BAC =30°, ∴∠DAE =60°, ∵AD =2,∴DE =3.…………………………3分 AE=1. ∵AC =6,∴CE =5. ……………………………4分 ∴在Rt△DEC 中,22CE DE CD +=.∴72=CD .………………………5分20.解:(1)14.5, 3.4;………………………………………………………………2分 (2)①818.52949.5610712467⨯+⨯+⨯+⨯+⨯++++=9.4(分);………………………4分② 120×46710220++=(人) …………….…………………………………5分估计在报名的学生中有102人得分不少于9分.21. (1)证明:如图①,连接AD .A∵ E是»BD的中点,∴»»DE BE=.∴ ∠DAE=∠EAB.∵ ∠C=2∠EAB,∴∠C=∠BAD.∵ AB是⊙O的直径,∴ ∠ADB=∠ADC=90°.∴ ∠C+∠CAD=90°.∴ ∠BAD+∠CAD=90°.即BA⊥AC.∴ AC是⊙O的切线.………………………2分(2)解:如图②,过点F做FH⊥AB于点H.∵ AD⊥BD,∠DAE=∠EAB,∴ FH=FD,且FH∥AC.在Rt△ADC中,∵2cos3C=,AC=6,∴ CD=4.…………………………………………………3分同理,在Rt△BAC中,可求得BC=9.∴ BD=5.设DF=x,则FH=x,BF=5-x.∵ FH∥AC,∴ ∠BFH=∠C.∴2 cos3FHBFHBF∠==.即253xx=-.………………………………………………4分解得x=2.∴ BF=3.…………………………………………………5分22. 解:(1)如图H FOAD B图②……………………………………………………1分(2)445y x =-+;……………………………………………………………………………………………………3分(3)当点P 在线段CB 的延长线上时,(2)中结论仍然成立.理由如下:过点P 分别作两坐标轴的平行线,与x 轴、y 轴分别交于点M 、N , 则四边形ONPM 为平行四边形,且PN=x ,PM=-y .∴ OM =x ,BM =5-x .∵PM ∥OC ,∴ △PMB ∽△COB .…………4分∴PM BMOC OB =, 即545y x --=. ∴445y x =-+.……………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)1;………………………………………………………………………………1分 (2)∵ OP =m ,MN =(-m 2+3m )-(-m 2+2m ) =m ,∴ OP =MN .…………………………………………………………………………2分 ①当0<m <2时,∵PM =-m 2+2m , PN =-m 2+3m .∴若PM= OP=MN ,有-m 2+2m =m ,解得m =0,m =1(舍). ……………3分 若PN= OP=MN ,有-m 2+3m =m ,解得m =0(舍),m =2(舍). ……………4分 ②当2<m <3时,不存在符合条件的m 值. ……………………………………5分 ③当m >3时,∵PM =m 2-2m , PN =m 2-3m .∴若PM= OP=MN ,有m 2-2m =m ,解得m =0(舍),m =3(舍). ……………6分 若PN= OP=MN ,有m 2-3m =m ,解得m =0(舍),m =4. …………………7分 综上,当 m =1或m =4,这四条线段中恰有三条线段相等.24. 解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形. …………………………………………………6分 ∴AF =CE .312CB 132FPECB∴BD =CE .……………………………………………………………………………7分25. 解:(1)由y =ax 2-2ax +3可得抛物线的对称轴为x =1.…………………1分∵AB =4,∴A (-1,0),B (3,0).∴a =-1.∴y =-x 2+2x +3. ………………………………………………………2分(2)由题意可知,BP =t ,∵B (3,0),C (0,3),∴OB =OC .∴∠PBQ =45°.∵PQ ⊥BC , ∴PQ =QB=22t . ① 当0<t ≤4时,S =PBQ S ∆=14t 2 .……………………………………………3分 ② 当4<t <6时,设PQ 与AC 交于点D ,作DE ⊥AB 于点E ,则DE =PE .∵tan∠DAE =DE OC AE OA==3. ∴DE =PE =3AE =32PA . ∵PA =t -4,∴DE =34)2t -(. ∴23612.4PAD S t t =-+△ ………………4分 ∵PBQ PAD S S S =-△△, ∴216122S t t =-+-. …………………………………………………5分 ③ 当t ≥6时,S =ABC S ∆=6 . ……………………………………………6分 综上所述, 2? 2? 1(0441612(4626(6t t S t t t t ⎧⎪⎪⎪=-+-⎨⎪⎪≥⎪⎩<≤)<<) ) (3)229≤t ≤4.…………………………………………………………………8分y x E D Q P A C B O说明:各解答题其它正确解法请参照给分.。
北京市各区县2014年中考数学二模试题分类汇编 一次、反比例函数题-(有答案)

一次、反比例函数题-(密云)17.如图所示,已知一次函数y=kx+b (k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数(0)my m x=≠ 的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=1. (1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式. (密云)17. (1) ∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (﹣1,0),B (0,1),D (1,0); (3)分(2)∵点A 、B 在一次函数y=kx+b (k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.……………………………………………………………4分∵点C 在一次函数y=x+1的图象上,且CD⊥x 轴, ∴点C 的坐标为(1,2), 又∵点C 在反比例函数(0)my m x=≠ 的图象上, ∴m=2;∴反比例函数的解析式为y=. (5)分(燕山)18.如图,在平面直角坐标系中,点O 为坐标原点,直线l 分别交x 轴、y 轴于A 、B 两点,OB OA <,且OA 、OB 的长分别是一元二次方程01272=+-x x 的两根.(1)求直线AB 的函数表达式;(2)点P 是y 轴上的点,点Q A 、B 、P 、Q 为顶点的四边形是菱形,请直接..写出Q 点的坐标. (燕山)18.解:(1)∵01272=+-x x , ∴0)4)(3(=--x x , ∴31=x ,42=x .∴ 点A 的坐标为(3,0),点B 的坐标为(0,4) . ……………2分 ∵设直线AB 的函数表达式为)0(≠+=k b kx y∴⎩⎨⎧=+=.4,30b b k ∴⎪⎩⎪⎨⎧=-=434b k∴直线AB 的函数表达式为434+-=x y . ……………3分 (2)Q 点的坐标是(3,5)或(3,825). ……………5分(怀柔)18.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). ⑴求点D 的坐标;⑵求经过点C 的反比例函数表达式. (怀柔)18.解:(1)根据题意得AO=4,BO=3,∠AOB=90°, ∴AB=22AO BO =2243=5. ………………………………………1分∵四边形ABCD 为菱形,所以AD=AB=5, ∴OD=AD-AO=1, ∵点D 在y 轴负半轴,∴点D 的坐标为(-1,0). ………………………………3分 (2)设反比例函数表达式为k y x. ∵BC=AB=5,OB=3,∴点C 的坐标为(-3,-5). ………………………………………4分 ∵反比例函数表达式ky x经过点C, ∴反比例函数表达式为15y x.………………………………………5分(大兴)17. 已知:如图,在平面直角坐标系xOy 中, 一次函数84+-=x y 的图象分别与x y 、轴交于 点A 、 B ,点P 在x 轴的负半轴上,△ABP 的面积为12.若一次函数y=kx+b 的图象经过点P 和点B ,求这个一次函数y=kx+b 表达式. (大兴)17.解:令0y =,得 2x = ∴A 点坐标为(2 ,0) 令0x =, 得 8=y∴B 点坐标为(0 ,8) ……………………………1分 ∵12=∆APB S ∴12821=⨯⨯AP 即AP =3∴P 点的坐标分别为)0,1(1-P 或)0,5(2P …………………2分 ∵点P 在x 轴的负半轴上,∴P (-1,0) ……………………………3分 ∵一次函数y=kx+b 的图象经过点P 和点B ∴⎩⎨⎧==+-,8,0b b k ……………………4分∴⎩⎨⎧==.8,8b k ∴ 这个一次函数y kx b =+的表达式为88+=x y …………5分xyBA11O xyBA11O (丰台)18.已知反比例函数1ky x的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和 点B (m ,﹣2)。
【2014朝阳二模】北京市朝阳区2014届高三第二次综合练习 文科数学 Word版含答案

