高二文科数学上学期期末试卷及答案

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.下列命题中,正确的是A. 若,,则B. 若,则C. 若,,则D. 若,则【答案】D【解析】解:对于A,要满足,,才能得到,故错;对于B,时,由,得,故错;对于C,若,,则或或,故错;对于D,若,则,则,故正确;故选:D.A,要满足,,才能得到;B,时,由,得;C,若,,则或或;D,若,则,则;本题考查了不等式的性质及其应用,属于基础题.2.一个命题与它们的逆命题、否命题、逆否命题这4个命题中A. 真命题与假命题的个数不同B. 真命题的个数一定是偶数C. 真命题的个数一定是奇数D. 真命题的个数可能是奇数,也可能是偶数【答案】B【解析】解:一个命题与他们的逆命题、否命题、逆否命题这4个命题,原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的,真命题的个数一定是一个偶数.故选:B.根据互为逆否命题的真假性是一致的,得到原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的.本题考查命题的四种形式,是一个概念辨析问题,这种题目不用运算,是一个比较简单的问题,若出现是一个送分题目.3.若点P到直线的距离比它到点的距离小1,则点P的轨迹为A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】D【解析】解:点P到直线的距离比它到点的距离小1,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,即,则点P的轨迹方程为,故选:D.由题意得,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,,写出抛物线的方程.本题考查抛物线的定义,抛物线的标准方程,判断点P的轨迹是以点为焦点,以直线为准线的抛物线,是解题的关键.4.等差数列中,若,则A. 256B. 512C. 1024D. 2048【答案】C【解析】解:等差数列中,若,可得,则.故选:C.运用等差数列的性质和指数的运算性质,结合等差数列的求和公式,计算可得所求值.本题考查等差数列的性质和求和公式,以及指数的预算性质,考查运算能力,属于基础题.5.已知函数既存在极大值又存在极小值,那么实数m的取值范围是A. B.C. D.【答案】D【解析】解:函数既存在极大值,又存在极小值有两异根,,解得或,故选:D.求出函数的导函数,根据已知条件,令导函数的判别式大于0,求出m的范围.利用导数求函数的极值问题,要注意极值点处的导数值为0,极值点左右两边的导函数符号相反.6.下面四个条件中,使成立的一个必要不充分的条件是A. B. C. D.【答案】A【解析】解:“”能推出“”,但“”不能推出“”,故满足题意;“”不能推出“”,故选项B不是“”的必要条件,不满足题意;B 不正确.“”能推出“”,且“”能推出“”,故是充要条件,不满足题意;C不正确;“”不能推出“”,故选项C不是“”的必要条件,不满足题意;D不正确.故选:A.欲求成立的必要而不充分的条件,即选择一个“”能推出的选项,但不能推出,对选项逐一分析即可.本题主要考查了必要条件、充分条件与充要条件的判断,解题的关键是理解必要而不充分的条件,属于基础题.7.若,则的最小值为A. B. 5 C. 6 D. 7【答案】C【解析】解:设,因为,则,则,由“对勾函数”的性质可得:在为减函数,即,故选:C.由三角函数的有界性得:,因为,则,由对勾函数的单调性得:在为减函数,即,得解.本题考查了三角函数的有界性及对勾函数的单调性,属中档题.8.平面四边形ABCD中,若,,,则A. B. C. D.【答案】B【解析】解:中,,,,得.,,.故选:B.由平面几何知识,不难算出,从而求得AC,AD即可.此题考查了正弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.9.已知过抛物线的焦点的直线交抛物线于A,B两点,若O为坐标原点,则A. B. C. 0 D.【答案】A【解析】解:由题意知,抛物线的焦点坐标点,直线AB的方程为,由,得,设,,则,,,,故选:A.由抛物线与过其焦点的直线方程联立,消去y整理成关于x的一元二次方程,设出、两点坐标,由向量的数量积的坐标运算得,由韦达定理可以求得答案.本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决.10.若函数的导函数的图象如图所示,则函数的图象可能是A. B. C. D.【答案】D【解析】解:由的图象知,当时,,时,,即当时,,排除B,C,当时,,排除A,故选:D.根据的图象得到当时,,时,,然后讨论x 的范围得到函数取值是否对应进行排除即可.本题主要考查函数图象的识别和判断,根据函数符号的一致性进行排除是解决本题的关键.11.若P是椭圆上的点,点Q,R分别在圆:和圆:上,则的最大值为A. 9B. 8C. 7D. 6【答案】B【解析】解:椭圆中,,椭圆两焦点,恰为两圆和的圆心,,准线,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则.故选:B.椭圆中,,故椭圆两焦点,恰为两圆和的圆心,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则,由此能求出的最大值.