北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于 (A )()U AB ð (B )A B (C )A B (D )()U AB ð (2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为(A ) sin y x = (B )ln y x = (C )3y x = (D ) 2x y = (3)已知抛物线22x y =,则它的焦点坐标是(A )1,04⎛⎫⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫⎪⎝⎭(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是(A )2 (B ) 3 (C ) 4 (D ) 5(5)由直线10x y -+=,50x y +-=和10x -=)用不等式组可表示为(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间ππ[-,]上随机取一个数x ,则事件:“cos 0x ≥”的概率为 (A )14 (B ) 34 (C )23 (D )12(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n nS a +的最小值为 (A )10 (B )92 (C )72 (D)12+ ( 8 )已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是(A) 4π (B) 16π ( C) 32π (D )36π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.计算12i1i+=- . 10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点坐标是 . 11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是 ;表面积是 .13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m .22俯视图侧视图正视图(第12题图)14.在如图所示的棱长为2的正方体1111ABCD A B C D -中,作与平面1ACD 平行的截面,则截得的三角形中面积最大的值是___; 截得的平面图形中面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(满分13分)在ABC 中,a ,b ,c 分别是角A B C ,,的对边.已知a =π3A =.(Ⅰ)若b =C 的大小;(Ⅱ)若2c =,求边b 的长. 16. (本小题满分13分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示. (Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数; (Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD .(Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ;(Ⅱ)求证:PA ⊥CD ;(Ⅲ)若2PA PD AD ==,AA求证:平面PAB ⊥平面PCD .18.(本小题满分13分)已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()f x 在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,若()f x 1≥恒成立,求a 的取值范围. 19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.20.(本小题满分13分)已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}n a 满足:()na f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若311()()42n naa nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.北京市朝阳区高三年级第二次综合练习15. (Ⅰ)解:由正弦定理sin sin a b A B =,得=,解得sin 2B =. 由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc+-=,即2141224b b +-=.整理得2280b b --=, 又0b >,所以4b =. ………13分另解:由于sin sin a cA C=2sin C =,解得1sin 2C =. 由于a c >,所以π6C =.由π3A =,得π2B =.由勾股定理222b c a =+,解得4b =. …13分 16. 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人). 所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). ………5分 (Ⅱ)设所选学生的服务时间在同一时间段内为事件A .由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =.………13分 17. 证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形,所以AC 与BD 互相平分又因为F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,APA ⊂平面PAD ,所以EF ∥平面PAD . ………4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD ,又CD AD ⊥, 所以CD ⊥面PAD .又因为PA ⊂平面PAD , 所以CD PA ⊥.即PA ⊥CD . …9分(Ⅲ)在△PAD 中,因为PA PD AD ==,所以PA PD ⊥. 由(Ⅱ)可知PA ⊥CD ,且=CDPD D ,所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以面PAB ⊥平面PCD . …14分18. (Ⅰ)22e e e (1)()x x x ax a a x f x x x ⋅--'==,0x ≠.当1a =时,2e (1)()x x f x x -'=.依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =.则曲线()f x 在1x =处切线的方程为e y =. ………………….4分(Ⅱ)函数()f x 的定义域为{}0x x ≠.由于22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数; 当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.(2)若0a <, 当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.………………….9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()exxg x -'=.可知在01x <<时,()0g x '>,()g x 为增函数; 1x >时,()0g x '<,()g x 为减函数.则max 1()(1)eg x g ==.从而1e a ≥.另解:(1)当0a <时,()e 1a f a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1e a ≥. 综上所述,1ea ≥. .13分 19. (Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c .依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ………………….4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>. 设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=, 整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. ………………….14分 20. 解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-, 在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,…………2分 (Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =, 得(1)()2f n f n +=+,即12n n a a +-=.所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N . …………6分 (Ⅲ){}n b 存在最大项和最小项令2111()()22na n t -==,则22111()816256nb t t t =-=--, 显然102t <≤,又因为N n *∈,所以当12t =,即1n =时,{}n b 的最大项为1316b =. 当132t =,即3n =时,{}n b 的最小项为331024b =-. …………13分。
北京市朝阳2014届高三二模理科数学试卷(带解析)