本题考查椭圆和圆的简单性质,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数的图象过点,为函数的导函数,e为自然对数的底数若1'/>恒成立,则不等式的解集为A. B. C. D.【答案】C【解析】解:设,则,1'/>恒成立,恒成立,单调递增,,,不等式,,,故选:C.构造函数设确定在R单调递增,即可求出不等式的解集.本题考查导数知识的运用,考查函数的单调性,正确构造函数是关键.二、填空题(本大题共4小题,共20.0分)13.已知双曲线C的离心率为,那么它的两条渐近线所成的角为______.【答案】【解析】解:设该双曲线的实半轴为a,虚半轴为b,半焦距为c,离心率,,,又,,,当双曲线的焦点在x轴时,双曲线的两条渐近线方程为,双曲线的两条渐近线互相垂直所成的角是;故答案为:.设该双曲线的实半轴为a,虚半轴为b,半焦距为c,由离心率,可求得,从而可求双曲线的两条渐近线所成的角.本题考查双曲线的简单性质,求得是关键,考查分析与运算能力,属于中档题.14.若x,y满足约束条件,则的最小值为______.【答案】1【解析】解:由x,y满足约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过点A时,直线在y轴上的截距最小,z有最小值为1.故答案为:1.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,依此规律,这个数列前44项之和为______.【答案】116【解析】解:数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,规律为1后接着3,到第几个1后接几个3,当第8个1后接8个3时,共有,则前44项之和为.故答案为:116.由题意可得该数列规律为1后接着3,到第几个1后接几个3,当第8个1后结8个3时,项数为44,计算可得所求和.本题考查数列的求和,注意总结数列的规律,考查运算能力,属于基础题.16.若长度为,4x,的三条线段可以构成一个钝角三角形,则的取值范围是______.【答案】【解析】解:,可得为最大边.由于此三角形为钝角三角形,,化为:,由,解得.又,解得:,的取值范围为.故答案为:.,可得为最大边由于此三角形为钝角三角形,可得,解出,根据三角形两边之和大于第三边可求,即可得解本题考查了余弦定理、不等式的解法、锐角三角形,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知命题p:函数在定义域上单调递增;命题q:不等式对任意实数x恒成立.Ⅰ若q为真命题,求实数a的取值范围;Ⅱ若“¬”为真命题,求实数a的取值范围.【答案】解:Ⅰ因为命题q:不等式对任意实数x恒成立为真命题,所以或综上所述:分Ⅱ因为“¬为真命题,故p真q假.因为命题p:函数在定义域上单调递增,所以分q假,由可知或所以或分所以实数a的取值范围为,分【解析】Ⅰ恒成立,时,,即,结果相并;Ⅱ为真时,;¬为真,即q为假时,或,结果再相交.本题考查了复合命题及其真假,属基础题.18.已知中,内角A,B,C所对的边分别为a,b,c,且.Ⅰ求A;Ⅱ若,求的面积.【答案】本小题满分12分解:Ⅰ.由正弦定理,得分整理得,分因为,所以,又,所以分方法二:由余弦定理得:分化简整理得:分即,又,所以分Ⅱ由余弦定理得:,,即,分又,解得,分所以分【解析】Ⅰ方法一:由已知结合正弦定理及两角和的正弦公式可求,进而可求A;方法二:由余弦定理对已知进行化简可得,然后再由余弦定理可求,进而可求A;Ⅱ由已知结合余弦定理可得,结合已知,可求b,c代入三角形面积可求.本题主要考查了正弦定理余弦定理,三角形的面积公式及两角和的正弦公式,诱导公式等知识的综合应用,数中档试题19.设函数,曲线在点处的切线方程为.Ⅰ求b,c的值;Ⅱ若,求函数的极值.【答案】本小题满分12分解:Ⅰ,分由题意得解得:,分Ⅱ依题意,由得,分所以当时,,单调递增;时,,单调递减;时,,单调递增分故的极大值为,的极小值为分【解析】Ⅰ求出函数的导数,利用已知条件推出方程,然后求解b,c的值;Ⅱ若,判断导函数的符号,然后求解函数的极值.本题考查函数的导数的应用,考查转化思想以及计算能力.20.已知函数,数列的前n项和为,点在曲线上.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.【答案】本小题满分12分解:Ⅰ因为点,在曲线上,所以,,分当,时,分当,时,,满足上式,分,所以分,Ⅱ因为,,所以分,,分【解析】Ⅰ利用点在曲线上,通过通项公式与数列的和关系,然后求解数列的通项公式;Ⅱ化简数列,利用数列的裂项相消法,求解数列的前n项和.本题考查数列的通项公式的求法,递推关系式的应用,数列与曲线相结合,考查计算能力.21.椭圆C:的离心率为,且过点.Ⅰ求椭圆C的方程;Ⅱ过点M作两条互相垂直的直线,,椭圆C上的点P到,的距离分别为,,求的最大值,并求出此时P点坐标.【答案】本小题满分12分解:Ⅰ由题意知,,所以椭圆方程为:分Ⅱ设,因为,则分因为,所以分因为,所以当时,取得最大值为,此时点分【解析】Ⅰ利用椭圆的离心率,然后求解a,b,即可得到椭圆C的方程;Ⅱ设,结合,然后求解的表达式,然后求解表达式的最大值,然后求解求解P点坐标.本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的应用,考查计算能力.22.