北京市朝阳2014届高三二模理科数学试卷(带解析)1.已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+<R ,则AB =( )(A )32x x ⎧⎫≥⎨⎬⎩⎭ (B )322x x ⎧⎫≤<⎨⎬⎩⎭ (C ){}12x x << (D )322x x ⎧⎫<<⎨⎬⎩⎭【答案】B【解析】试题分析:3{230}[,).2A x x =∈-≥=+∞R 2{320}(1,2).B x x x =∈-+<=R 所以A B =322x x ⎧⎫≤<⎨⎬⎩⎭.考点:集合运算2.如果0a b >>,那么下列不等式一定成立的是( )(A )33log log a b < (B )11()()44a b>(C )11a b< (D )22a b < 【答案】C 【解析】试题分析:33log log ,a b a b <⇔<11()(),44a b a b >⇔<110b a a b ab -<⇔<,又0a b >>所以0b aab -<成立,22||||a b a b <⇔<,而0a b >>,所以||||a b <不成立. 考点:不等式恒等变形3.执行如图所示的程序框图.若输出的结果为2,则输入的正整数a 的可能取值的集合是( )(A ){}1,2,3,4,5 (B ){}1,2,3,4,5,6 (C ){}2,3,4,5 (D ){}2,3,4,5,6【答案】C 【解析】试题分析:因为输出的结果为2,所以2313,2(23)313a a +≤++>,即75,4a <≤又a 为正整数,所以a 的可能取值的集合是{}2,3,4,5考点:循环结构流程图4.已知函数()π()sin (0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则ϕ=( )(A )π6- (B )6π(C )π3- (D )π3【答案】D 【解析】试题分析:由题意得:2,, 2.24312T T A T ππππω=-====,又sin(2)112πϕ⨯+=,π2ϕ<,所以π3ϕ=.考点:三角函数图像与性质 5.已知命题p :复数1iiz +=在复平面内所对应的点位于第四象限;命题q :0x ∃>,cos x x =,则下列命题中为真命题的是( )(A )()()p q ⌝∧⌝ (B )()p q ⌝∧ (C )()p q ∧⌝ (D )p q ∧ 【答案】D 【解析】试题分析:因为1i 1i z i +==-,所以复数1ii z +=在复平面内所对应的点位于第四象限,命题p 为真命题,因为y x =与cos y x =在(0,)2π上有交点,所以0x ∃>,cos x x =,命题q 为真命题,p q ∧为真命题.考点:复合命题真假6.若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是( )(A )(1,2] (B )[2,)+∞ (C)(1 (D))+∞ 【答案】A 【解析】试题分析:双曲线2221(0)y x b b -=>的一条渐近线为y bx =,由题意得:圆心到渐近线的2222211,3,4,1 2.1c b b e e a +≥≤==≤<≤考点:双曲线渐近线若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是( )(A )60万元 (B )80万元 (C )90万元 (D )100万元 【答案】C 【解析】试题分析:设生产甲x 吨、乙y 吨.则312060,0x y x y x y +≤⎧⎪+≤⎨⎪>⎩,利润2z x y =+.可行域为一个四边形OABC 及其内部,其中(60,0),(30,30),(0,40)A B C ,当2z x y =+过点B 时取最大值,为90.考点:线性规划8.如图放置的边长为1的正△PMN 沿边长为3的正方形ABCD 的各边内侧逆时针方向滚动.当△PMN 沿正方形各边滚动一周后,回到初始位置时,点P 的轨迹长度是( ) (A )83π (B )163π (C )4π (D )5πBA【答案】B 【解析】试题分析:由题意得:当△PMN 沿正方形一边滚动时,点P 的轨迹为两个圆弧,其对应圆半径皆为1,圆心角为23π,因此点P 的轨迹长度是21624.33ππ⨯⨯=考点:动点轨迹9.已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b ____.【答案】【解析】试题分析:因为2221244122+=++⋅⨯⨯=a b a b a b =4+4+42,所以2+=a b考点:向量数量积10.5(12)x -的展开式中3x 项的系数为___.(用数字表示) 【答案】80- 【解析】试题分析:由15(2)r r r T C x +=-得:3x 项的系数为335(2)80.C -=-.考点:二项展开式定理求特定项11.如图,AB 为圆O 的直径,2AB =,过圆O 上一点M 作圆O 的切线,交AB 的延长线于点C ,过点M 作MD AB ⊥于点D ,若D 是OB 中点,则AC BC ⋅=_____.【答案】3 【解析】试题分析:由切割线定理得:2AC BC CM ⋅=,连OM ,则在直角三角形ODM 中,因为OM=2OD,所以60DOM ∠=,因此CM = 3.AC BC ⋅=考点:切割线定理12.由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .【解析】2的正方形.因此体积为212233⨯=表面积为8个全等的边长为2的等边三角形面积之和,即282= 考点:三视图13.已知数列{}n a 的前n 项和为n S ,且满足24()n n S a n *=-∈N ,则n a = ; 数列2{log }n a 的前n 项和为 . 【答案】12n +,(3)2n n + 【解析】试题分析:因为24,n n S a =-所以1124(2)n n S a n --=-≥,两式相减得1122,2n n n n n a a a a a --=-=.因此{}n a 为等比数列,又11124,4S a a =-=,所以11422.n n n a -+=⋅=因此2log 1,n a n =+前n 项和为(21)(3)22n n n n +++=.考点:已知n S 求.n a14.若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞ 上是有界函数.下列函数①1()1f x x =-; ②2()1x f x x =+; ③ln ()xf x x=; ④()sin f x x x =,其中“在(1,)+∞上是有界函数”的序号为 . 【答案】②③【解析】试题分析:因为(1,)x ∈+∞时,1()(0,)1f x x =∈+∞-,所以函数①不是有界函数.因为(1,)x ∈+∞时,21|()|122x x f x x x =≤=+,所以函数②是有界函数.因为(1,)x ∈+∞时,2l n 1l n (),()x x f x f x x x-'==,()f x 在(1,)e 单调增,在(,)e +∞上单调减,所以函数10()()f x f e e<≤=,因此③是有界函数.因为(1,)x ∈+∞时,取2()2x k k z ππ=+∈,则()sin f x x x x ==→+∞,所以函数④不是有界函数.考点:函数值域15.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3A 2π=,3b =,△ABC的面积为4. (Ⅰ)求边a 的长; (Ⅱ)求cos 2B 的值. 【答案】(Ⅰ)7a =,(Ⅱ)71.98【解析】试题分析:(Ⅰ)解三角形问题,一般利用正余弦定理进行边角转化. 由1sin 2ABC S bc A ∆=得,13sin 234ABC S c ∆2π=⨯⨯=.所以5c =.由余弦定理2222cos a b c bc A =+-得,22235235cos 493a 2π=+-⨯⨯⨯=,所以7a =.(Ⅱ)由正弦定理得sin sin a bA B =,即3sin B=,所以sin 14B =,根据二倍角公式有271cos 212sin 98B B =-=. 解:(Ⅰ)由1sin 2ABC S bc A ∆=得,13sin 234ABC S c ∆2π=⨯⨯=. 所以5c =.由2222cos a b c bc A =+-得,22235235cos493a 2π=+-⨯⨯⨯=, 所以7a =. 7分(Ⅱ)由sin sin a b A B =得,3sin B=,所以sin B =所以271cos 212sin 98B B =-=. 13分 考点:正余弦定理,二倍角公式16.某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计 从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.【答案】(Ⅰ)2.(Ⅱ)6.E ξ=【解析】 试题分析:(Ⅰ)根据频率分布直方图中小长方形面积为频率,而频数为总数与频率之积. 因此参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人),参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人.概率估计为6020802.2002005P +===(Ⅱ)随机变量ξ的可能取值为0,1,2,3.由(Ⅰ)可知,概率为2.5因为 ξ~2(3)B ,,所以26355E ξ=⨯=.随机变量ξ的分布列为解:(Ⅰ)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人), 参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人). 所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的 概率估计为6020802.2002005P +=== 5分 (Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=;11232354(1)()()55125P C ξ==⋅=;22132336(2)()()55125P C ξ==⋅=;3303238(3)()()55125P C ξ==⋅=.随机变量ξ的分布列为因为 ξ~2(3)5B ,,所以26355E ξ=⨯=. 13分 考点:频率分布直方图17.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为A P ,BD 中点,2PA PD AD ===. (Ⅰ)求证:EF ∥平面BC P ;(Ⅱ)求二面角E DF A --的余弦值;(Ⅲ)在棱C P 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.FABCDP E【答案】(Ⅰ)详见解析,(Ⅱ)5(Ⅲ)不存在. 