已知函数.Ⅰ当时,讨论的单调性;Ⅱ证明:当时,.【答案】本小题满分12分解:Ⅰ,分当时,.令0'/>,得;令,得;分所以在单调递增,在单调递减分当时,令0'/>,得;令,得或;分所以在单调递增,在和单调递减分综上,当时,在单调递增,在单调递减;当时,在单调递增,在和单调递减分Ⅱ当时,分令,则.当时,,单调递减;当时,0'/>,单调递增;分所以因此分方法二:由Ⅰ得,当时,在单调递减,在单调递增,所以当时,取得极小值;分当时,,,分所以当时,取得最小值;分而,所以当时,分【解析】Ⅰ求出函数的导数,通过a的值,当时,导函数的符号,推出的单调性;Ⅱ当时,求出导函数,然后判断导函数的符号,推出单调区间.方法二:判断当时,判断导函数的符号,求解函数的最小值,然后求解函数的最值.本题考查函数的导数的应用,考查函数的单调性以及函数的最值的求法,考查计算能力.。

高二(上)期末数学试卷(文科)(解析版)

高二(上)期末数学试卷(文科)(解析版)

高二(上)期末数学试卷(文科)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i+i2在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.抛物线y2=2x的准线方程是()A. B. C.D.3.椭圆+=1的长轴长是()A.2 B.3 C.4 D.64.小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少是()A.23分钟B.24分钟C.26分钟D.31分钟5.圆x2+y2=4与圆x2+y2﹣4y+3=0的位置关系是()A.相离 B.相交 C.外切 D.内切6.在正方体ABCD﹣A1B1C1D1中,E,F分别是C1D,BC的中点,则直线A1B与直线EF 的位置关系是()A.相交 B.平行 C.异面 D.无法确定7.“b≠0”是“复数a+bi(a,b∈R)是纯虚数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β9.设直线y=kx与椭圆相交于A,B两点,分别过A,B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k=()A.±1 B.C. D.10.如图,在四棱锥S﹣ABCD中,SB⊥底面ABCD,底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是()A.0 B.1 C.2 D.3二、填空题共6小题,每小题5分,共30分.11.命题“∀x∈R,e x>0”的否定是.12.复数=.13.已知(5,0)是双曲线=1(b>0)的一个焦点,则b=,该双曲线的渐近线方程为.14.某四棱锥的三视图如图所示,则该四棱锥最长的棱长为.15.设椭圆的左、右焦点分别为F1,F2,P是椭圆上的点.若PF1⊥F1F2,∠F1PF2=60°,则椭圆的离心率为.16.已知曲线C的方程是,且m≠0).给出下列三个命题:①若m>0,则曲线C表示椭圆;②若m<0,则曲线C表示双曲线;③若曲线C表示焦点在x轴上的椭圆,则m的值越大,椭圆的离心率越大.其中,所有正确命题的序号是.三、解答题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.已知直线l过点A(1,﹣3),且与直线2x﹣y+4=0平行.(Ⅰ)求直线l的方程;(Ⅱ)若直线m与直线l垂直,且在y轴上的截距为3,求直线m的方程.18.已知圆C的圆心为点C(﹣2,1),且经过点A(0,2).(Ⅰ)求圆C的方程;(Ⅱ)若直线y=kx+1与圆C相交于M,N两点,且,求k的值.19.如图,在四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD是菱形.过AB的平面与侧棱CC1,DD1分别交于点E,F.(Ⅰ)求证:EF∥AB;(Ⅱ)求证:A1C1⊥平面DBB1D1.20.已知椭圆C:x2+4y2=4,直线与椭圆C交于不同的两点A,B.(Ⅰ)求椭圆C的焦点坐标;(Ⅱ)求实数b的取值范围;(Ⅲ)若b=1,求弦AB的长.21.如图,正方形ABCD与梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=PD=1.(Ⅰ)求证:MB∥平面PDC;(Ⅱ)求证:PM⊥平面MDC;(Ⅲ)求三棱锥P﹣MDC的体积.22.椭圆C:=1(a>b>0)的一个焦点与抛物线y2=8x焦点相同,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当||最小时,点P 恰好落在椭圆的右顶点,求实数m的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i+i2在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】由i+i2=﹣1+i,知i+i2在复平面内对应的点(﹣1,1),由此能得到结果.【解答】解:∵i+i2=﹣1+i,∴i+i2在复平面内对应的点(﹣1,1)在第二象限.故选B.2.抛物线y2=2x的准线方程是()A. B. C.D.【考点】抛物线的标准方程.【分析】利用抛物线y2=2px的准线方程为即可得出.