【解析】 试题分析:(Ⅰ)证明线面平行,关键在于找出线线平行.本题条件含中点,故从中位线上找线线平行. E ,F 分别为A P ,BD 中点,在△PAC 中,E 是A P 中点,F 是AC 中点,所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面BC P ,所以EF ∥平面BC P .(Ⅱ)求二面角的大小,有两个思路,一是作出二面角的平面角,这要用到三垂线定理及其逆定理,利用侧面PAD ⊥底面ABCD ,可得底面ABCD 的垂线,再作DF 的垂线,就可得二面角的平面角,二是利用空间向量求出大小.首先建立空间坐标系. 取AD 中点O .由侧面PAD ⊥底面ABCD 易得PO ⊥面ABCD .以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系.再利用两平面法向量的夹角与二面角的平面角的关系,求出结果,(Ⅲ)存在性问题,一般从假设存在出发,构造等量关系,将存在是否转化为方程是否有解.E P DCBAF证明:(Ⅰ)如图,连结AC . 因为底面ABCD 是正方形, 所以AC 与BD 互相平分. 又因为F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是A P 中点,F 是AC 中点, 所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面BC P ,所以EF ∥平面BC P . 4分 (Ⅱ)取AD 中点O .在△PAD 中,因为PA PD =, 所以PO AD ⊥.因为面PAD ⊥底面ABCD , 且面PAD 面=ABCD AD , 所以PO ⊥面ABCD . 因为OF ⊂平面ABCD 所以PO OF ⊥.又因为F 是AC 中点, 所以OF AD ⊥.如图,以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系. 因为2PA PD AD ===,所以OP =则(0,0)O ,(1,0,0)A ,(1,2,0)B ,(1,2,0)C -,(1,0,0)D -,P,1(,0,22E ,(0,1,0)F .于是(0,2,0)AB =,3(2DE =,(1,1,0)DF =. 因为OP ⊥面ABCD,所以OP =是平面FAD 的一个法向量. 设平面EFD 的一个法向量是000=(,,)x y z n .因为0,0,DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n所以00000,30,2x y x z +=⎧⎪⎨+=⎪⎩即0000,.y x z =-⎧⎪⎨=⎪⎩ 令01x =则=(1,1,-n .所以cos ,OP OP OP ⋅<>===⋅n n n. 由图可知,二面角E-DF-A 为锐角,所以二面角E-DF-A . 10分 (Ⅲ)假设在棱C P 上存在一点G ,使GF ⊥面EDF .设111G(,,)x y z ,则111FG =(,1,)x y z -. 由(Ⅱ)可知平面EDF 的一个法向量是=(1,1,-n . 因为GF ⊥面EDF ,所以FG =λn .于是,111,1,x y z λλ=-=-=,即111,1,x y z λλ==-=. 又因为点G 在棱C P 上,所以GC 与PC 共线.因为PC (1,2,=-,111CG (+1,2,)x y z =-, 所以111212x y +--=.所以1112λλ+---= 故在棱C P 上不存在一点G ,使GF ⊥面EDF 成立. 14分 考点:线面平行判定定理,利用空间向量求二面角 18.已知函数21()e 1x f x ax +=-+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.【答案】(Ⅰ)e a =,(Ⅱ)当0a ≤时,)(x f 的单调增区间为(),-∞+∞;当0a >时,()f x 的单调增区间是11(ln,)222a -+∞,()f x 的单调减区间是11(,ln )222a -∞-. (Ⅲ)22(,e ]-∞.【解析】试题分析:(Ⅰ)利用导数的几何意义,曲线()f x 在点(0,(0))f 处的切线斜率为在点(0,(0))f 处的导数值. 由已知得21()2e x f x a +'=-.所以(0)e f '=.(0)2e e f a '=-=,e a =(Ⅱ)利用导数求函数单调区间,需明确定义域(),-∞+∞,再导数值的符号确定单调区间. 当0a ≤时,()0f x '>,所以)(x f 的单调增区间为(),-∞+∞.当0a >时,令()0f x '>,得11ln 222a x >-,所以()f x 的单调增区间是11(ln ,)222a -+∞;令()0f x '<,得11ln 222a x <-,所以()f x 的单调减区间是11(,ln )222a -∞-.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. “当(0,1]x ∈时,21()e 11x f x ax +=-+≥恒成立”等价于“当(0,1]x ∈时,21e x a x +≤恒成立.”设21e ()x g x x+=,只要“当(0,1]x ∈时,min ()a g x ≤成立.” 易得函数()g x 在12x =处取得最小值,所以实数a 的取值范围22(,e ]-∞.(Ⅰ)由已知得21()2e x f x a +'=-.因为曲线()f x 在点(0,(0))f 处的切线与直线e 10x y ++=垂直, 所以(0)e f '=.所以(0)2e e f a '=-=.所以e a =. 3分(Ⅱ)函数()f x 的定义域是(),-∞+∞,21()2e x f x a +'=-.(1)当0a ≤时,()0f x '>成立,所以)(x f 的单调增区间为(),-∞+∞. (2)当0a >时,令()0f x '>,得11ln 222a x >-,所以()f x 的单调增区间是11(ln ,)222a -+∞;令()0f x '<,得11ln 222a x <-,所以()f x 的单调减区间是11(,ln )222a -∞-. 综上所述,当0a ≤时,)(x f 的单调增区间为(),-∞+∞;当0a >时,()f x 的单调增区间是11(ln ,)222a -+∞, ()f x 的单调减区间是11(,ln )222a -∞-. 8分(Ⅲ)当0x =时,(0)e 11f =+≥成立,a ∈R . “当(0,1]x ∈时,21()e11x f x ax +=-+≥恒成立”等价于“当(0,1]x ∈时,21e x a x+≤恒成立.” 设21e ()x g x x+=,只要“当(0,1]x ∈时,min ()a g x ≤成立.”212(21)e ()x x g x x +-'=.令()0g x '<得,12x <且0x ≠,又因为(0,1]x ∈,所以函数()g x 在1(0, )2上为减函数;令()0g x '>得,12x >,又因为(0,1]x ∈,所以函数()g x 在1(,1]2上为增函数.所以函数()g x 在12x =处取得最小值,且21()2e 2g =. 所以22e a ≤. 又因为a 32e <,所以实数a 的取值范围22(,e ]-∞. 13分 (Ⅲ)另解:(1)当0a ≤时,由(Ⅱ)可知, ()f x 在[0,1]上单调递增,所以()(0)e 1f x f ≥=+. 所以当0a ≤时,有()1f x ≥成立.(2)当02e a <≤时, 可得11ln 0222a -≤. 由(Ⅱ)可知当0a >时,()f x 的单调增区间是11(ln ,)222a -+∞,所以()f x 在[0,1]上单调递增,又()(0)e 1f x f ≥=+,所以总有()f x ≥1成立.(3)当32e 2e a <<时,可得110ln 1222a <-<. 由(Ⅱ)可知,函数()f x 在11[0,ln )222a -上为减函数,在11(ln ,1]222a -为增函数,所以函数()f x 在11ln 222a x =-处取最小值,且ln 211(ln )e ln 1ln 122222222a a a a a a af a -=-++=-+.当[0,1]x ∈时,要使()f x ≥1成立,只需ln 1122a aa -+≥,解得22e a ≤.所以22e 2e a <≤. 综上所述,实数a 的取值范围22(,e ]-∞.考点:利用导数求切线,利用导数求单调区间,利用导数求最值 19.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.【答案】(Ⅰ)22143x y +=,(Ⅱ)2(,[21,)7-∞+∞. 【解析】试题分析:(Ⅰ)求椭圆标准方程,关键利用待定系数法求出a,b. 由12c e a ==及1a c -=,解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=.(Ⅱ)存在性问题,一般从假设存在出发,建立等量关系,有解就存在,否则不存在. 条件22OA OB OA OB +=-的实质是垂直关系,即0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=,由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=.122834kmx x k +=-+,212241234m x x k -=+.代入化简得,2271212m k =+.由222(8)4(34)(412)0k mk m ∆=-+->化简得2234k m +>.解得,234m >. 由227121212m k =+≥,2127m ≥,所以实数m 的取值范围是2(,[21,)7-∞+∞. (Ⅰ)设椭圆C 的方程为22221x y a b +=()0a b >>,半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=. 