【解答】解:由抛物线y2=2x,可得准线方程x=﹣,即.故选:C.3.椭圆+=1的长轴长是()A.2 B.3 C.4 D.6【考点】椭圆的简单性质.【分析】直接利用椭圆的标准方程求解实轴长即可.【解答】解:椭圆+=1的实轴长是:2a=6.故选:D.4.小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少是()A.23分钟B.24分钟C.26分钟D.31分钟【考点】流程图的作用.【分析】根据题干,起床穿衣﹣煮粥﹣吃早餐,同时完成其他事情共需26分钟,由此即可解答问题.【解答】解:根据题干分析,要使所用的时间最少,可设计如下:起床穿衣﹣煮粥﹣吃早饭.所用时间为:5+13+8=26(分钟),故选:C.5.圆x2+y2=4与圆x2+y2﹣4y+3=0的位置关系是()A.相离 B.相交 C.外切 D.内切【考点】圆与圆的位置关系及其判定.【分析】把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.【解答】解:把圆x2+y2﹣4y+3=0化为标准方程得:x2+(y﹣2)2=1,圆心坐标为(0,2),半径为R=1,圆x2+y2=4,圆心坐标为(0,0),半径为r=2∵圆心之间的距离d=2,R+r=3,R﹣r=1,∴R﹣r<d<R+r,则两圆的位置关系是相交.故选:B.6.在正方体ABCD﹣A1B1C1D1中,E,F分别是C1D,BC的中点,则直线A1B与直线EF 的位置关系是()A.相交 B.平行 C.异面 D.无法确定【考点】异面直线及其所成的角.【分析】连结CD1,则直线A1B与直线EF均在平面A1BCD1上,由A1B∥CD1,EF与CD1相交可判断结论.【解答】解:连结CD1,∵BC A1D1,∴四边形A1BCD1是平行四边形,∵A1B⊂平面A1BCD1,EF⊂平面A1BCD1,∴A1B与EF共面,∵A1B∥CD1,EF与CD1相交,∴直线A1B与直线EF相交.故选:A.7.“b≠0”是“复数a+bi(a,b∈R)是纯虚数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】复数a+bi(a,b∈R)是纯虚数⇒b≠0,a=0,反之不成立.【解答】解:复数a+bi(a,b∈R)是纯虚数⇒b≠0,a=0,反之不成立.∴“b≠0”是“复数a+bi(a,b∈R)是纯虚数”的必要不充分条件.故选:B.8.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β【考点】空间中直线与直线之间的位置关系.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若l∥α,l∥β,则α与β相交或平行,故A错误;若α⊥β,l∥α,则l与β相交、平行或l⊂β,故B错误;若α⊥β,l∥α,则l与β相交、平行或l⊂β,故C错误;若l⊥α,l⊥β,则由平面与平面平行的判定定理知α∥β,故D正确.故选:D.9.设直线y=kx与椭圆相交于A,B两点,分别过A,B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k=()A.±1 B.C. D.【考点】椭圆的简单性质.【分析】将直线方程与椭圆方程联立,得(1+2k2)x2=2.分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,说明A,B的横坐标是±1,即方程(1+2k2)x2=2的两个根为±1,代入求出k的值.【解答】解:将直线与椭圆方程联立,,化简整理得(1+2k2)x2=2(*)因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,故方程的两个根为±1.代入方程(*),得k=±.故选:B.10.如图,在四棱锥S﹣ABCD中,SB⊥底面ABCD,底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是()A.0 B.1 C.2 D.3【考点】棱锥的结构特征.【分析】如图所示,连接BE,由于SB⊥底面ABCD,∠SEC=90°,可得:CE⊥BE.设E(0,t)(0≤t≤3),由=0,解出即可判断出结论.【解答】解:如图所示,连接BE,∵SB⊥底面ABCD,∠SEC=90°,∴CE⊥BE.设E(0,t)(0≤t≤3),B(﹣1,3),C(﹣2,0),则=(2,t)•(1,t﹣3)=2+t(t﹣3)=0,解得t=1或2.∴E(0,1),或(0,2).∴满足∠SEC=90°的点E的个数是2.故选:C.二、填空题共6小题,每小题5分,共30分.11.命题“∀x∈R,e x>0”的否定是∃x∈R,e x≤0.【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题.所以,命题“∀x∈R,e x>0”的否定是:∃x∈R,e x≤0.故答案为:∃x∈R,e x≤0.12.复数=.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故答案为:.13.已知(5,0)是双曲线=1(b>0)的一个焦点,则b=3,该双曲线的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】由题意可得c=5,即16+b2=25,解得b,进而得到双曲线的方程,即可得到渐近线方程.