解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. 4分(Ⅱ)解:存在直线l ,使得22OA OB OA OB +=-成立.理由如下:由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=.222(8)4(34)(412)0km k m ∆=-+->,化简得2234k m +>.设1122(,),(,)A x y B x y ,则122834km x x k +=-+,212241234m x x k-=+. 若22OA OB OA OB +=-成立,即2222OA OB OA OB +=-,等价于0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=, 222224128(1)03434m kmk km m k k-+⋅-⋅+=++, 化简得,2271212m k =+.将227112k m =-代入2234k m +>中,22734(1)12m m +->, 解得,234m >.又由227121212m k =+≥,2127m ≥,从而2127m ≥,m ≥m ≤ 所以实数m 的取值范围是2(,[21,)7-∞+∞. 14分 考点:椭圆标准方程,直线与椭圆位置关系20.已知1x ,2x 是函数2()f x x mx t =++的两个零点,其中常数m ,t ∈Z ,设120()nn r rn r T x x n -*==∈∑N .(Ⅰ)用m ,t 表示1T ,2T ;(Ⅱ)求证:543T mT tT =--; (Ⅲ)求证:对任意的,n n T *∈∈N Z .【答案】(Ⅰ)1,T m =-22.T m t =-(Ⅱ)详见解析,(Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)由题意得:12x x m +=-,12x x t =.因为120nn r r n r T x x -==∑,所以11112120r r r T x x x x m-===+=-∑.222222212112212120()r r r T x x x x x x x x x x m t -===++=+-=-∑.对抽象的求和符号具体化处理,是解答本题的关键.(Ⅱ)555432234551211212121220,r rr T xx x x x x x x x x x x -===+++++∑而4322343212343121121212212112122()()()mT tT x x x x x x x x x x x x x x x x x x --=+++++-+++5432234432234543223411212121212121212212121212()()x x x x x x x x x x x x x x x x x x x x x x x x x x =+++++++++-+++5432234511212121225x x x x x x x x x x T =+++++=,(Ⅲ)用数学归纳法证明有关自然数的命题. (1)当1,2n =时,由(Ⅰ)问知k T 是整数,结论成立.(2)假设当1,n k =-n k =(2k ≥)时结论成立,即1,k k T T -都是整数,由(Ⅱ)问知11k k k T mT tT +-=--.即1n k =+时,结论也成立. 解:(Ⅰ)由12x x m +=-,12x x t =.因为120nn r r n r T xx-==∑,所以11112120r r r T x x x x m-===+=-∑.222222212112212120()r r r T x x x x x x x x x x m t -===++=+-=-∑. 3分(Ⅱ)由12kk r rk r T xx -==∑,得5454555121122142r r r r r r T xx x x x x x T x --====+=+∑∑. 即55142T x T x =+,同理,44132T x T x =+. 所以5241232x T x x T x =+.所以5142412312412343()()T x T x T x x T x x T x x T mT tT =+-=+-=--. 8分 (Ⅲ)用数学归纳法证明.(1)当1,2n =时,由(Ⅰ)问知k T 是整数,结论成立.(2)假设当1,n k =-n k =(2k ≥)时结论成立,即1,k k T T -都是整数. 由12kk r rk r T xx -==∑,得1111121122k kk r rk r r k k r r T xx x x x x ++--++====+∑∑. 即1112k k k T x T x ++=+.所以112k k k T xT x -=+,121212k k k x T x x T x +-=+.所以11212112121()()k k k k k k T x T x T x x T x x T x x T +--=+-=+-. 即11k k k T mT tT +-=--.由1,k k T T -都是整数,且m ,t ∈Z ,所以1k T +也是整数.即1n k =+时,结论也成立.由(1)(2)可知,对于一切n *∈N ,120nn r r r xx-=∑的值都是整数. 13分考点:数学归纳法证明。
北京市各城区2014年中考数学二模-阅读操作题22题汇总

个正方形 ABCD,使它的边长 a= 10 ,要求 A、B、C、D 四个顶点都在小正方形的
格点上. (2)参考小强的思路,探究解决下列问题:作另一个正方形 EFGH,使它的四个顶 点分别在(1)中所做正方形 ABCD 的边上,并且边长 b 取得最 小值. 请你画出图形,并简要说明 b 取得最小值的理由,写出 b 的最 小值.
结论是否仍然成立,并说明理由.
y
y
y
NP
C
1
P(x,
O M x -1 O 1 x O y)B x 11、(2014(年图 密1) 云二模)22.如图,将(图矩2形) 纸片 ABCD 按如下顺序(折图叠3) :对折、展
平,得折痕 EF(如图①);沿 GC 折叠,使点 B 落在 EF 上的点 B′处(如图②);展平,
为点 C;
(2)若直线 MN 上存在点 P,使得 PA+PB 的值最小,
请直接写出 PA 的长度.
M
B NA
9、(2014 年东城二模)22.我们曾学过“两点之间线段最短”的知识,常可利用 它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题: 如图 1,已知,A,B 在直线 l 的同一侧,在 l 上求作一点,使得 PA+PB 最小.
的面积为 8 4 2 ,则八角形纸板的边长为
.
8、(2014 年通州二模)22.如图,在每个小正方形的边长均为 1 个单位长度的方
格纸中,有线段 AB 和直线 MN,点 A、B、M、N 均在小正方形的顶点上.
(1)在方格纸中画四边形 ABCD(四边形的各顶点均在小正方形的顶点上),使四边
形 ABCD 是以直线 MN 为对称轴的轴对称图形,点 A 的对称点为点 D,点 B 的对称点
2014年北京市各城区中考二模数学

图2图1EDCA2014年北京市各城区中考二模数学——几何综合题24题汇总考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.例一(2014年平谷二模)(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当BD CEAC AD==时,BPD ∠的度数____________________.24.(1)等腰直角三角形 ----------------------------------------------------1分(2) 45°. ------------------------------------------------------------2分证明:过B 点作FB ⊥AB ,且FB=AD . ∴90FBD A ∠=∠=︒, ∵BD=AC ,∴△FBD ≌△DAC. ∴∠FDB=∠DCA ,ED=DC ∵∠DCA+∠CDA=90︒,∴∠FDB +∠CDA=90︒,∴∠CDF=90︒,∴∠FCD=∠CFD =45︒. ∵AD =CE ,∴BF =CE∵90FBD A ∠=∠=︒,∴180FBD A ∠+∠=︒. ∴BF ∥EC .∴四边形BECF 是平行四边形. ∴BE ∥FC .∴45BPD FCD ∠=∠=︒.----------------------------------------------6分 (3)60︒. ------------------------------------------------7分练、(2014年海淀二模)24.在ABC △中,90ABC ∠= ,D 为平面内一动点,AD a =,AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示); (3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图24.解:(1)…………………………………………………2分(2)连接BF .∵将ABD △沿射线BC 方向平移,得到FCE △,ABCABC∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC . ∵∠ABC=90°,∴四边形ABCF 为矩形. ∴AC =BF .……………………………………3分∵AD BE ⊥, ∴EF BE ⊥. …………………………………4分∵AD a =,AC b =, ∴EF a =,BF b =.∴BE .………………………………………………………………5分 (3)180α︒-; α.……………………………………………………………7分练、(2014年朝阳二模)24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC . (1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .24.解:(1)△CDF 是等腰直角三角形.………………1分 证明:∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分∠1=∠2.∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2.∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形.…………………………………………………6分∴AF =CE .∴BD =CE .……………………………………………………………………………7分图2图1考点二、轴对称变换 1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点.轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形. 2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上. ④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ).A.20B.22C.24D.30第5题7.如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿AD 对折,点C 落在点C '的位置,则C B '与BC 之间的数量关系是.8.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于度.第7题 第8题10.如图,在∆ABC 中,MN//AC ,直线MN 将∆ABC 分割成面积相等的两部分,将∆BMN 沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE//CN ,则AE:NC=.第10题 第11题11.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折痕,使点A 落在BC 边上的点D 的位置,且,BC ED ⊥则CE 的长是. 12.(2013门头沟二模)如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N .若12CE CD =,则BN 的长是,AM BN的值 等于;若1CE CD n=(2n ≥,且n 为整数), 则AMBN的值等于 (用含n 的式子表示).22(2010年北京中考题)小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,AB =6cm 。
北京中考二模数学2014---23题汇编

23.在平面直角坐标系xOy 中,点P (m ,0)为x 轴正半轴上的一点,过点P 做x 轴的垂线,分别交抛物线y =-x 2+2x 和y =-x 2+3x 于点M ,N . (1)当21=m 时, _____MN PM=; (2)如果点P 不在这两条抛物线中的任何一条上.当四条线段OP ,PM ,.PN ,MN 中恰好有三条线段相等时, 求m 的值.14大兴23.已知:关于x 的一元二次方程2)13()1(22=+---x k x k (1)当方程有两个相等的实数根时,求k 的值;(2)若k 是整数,且关于x 的一元二次方程02)13()1(22=+---x k x k 有两个不相等的整数根时,把抛物线2)13()1(22+---=x k x k y 向右平移21个单位长度,求平移后抛物线的顶点坐标.23.经过点(1,1)的直线l : 2 (0)y kx k =+≠与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,B (b ,-1),与y 轴交于点D .(1)求直线l 对应的函数表达式及反比例函数G 1的表达式; (2)反比例函数G 2::2 (0)ty t x=≠, ①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA =EB ,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.14房山23. 已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.23.已知关于x 的方程:2(1)0x m x m ---=①和2(9)2(1)3x m x m --++=②,其中0m >. (1)求证:方程①总有两个不相等的实数根;(2)设二次函数21(1)y x m x m =---的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),将A 、B 两点按照相同的方式平移后,点A 落在点'(1,3)A 处,点B 落在点'B 处,若点'B 的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线y kx =(0k >)交于两点,当向上平移直线y kx =时,交点位置随之变化,若交点间的距离始终不变,则k 的值是________________.14顺义23.已知关于的一元二次方程2440mx x m ++-=.(1)求证:方程总有两个实数根;(2)若m 为整数,当此方程有两个互不相等的负整数根时,求m 的值;(3)在(2)的条件下,设抛物线244y mx x m =++-与x 轴交点为A 、B (点B 在点A的右侧),与y 轴交于点C .点O 为坐标原点,点P 在直线BC 上,且OP =12BC ,求点P 的坐标.x23.已知抛物线2(31)2(1)(0)y ax a x a a =-+++≠.(1)求证:无论a 为任何非零实数,该抛物线与x 轴都有交点;(2)若抛物线2(31)2(1)y ax a x a =-+++与x 轴交于A (m ,0)、 B (n ,0)两点,m 、n 、a 均为整数,一次函数y =kx +b (k ≠0)的图象经过点P (n -l ,n +l )、Q (0,a ),求一次函数的表达式.14东城23.已知:关于x 的一元二次方程2(3)-30mx m x +-=. (1)求证:无论m 取何值,此方程总有两个实数根;(2)设抛物线2(3)-3y mx m x =+-,证明:此函数图像一定过x 轴,y 轴上的两个定点(设x 轴上的定点为点A ,y 轴上的定点为点C );(3)设此函数的图像与x 轴的另一交点为B ,当△ABC 为锐角三角形时,求m 的取值范围.14丰台23.如图,二次函数2y x bx c =++经过点(-1,0)和点(0,-3). (1)求二次函数的表达式;(2)如果一次函数4y x m =+的图象与二次函数的图象有且只有一个公共点,求m 的值和 该公共点的坐标;(3)将二次函数图象y 轴左侧部分沿y 轴翻折,翻折后得到的图象与原图象剩余部分组成 一个新的图象,该图象记为G ,如果直线4y x n =+与图象G 有3个公共点,求n 的值.14门头沟23. 已知二次函数223y x x =-++图象的对称轴为直线.14平谷23.已知关于x 的一元二次方程210x mx m -+-=. (1)求证:无论m 取任何实数时,方程总有实数根;(2)关于x 的二次函数211y x mx m =-+-的图象1C 经过2(168)k k k --+,和2(568)k k k -+-+,两点.①求这个二次函数的解析式;②把①中的抛物线1C 沿x 轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C .设抛物线2C 交x 轴于M 、N 两点(点M 在点N 的左侧),点P (a ,b )为抛物线2C 在x 轴上方部分图象上的一个动点.当∠MPN ≤45°时,直接写出a 的取值范围.。
北京中考二模数学2014---25题汇编

14朝阳25.如图,在平面直角坐标系中xOy,二次函数y=ax2-2ax+3的图象与x轴分别交于点A、B,与y轴交于点C,AB=4,动点P从B点出发,沿x轴负方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线BC,垂足为Q.设P点移动的时间为t秒(t>0),△BPQ与△ABC重叠部分的面积为S.(1)求这个二次函数的关系式;(2)求S与t的函数关系式;(3)将△BPQ绕点P逆时针旋转90°,当旋转后的△BPQ与二次函数的图象有公共点时,求t的取值范围(直接写出结果).14大兴25. 已知:E是线段AC上一点,AE=AB,过点E作直线EF,在EF上取一点D,使得∠EDB=∠EAB,联结AD.(1)若直线EF与线段AB相交于点P,当∠EAB=60°时,如图1,求证:ED =AD+BD;(2)若直线EF与线段AB相交于点P,当∠EAB= α(0º﹤α﹤90º)时,如图2,请你直接写出线段ED、AD、BD之间的数量关系(用含α的式子表示);(3)若直线EF与线段AB不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED、AD、BD之间的数量关系,并证明你的结论.25.在平面直角坐标系xOy 中,对于⊙A 上一点B 及⊙A 外一点P ,给出如下定义:若直线PB 与 x 轴有公共点(记作M ),则称直线PB 为⊙A 的“x 关联直线”,记作PBM l . (1)已知⊙O 是以原点为圆心,1为半径的圆,点P (0,2),①直线1l :2y =,直线2l :2y x =+,直线3l :2y +,直线4l :22y x =-+都经过点P ,在直线1l , 2l , 3l , 4l 中,是⊙O 的“x 关联直线”的是 ;②若直线PBM l 是⊙O 的“x 关联直线”,则点M 的横坐标M x 的最大值是 ; (2)点A (2,0),⊙A 的半径为1,①若P (-1,2),⊙A 的“x 关联直线”PBM l :2y kx k =++,点M 的横坐标为M x ,当M x 最大时,求k 的值;②若P 是y 轴上一个动点,且点P 的纵坐标2p y >,⊙A 的两条“x 关联直线”PCM l ,PDN l 是⊙A 的两条切线,切点分别为C ,D ,作直线CD 与x 轴点于点E ,当点P 的位置发生变化时, AE 的长度是否发生改变?