【解答】解:由题意可得c=5,即16+b2=25,解得b=3,即有双曲线的方程为﹣=1,可得渐近线方程为y=±x.故答案为:3,y=±x.14.某四棱锥的三视图如图所示,则该四棱锥最长的棱长为.【考点】由三视图求面积、体积.【分析】四棱锥的底面为正方形,一条侧棱与底面垂直,求出四条侧棱的长比较大小即可.【解答】解:由三视图可知三棱锥的底面ABCD是正方形,对角线AC=2,侧棱PA⊥平面ABCD,PA=1,∴四棱锥的底面边长AB=,PB=PD==,PC==.∴三棱锥最长棱为.故答案为:.15.设椭圆的左、右焦点分别为F1,F2,P是椭圆上的点.若PF1⊥F1F2,∠F1PF2=60°,则椭圆的离心率为.【考点】椭圆的简单性质.【分析】设F1(﹣c,0),F2(c,0),由题意可得x P=﹣c,代入椭圆方程求得P的坐标,再由解直角三角形的知识,结合离心率公式,解方程可得所求值.【解答】解:设F1(﹣c,0),F2(c,0),由题意可得x P=﹣c,代入椭圆方程,解得y P=±b=±,在直角三角形F1PF2中,tan60°==,即有b2=2ac,即为a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣=0,解得e=(负的舍去).故答案为:.16.已知曲线C的方程是,且m≠0).给出下列三个命题:①若m>0,则曲线C表示椭圆;②若m<0,则曲线C表示双曲线;③若曲线C表示焦点在x轴上的椭圆,则m的值越大,椭圆的离心率越大.其中,所有正确命题的序号是②③.【考点】曲线与方程.【分析】据椭圆、双曲线方程的特点,列出等式求出离心率e,判断正误.【解答】解:①若m>0,且m≠1,则曲线C表示椭圆,不正确;②若m<0,则曲线C表示双曲线正确,;③若曲线C表示焦点在x轴上的椭圆,则当m>1时,椭圆的离心率e==,m的值越大,椭圆的离心率越大,正确.故答案为:②③.三、解答题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.已知直线l过点A(1,﹣3),且与直线2x﹣y+4=0平行.(Ⅰ)求直线l的方程;(Ⅱ)若直线m与直线l垂直,且在y轴上的截距为3,求直线m的方程.【考点】待定系数法求直线方程;直线的截距式方程.【分析】(I)利用相互平行的直线斜率之间的关系、点斜式即可得出;(II)利用相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(Ⅰ)由直线l与直线2x﹣y+4=0平行可知l的斜率为2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又直线l过点A(1,﹣3),则直线l的方程为y+3=2(x﹣1),即2x﹣y﹣5=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由直线m与直线l垂直可知m的斜率为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又直线m在y轴上的截距为3,则直线m的方程为即x+2y﹣6=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.已知圆C的圆心为点C(﹣2,1),且经过点A(0,2).(Ⅰ)求圆C的方程;(Ⅱ)若直线y=kx+1与圆C相交于M,N两点,且,求k的值.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆的半径,即可求圆C的方程;(Ⅱ)若直线y=kx+1与圆C相交于M,N两点,且,可得圆心C到直线y=kx+1的距离为,利用点到直线的距离公式求k的值.【解答】解:(Ⅰ)圆C的半径﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由圆心为点C(﹣2,1),所以圆C的方程为(x+2)2+(y﹣1)2=5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)圆心为点C(﹣2,1),半径为,,所以圆心C到直线y=kx+1的距离为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得k2=1,k=±1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣19.如图,在四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD是菱形.过AB的平面与侧棱CC1,DD1分别交于点E,F.(Ⅰ)求证:EF∥AB;(Ⅱ)求证:A1C1⊥平面DBB1D1.【考点】直线与平面垂直的判定;空间中直线与直线之间的位置关系.【分析】(Ⅰ)由底面ABCD为菱形,可得AB∥CD,易证AB∥平面D1DCC1,结合AB⊂平面ABEF,平面ABEF∩平面D1DCC1=EF,可得EF∥AB.(Ⅱ)由AA1⊥平面ABCD,可得BB1⊥平面A1B1C1D1,可证BB1⊥A1C1,又底面A1B1C1D1为菱形,可得B1D1⊥A1C1,可得A1C1⊥平面DBB1D1,【解答】(本小题12分)解:(Ⅰ)∵底面ABCD为菱形,∴AB∥CD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又AB⊄平面D1DCC1,CD⊂平面D1DCC1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴AB∥平面D1DCC1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又∵AB⊂平面ABEF,平面ABEF∩平面D1DCC1=EF,﹣﹣﹣﹣﹣∴EF∥AB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)∵AA1⊥平面ABCD,∴BB1⊥平面A1B1C1D1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又∵底面A1B1C1D1为菱形,∴B1D1⊥A1C1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵B1D1∩BB1=B1,BB1⊂平面DBB1D1,B1D1⊂平面DBB1D1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴A1C1⊥平面DBB1D1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.已知椭圆C:x2+4y2=4,直线与椭圆C交于不同的两点A,B.(Ⅰ)求椭圆C的焦点坐标;(Ⅱ)求实数b的取值范围;(Ⅲ)若b=1,求弦AB的长.【考点】椭圆的简单性质.【分析】(Ⅰ)将椭圆方程化为标准方程,求得a,b,c,即可得到所求焦点;(Ⅱ)将直线方程代入椭圆方程,消去y,得到x的方程,再由判别式大于0,解不等式即可得到所求范围;(Ⅲ)若b=1,设A(x1,y1),B(x2,y2),运用韦达定理和弦长公式,计算即可得到所求值.【解答】解:(Ⅰ)由椭圆方程x2+4y2=4得,可知a2=4,b2=1,c2=3,所以椭圆C的焦点坐标;(Ⅱ)直线方程与椭圆C的方程联立,得方程组,消y,整理得x2+2bx+2b2﹣2=0,①,由直线l与椭圆C交于不同的两点A,B,则有△=4b2﹣4(2b2﹣2)>0,解得;(Ⅲ)若b=1,设A(x1,y1),B(x2,y2),由(Ⅱ)中的①式得x1+x2=﹣2,x1x2=0,且k=,可得弦长.21.如图,正方形ABCD与梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=PD=1.(Ⅰ)求证:MB∥平面PDC;(Ⅱ)求证:PM⊥平面MDC;(Ⅲ)求三棱锥P﹣MDC的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【分析】(I)由AB∥CD,MA∥PD可得平面MAB∥平面PDC,故MB∥平面PDC;(II)由平面ABCD⊥平面AMPD可得CD⊥平面AMPD,故CD⊥PM,由勾股定理计算MP,MD,可得MP2+MD2=PD2,即PM⊥MD,于是MP⊥平面MDC;(III)以△MDC为棱锥的底面,则PM为棱锥的高,代入体积公式计算即可.【解答】解:(Ⅰ)∵四边形ABCD是正方形,∴AB∥CD,又∵MA∥PD,AB∩MA=A,CD∩PD=D,AB⊂平面ABM,MA⊂平面ABMCD⊂平面PDC,PD⊂平面PDC,∴平面ABM∥平面PDC,∵MB⊂平面ABM,∴MB∥平面PDC.(Ⅱ)∵平面ABCD⊥平面AMPD,平面ABCD∩平面AMPD=AD,CD⊥AD,CD⊂平面ABCD,∴CD⊥平面AMPD,∵PM⊂平面AMPD,∴CD⊥PM.∵在直角梯形AMPD中,由,得,∴PM2+MD2=PD2,∴MD⊥PM,又CD∩MD=D,CD⊂平面MDC,MD⊂平面MDC,∴PM⊥平面MDC.(Ⅲ)由(Ⅱ)知PM是三棱锥P﹣MDC的高,.∴三棱锥P﹣MDC的体积.22.椭圆C:=1(a>b>0)的一个焦点与抛物线y2=8x焦点相同,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当||最小时,点P 恰好落在椭圆的右顶点,求实数m的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)求得抛物线的焦点,可得c=2,由离心率公式可得a=4,再由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)设P(x,y)为椭圆上的动点,求得向量MP的坐标,再由模的公式,及二次函数的最值的求法,可得m的范围.【解答】解:(Ⅰ)由抛物线y2=8x焦点为(2,0),得c=2,由,得a=4,则b2=a2﹣c2=12,所以椭圆C的方程为;(Ⅱ)设P(x,y)为椭圆上的动点,由于椭圆方程为,故﹣4≤x≤4.因为,所以=因为当最小时,点P恰好落在椭圆的右顶点,即当x=4时,取得最小值,而﹣4≤x≤4,故有4m≥4,解得m≥1,又点M在椭圆C的长轴上,即﹣4≤m≤4,故实数m的取值范围为1≤m≤4.。

2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案

2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案