并说明理由.25. 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)如图,△OAB 是抛物线()2=-+>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由;(3)在(2)的条件下,若以点E 为圆心,r 为半径的圆与线段AD 只有一个公共点,求出r 的取值范围.25.对于半径为r 的⊙P 及一个正方形给出如下定义:若⊙P 上存在到此正方形四条边距离都相等的点,则称⊙P 是该正方形的“等距圆”.如图1,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 的坐标为(2,4),顶点C 、D 在x 轴上,且点C 在点D 的左侧. (1)当r=①在P 1(0,-3),P 2(4,6),P 3(2)中可以成为正方形ABCD 的“等距圆”的圆心的是;②若点P 在直线2y x =-+上,且⊙P 是正方形ABCD 的“等距圆”,则点P 的坐标为; (2)如图2,在正方形ABCD 所在平面直角坐标系xOy 中,正方形EFGH 的顶点F 的坐标为(6,2),顶点E 、H 在y 轴上,且点H 在点E 的上方. ①若⊙P 同时为上述两个正方形的“等距圆”,且与BC 所在直线相切,求⊙P 在y 轴上截得的弦长;②将正方形ABCD 绕着点D 旋转一周,在旋转的过程中,线段HF 上没有一个点能成为它的“等距圆”的圆心,则r 的取值范围是.图1 图2xy FGDAO BCE H25.如图,在平面直角坐标系xOy 中,抛物线2)y x bx c =++过点(1,0)A ,B ,这条抛物线的对称轴与x 轴交于点C ,点P 为射线CB 上一个动点(不与点C 重合),点D 为此抛物线对称轴上一点,且∠CPD =60︒. (1)求抛物线的解析式;(2)若点P 的横坐标为m ,△PCD 的面积为S ,求S 与m 之间的函数关系式; (3)过点P 作PE ⊥DP ,连接DE ,F 为DE 的中点,试求线段BF 的最小值.25.如图,已知点A(1,0),B(0,3),C(-3,0),动点P(x,y)在线段AB上,CP交y轴于点D,设BD的长为t.(1)求t关于动点P的横坐标x的函数表达式;(2)若S△BCD:S△AOB=2:1,求点P的坐标,并判断线段CD与线段AB的数量及位置关系,说明理由;(3)在(2)的条件下,若M为x轴上的点,且∠BMD最大,请直接写出点M的坐标.14东城25.定义:对于数轴上的任意两点A ,B 分别表示数1,2x x ,用12x x -表示他们之间的距离;对于平面直角坐标系中的任意两点1122(,),(,)A x y B x y 我们把1212x x y y -+-叫做A ,B 两点之间的直角距离,记作d (A ,B ).(1)已知O 为坐标原点,若点P 坐标为(-1,3),则d (O,P )=_____________; (2)已知C 是直线上y =x +2的一个动点,①若D (1,0),求点C 与点D 的直角距离的最小值;②若E 是以原点O 为圆心,1为半径的圆上的一个动点,请直接写出点C 与点E 的直角距离的最小值.xy14丰台25.如图,经过原点的抛物线2y x bx=-+(2b>)与x轴的另一交点为A,过点P(1,2b)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对称点为C.连结CB,CP. (1)当b=4时,求点A的坐标及BC的长;(2)连结CA,求b的适当的值,使得CA⊥CP;(3)当b=6时,如图2,将△CBP绕着点C按逆时针方向旋转,得到△CB’P’,CP与抛物线对称轴的交点为E,点M为线段B’P’(包含端点)上任意一点,请直接写出线段EM长度的取值范围.图114门头沟25.如图25-1,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.备用图图25-114平谷25.定义:任何一个一次函数y px q =+,取出它的一次项系数p 和常数项q ,有序数组][q p ,为其特征数.例如:y =2x +5的特征数是]52[,,同理,[]a b ,,c 为二次函数2y ax bx c =++的特征数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区中考二模数学试卷 有答案 2014.6一、选择题(本题共32分,每小题4分)1.2014北京车展约850 000的客流量再度刷新历史纪录,将850 000用科学记数法表示应为A .85×106B .8.5×106C .85×104D .8.5×1052.23-的倒数是( )A .32-B .23-C .32 D .233.一个多边形的内角和是外角和的3倍,则这个多边形的边数为A .6B .7C .8D .9 4.数据1,3,3,1,7,3 的平均数和方差分别为 A .2和4B .2和16C .3和4D .3和245.若关于x 的一元二次方程mx 2+3x +m 2-2m =0有一个根为0,则m 的值等于 A .1B .2C .0或2D .0 6.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,则AB 的长为 A .30 m B .24m C .18m D .12m 7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P 1,摸出的球上的数字小于4的概率记为P 2;摸出的球上的数字为5的概率记为P 3.则P 1、P 2、P 3的大小关系是A .P 1<P 2<P 3B .P 3<P 2<P 1C .P 2<P 1 <P 3D .P 3<P 1<P 28.如图,在三角形纸片ABC 中,∠ABC =90°,AB =5,BC =13,过点A 作直线l ∥BC ,折叠三角形纸片ABC ,使点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随着移动,并限定M 、N 分别在AB 、BC 边上(包括端点)移动,若设AP 的长为x ,MN 的长为y ,则下列选项,能表示y 与x 之间的函数关系的大致图象是二、填空题(本题共16分,每小题4分) 9.若分式41-+x x 值为0,则x 的值为________. 10.请写出一个多边形,使它满足“绕着某一个点旋转180°,旋转后的图形与原来的图形重合”这一条件,这个多边形可以是 .11.如图,菱形ABCD 的周长为16,∠C =120°,E 、F 分别为AB 、AD 的中点.则EF 的长为 .12ABCD 进行如下操作:即将纸片对折并沿折痕剪开,则每一次所得到的两个矩形纸片都是标准纸(每一次的折痕如下图中的虚线所示).若宽AB =1,则第2次操作后所得到的其中一个矩形纸片的周长是_________;第3次操作后所得到的其中一个矩形纸片的周长是_________;第30次操作后所得到的其中一个矩形纸片的周长是_________.三、解答题(本题共30分,每小题5分)13.已知:如图,点E 、F 在AC 上,且AE =CF ,AD ∥BC ,AD =CB .求证: DF =BE .14.计算:︒+-+--30tan 220145310.15.解分式方程:xx x -=+--23123 .16.已知50x y -=,求222232x y x yx xy y x y-+⋅-++的值.第一次第二次第三次…17.列方程或方程组解应用题:母亲节来临之际,小红去花店为自己的母亲选购鲜花,在花店中同一种鲜花每支的价格相同.小红如果选择由三支康乃馨和两支百合组成的一束花,则需要花34元;如果选择由两支康乃馨和三支百合组成的一束花,则需要花36元.一支康乃馨和一支百合花的价格分别是多少?18.已知关于x的一元二次方程3x2-6x+1-k=0有实数根,k为负整数.(1)求k的值;(2)若此方程有两个整数根,求此方程的根.四、解答题(本题共20分,每小题5分)4,∠DAB=90°,∠B=60°,AC⊥BC.19.如图,在四边形ABCD中,AB=3(1)求AC的长.(2)若AD=2,求CD的长.20.某校对部分初三学生的体育训练成绩进行了随机抽测,并绘制了如下的统计图:女生篮球障碍运球成绩折线统计图男生引体向上成绩条形统计图根据以上统计图解答下列问题:(1)所抽测的女生篮球障碍运球成绩的众数是多少?极差是多少?(2)该校所在城市规定“初中毕业升学体育现场考试”中,男生做引体向上满13次,可以获得满分10分;满12次,可以获9.5分;满11次,可以获得9分;满10次,可以获得8.5分;满9次,可以获得8分.①所抽测的男生引体向上得分..的平均数是多少?②如果该校今年有120名男生在初中毕业升学体育现场考试中报名做引体向上,请你根据本次抽测的数据估计在报名的这些学生中得分不少于9分的学生有多少人?21.如图,AB是⊙O的直径,BC交⊙O于点D,E是BD的中点,连接AE交BC于点F,∠ACB =2∠EAB(1)求证:AC是⊙O的切线;(2)若2cos3C=,AC=6,求BF的长.22.类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).(1)如图2,在斜坐标系xOy中,画出点A(-2,3);(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y与x之间的等量关系式为;(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,点P(m,0)为x轴正半轴上的一点,过点P做x轴的垂线,分别交抛物线y=-x2+2x和y=-x2+3x于点M,N.(1)当21=m时,_____MNPM=;(2)如果点P不在这两条抛物线中的任何一条上.当四条线段OP,PM,.PN,MN中恰好有三条线段相等时,求m的值.24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明; (2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .25.如图,在平面直角坐标系中xOy ,二次函数y =ax 2-2ax +3的图象与x 轴分别交于点A 、B ,与y 轴交于点C ,AB =4,动点P 从B 点出发,沿x 轴负方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线BC ,垂足为Q .设P 点移动的时间为t 秒(t >0),△BPQ 与△ABC 重叠部分的面积为S . (1)求这个二次函数的关系式; (2)求S 与t 的函数关系式; (3)将△BPQ 绕点P 逆时针旋转90°,当旋转后的△BPQ 与二次函数的图象有公共点时,求t 的取值范围(直接写出结果).图2图1北京市朝阳区九年级综合练习(二)数学试卷参考答案及评分标准 2014.6一、选择题(本题共32分,每小题4分)1.D 2.A 3.C 4.C 5.B 6.B 7.D 8.C二、填空题(本题共16分,每小题4分)9.-1 10.答案不唯一,如平行四边形 11.12.1,22+,1412+ (第1、2每个空各1分,第3个空2分) 三、解答题(本题共30分,每小题5分) 13. 证明:∵ AE =CF ,∴ AE +EF =CF +EF .即 AF =CE .…………………… 1分 ∵ AD ∥BC ,∴ ∠A =∠C .…………………… 2分 又∵AD =BC ,…………………… 3分 ∴ △ADF ≌△CBE .…………… 4分 ∴ DF =BE .……………………… 5分14. 解:原式15132=--+ ………………………………………… 4分 =112. …………………………………………………………………… 5分 15. 解:将方程整理,得331022x x x -++=--. 去分母,得 x -3+3+x -2 = 0. ……………………………………………2分解得 x = 1. ……………………………………………3分经检验 x = 1是原分式方程的解. ………………………………………………4 分∴原分式方程的解为x = 1. …………………………………………………………5 分16. 解:原式=2()()3()x y x y x yx y x y+-+⋅-+ ……………………………………………2 分 =3x yx y+-. …………………………………………………………3 分 ∵ x -5y =0,∴ x =5y . …………………………………………………………………4分 ∴ 原式=5325y yy y+=-.…………………………………………………………5分17. 解:设一支康乃馨的价格是x 元,一支百合的价格是y 元. …………………1分根据题意,得 3234,2336.x y x y ì+=ïí+=ïî ……………………………………………3分解得 6,8.x y ì=ïí=ïî ……………………………………………………4分答:一支康乃馨的价格是6元,一支百合的价格是8元.………… …………5分18. 解:(1)根据题意,得Δ≥0.………………………………………………………………………1分即26-)(-4×3(1-k )≥0. 解得 k ≥-2 .………………………………………………………………2分 ∵k 为负整数,∴k =-1,-2.………………………………………………………………3分(2)当k =-1时,不符合题意,舍去;…………………………………………4分当k =-2时,符合题意,此时方程的根为x 1=x 2=1.……………………5分四、解答题(本题共20分,题每小题5分) 19.解:(1)在Rt △ABC 中,∵AB =34,∠B =60°,∴AC =AB ·sin60°=6. …………………………2分(2)作DE ⊥AC 于点E ,∵∠DAB =90°,∠BAC =30°, ∴∠DAE =60°, ∵AD =2,∴DE =3.…………………………3分 AE=1. ∵AC =6,∴CE =5. ……………………………4分 ∴在Rt △DEC 中,22CE DE CD +=.∴72=CD .………………………5分20.解:(1)14.5, 3.4;………………………………………………………………2分 (2)①818.52949.5610712467⨯+⨯+⨯+⨯+⨯++++=9.4(分);………………………4分② 120×46710220++=(人) …………….…………………………………5分 估计在报名的学生中有102人得分不少于9分.21. (1)证明:如图①,连接AD .∵E是BD的中点,∴DE BE=.∴∠DAE=∠EAB.∵∠C =2∠EAB,∴∠C =∠BAD.∵AB是⊙O的直径,∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC.∴AC是⊙O的切线.………………………2分(2)解:如图②,过点F做FH⊥AB于点H.∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵2cos3C=,AC=6,∴CD=4.…………………………………………………3分同理,在Rt△BAC中,可求得BC=9.∴BD=5.设DF=x,则FH=x,BF=5-x.∵ FH∥AC,∴∠BFH=∠C.∴2 cos3FHBFHBF∠==.即253xx=-.………………………………………………4分解得x=2.∴BF=3.…………………………………………………5分22. 解:(1)如图图②……………………………………………………1分(2)445y x =-+;……………………………………………………………………………………………………3分 (3)当点P 在线段CB 的延长线上时,(2)中结论仍然成立.理由如下:过点P 分别作两坐标轴的平行线,与x 轴、y 轴分别交于点M 、N , 则四边形ONPM 为平行四边形,且PN=x ,PM =-y∴ OM =x ,BM =5-x .∵PM ∥OC ,∴ △PMB ∽△COB .…………4分∴PM BMOC OB =, 即545y x --=. ∴445y x =-+.……………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)1;………………………………………………………………………………1分 (2)∵ OP =m ,MN =(-m 2+3m )-(-m 2+2m ) =m ,∴ OP =MN .…………………………………………………………………………2分 ①当0<m <2时,∵ PM =-m 2+2m , PN =-m 2+3m .∴若PM= OP=MN ,有-m 2+2m =m ,解得m =0,m =1(舍). ……………3分 若PN= OP=MN ,有-m 2+3m =m ,解得m =0(舍),m =2(舍). ……………4分 ②当2<m <3时,不存在符合条件的m 值. ……………………………………5分 ③当m >3时,∵ PM =m 2-2m , PN =m 2-3m .∴若PM= OP=MN ,有m 2-2m =m ,解得m =0(舍),m =3(舍). ……………6分 若PN= OP=MN ,有m 2-3m =m ,解得m =0(舍),m =4. …………………7分 综上,当 m =1或m =4,这四条线段中恰有三条线段相等.24. 解:(1)△CDF 是等腰直角三角形 .………………1分 证明:∵∠ABC =90°,AF ⊥AB ,∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC .∴FD =DC .…………………………………………2分 ∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°.即∠CDF =90°. ……………………………………3分 ∴△CDF 是等腰直角三角形.(2)过点A 作AF ⊥AB ,并截取AF =BD ,连接DF 、CF .…………………………4分 ∵∠ABC =90°,AF ⊥AB , ∴∠FAD =∠DBC . ∵AD =BC ,AF =BD ,∴△FAD ≌△DBC . ∴FD =DC ,∠1=∠2. ∵∠1+∠3=90°, ∴∠2+∠3=90°. 即∠CDF =90°.∴△CDF 是等腰直角三角形.………………………………………………………5分 ∴∠FCD =∠APD =45°. ∴FC ∥AE .∵∠ABC =90°,AF ⊥AB , ∴AF ∥CE .∴四边形AFCE 是平行四边形. …………………………………………………6分 ∴AF =CE .∴BD =CE .……………………………………………………………………………7分25. 解:(1)由y =ax 2-2ax +3可得抛物线的对称轴为x =1.…………………1分∵AB =4,∴A (-1,0),B (3,0). ∴a =-1.11∴y =-x 2+2x +3. ………………………………………………………2分(2)由题意可知,BP =t ,∵B (3,0),C (0,3),∴OB =OC .∴∠PBQ =45°.∵PQ ⊥BC ,∴PQ =. ① 当0<t ≤4时,S =PBQ S ∆=14t 2 .……………………………………………3分 ② 当4<t <6时,设PQ 与AC 交于点D ,作DE ⊥AB 于点E ,则DE =PE .∵tan ∠DAE =DE OC AE OA==3. ∴DE =PE =3AE =32PA . ∵PA =t -4,∴DE =34)2t -(. ∴23612.4PAD S t t =-+△ ………………4分∵PBQ PAD S S S =-△△, ∴216122S t t =-+-. …………………………………………………5分 ③ 当t ≥6时,S =ABC S ∆=6 . ……………………………………………6分 综上所述, 2 2 1(0441612(4626(6t t S t t t t ⎧⎪⎪⎪=-+-⎨⎪⎪≥⎪⎩<≤)<<) ) (3)229≤t ≤4.…………………………………………………………………8分 说明:各解答题其它正确解法请参照给分.。