2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -高中二年级第一学期期末考试模拟试题高二数学(文)(全卷共8页,满分150分,120分钟完成)题号 一 二 三总分 15 16 17 18 19 20 得分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 直线30x y -+=的倾斜角为( ).(A )30o (B )45o (C )60o (D )135o 2. 命题“对任意3x >,都有ln 1x >”的否定是( )(A )存在3x >,使得ln 1x > (B )对任意3x >,都有ln 1x ≤ (C )存在3x >,使得ln 1x ≤ (D )对任意3x ≤,都有ln 1x > 3. 双曲线221xy -=的焦点到其渐近线的距离为( )(A )1 (B )2 (C )2 (D )224. 设,αβ是两个不同的平面,,,a b c 是三条不同的直线,( )(A )若a b ⊥,b c ⊥,则//a c (B )若//a α,//b α,则//a b (C )若a b ⊥,a α⊥,则//b α (D )若a α⊥,a β⊥,则//αβ 5. “方程221x ym n+=表示的曲线为椭圆”是“0m n >>”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 6. 设,αβ是两个不同的平面,l 是一条直线,若//l α,//l β,m αβ=I ,则( ) (A )l 与m 平行 (B )l 与m 相交 (C )l 与m 异面 (D )l 与m 垂直7. 设抛物线24C yx =:的焦点为F ,直线3=2l x -:,若过焦点F 的直线与抛物线C 相交于,A B 两点,则以线段AB 为直径的圆与直线l 的位置关系为( ).(A )相交(B )相切(C )相离(D )以上三个答案均有可能8. 设a 为空间中的一条直线,记直线a 与正方体1111ABCD A B C D -的六个面所在 的平面相交的平面个数为m ,则m 的所有可能取值构成的集合为( ) (A ){2,4} (B ){2,6} (C ){4,6} (D ){2,4,6} 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“若220a b -=,则a b =”的逆否命题为_____.10. 经过点(2,1)M 且与直线380x y -+=垂直的直线方程为_____. 11. 一个四棱锥的三视图如图所示,那么这个四棱锥的体积为_____.12. 在ABC ∆中,3AB =,4BC =,AB BC ⊥. 以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为_____.13. 若双曲线C 的一个焦点在直线43+20=0l x y -:上,一条渐近线与l 平行,且双曲线C 的焦点在x 轴上,则双曲线C 的标准方程为_____;离心率为_____. 14. 在平面直角坐标系中,曲线C 是由到两个定点(1,0)A 和点(1,0)B -的距离之积等于2的所有点组成的. 对于曲线C ,有下列四个结论:○1 曲线C 是轴对称图形; 侧(左)视图正(主)视图 俯视图22 1 11 11○2 曲线C 是中心对称图形;○3 曲线C 上所有的点都在单位圆221x y +=内;○4 曲线C 上所有的点的纵坐标11[,]22y ∈-. 其中,所有正确结论的序号是_____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)如图,在正三棱柱111ABC A B C -中,D 为AB 的中点.(Ⅰ) 求证:CD ⊥平面11ABB A ; (Ⅰ) 求证:1//BC 平面1A CD .16.(本小题满分13分)已知圆22680C x y x y m +--+=:,其中m ∈R .(Ⅰ)如果圆C 与圆221x y +=相外切,求m 的值;(Ⅰ)如果直线30x y +-=与圆C 相交所得的弦长为27,求m 的值.17.(本小题满分13分)BA CA 1 C 1B 1D如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AD CD ==,12AA AB ==,E 为1AA 的中点.(Ⅰ)求四棱锥1C AEB B -的体积; (Ⅱ)求证:1BC C E ⊥;(Ⅲ)判断线段1B C 上是否存在一点M (与点C 不重合),使得,,,C D E M 四点共面? (结论不要求证明)18.(本小题满分13分)设F 为抛物线22C y x =:的焦点,,A B 是抛物线C 上的两个动点. (Ⅰ)若直线AB 经过焦点F ,且斜率为2,求||AB ;(Ⅱ)若直线40l x y -+=:,求点A 到直线l 的距离的最小值.19.(本小题满分14分)A E C C 1B B 1D D A 1如图,在多面体ABCDEF中,底面ABCD为正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD.(Ⅰ)求证:平面ACF⊥平面BDEF;(Ⅱ)若过直线BD的一个平面与线段AE和AF分别相交于点G和H(点G 与点,A E均不重合),求证://EF GH;(Ⅲ)判断线段CE上是否存在一点M,使得平面//BDM平面AEF?若存在,求EMEC的值;若不存在,请说明理由.20.(本小题满分14分)已知椭圆22221 (0)x yC a ba b+=>>:的一个焦点为(5,0),离心率为53. 点P为圆2213M x y+=:上任意一点,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l经过点P且与椭圆C相切,l与圆M相交于另一点A,点A关于原点O的对称点为B,证明:直线PB与椭圆C相切.参考答案:FBCGEAHDBA C A 1 C 1B 1D O一、选择题:本大题共8小题,每小题5分,共40分. 1. B2. C3. A4. D5. B6. A7. C8. D二、填空题:本大题共6小题,每小题5分,共30分. 9. 若a b ≠,则220a b -≠ 10. 350x y +-=11. 1 12. 15π13. 221916x y -=,5314. ○1○2注:第13题第一空3分,第二空2分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)证明:因为正三棱柱111ABC A B C -,D 为AB 的中点,所以CD AB ⊥,1AA ⊥底面ABC .……1分 又因为CD ⊂底面ABC , 所以1AA CD ⊥.……3分又因为1AA AB A =I ,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A , 所以CD ⊥平面11ABB A .…6分(Ⅱ)证明:连接1AC ,设11AC AC O =I ,连接OD , …7分 由正三棱柱111ABC A B C -,得1AO OC =,又因为在1ABC ∆中,AD DB =, 所以1//OD BC ,…10分又因为1BC ⊄平面1A CD ,OD ⊂平面1A CD , 所以1//BC 平面1A CD .……13分16.(本小题满分13分)(Ⅰ)解:将圆C 的方程配方,得22(3)(4)25x y m -+-=-,…1分 所以圆C 的圆心为(3,4),半径2525)r m m =-<.……3分因为圆C 与圆221x y +=相外切,22(30)(40)125m -+-=+-…5分解得9m =.……7分(Ⅱ)解:圆C 的圆心到直线30x y +-=的距离222d ==.…9分因为直线30x y +-=与圆C 相交所得的弦长为27 所以由垂径定理,可得22225(22)(7)r m =-=+,…11分 解得10m =.…13分17.(本小题满分13分)(Ⅰ)解:因为1AA ⊥平面ABCD ,AD ⊂平面ABCD , 所以1AA AD ⊥.又因为AB AD ⊥,1AA AB A =I , 所以AD ⊥平面11ABB A .…1分 因为//AB CD ,所以四棱锥1C AEB B -的体积1113C AEB B AEB B V S AD -=⋅⋅四边形……2分11[(12)2]1132=⨯⨯+⨯⨯=. ……4分 (Ⅱ)证明:在底面ABCD 中,因为//AB CD ,AB AD ⊥,1AD CD ==,2AB =,所以AC =BC =,所以222AB AC BC =+,即BC AC ⊥.……6分因为在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD , 所以1CC BC ⊥, 又因为1CC AC C =I ,所以BC ⊥平面1CAEC ,……8分 又因为1C E ⊂平面1CAEC , 所以1BC C E ⊥.……10分(Ⅲ)答:对于线段1B C 上任意一点M (与点C 不重合),,,,C D E M 四点都不共面.…13分18.(本小题满分13分)(Ⅰ)解:由题意,得1(,0)2F ,则直线AB 的方程为12()2y x =-.…2分由2212(),2,y x y x ⎧⎪⎨⎪⎩=-= 消去y ,得24610x x -+=. …3分 设点11(,)A x y ,22(,)B x y ,则0∆>,且1232x x +=,1214x x =, …5分所以125|||2AB x x =-=. ……7分 (Ⅱ)解:设00(,)A x y ,则点A 到直线l距离d =.……8分由A 是抛物线C 上的动点,得202y x =,…9分所以220001|4|(1)7|2d y y y =-+=-+,…11分 所以当01y =时,min 4d =. 即点A 到直线l.……13分19.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥.… 1分又因为平面BDEF ⊥平面ABCD ,平面BDEF I 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF .… 3分 又因为AC ⊂平面ACF ,所以平面ACF ⊥平面BDEF . … 5分(Ⅱ)证明:由题意,//EF BD ,EF ⊄平面BDGH ,BD ⊂平面BDGH , 所以//EF 平面BDGH ,… 7分又因为EF ⊂平面AEF ,平面AEF I 平面BDGH GH =, 所以//EF GH . … 9分(Ⅲ)答:线段CE 上存在一点M ,使得平面//BDM 平面AEF ,此时12EM EC =.…10分以下给出证明过程.证明:设CE 的中点为M ,连接DM ,BM , 因为//BD EF ,BD ⊄平面AEF ,EF ⊂平面AEF ,所以//BD 平面AEF . …… 11分设AC BD O =I ,连接OM ,在ACE ∆中,因为OA OC =,EM MC =,所以//OM AE ,又因为OM ⊄平面AEF ,AE ⊂平面AEF , 所以//OM 平面AEF . …… 13分又因为OM BD O =I ,,OM BD ⊂平面BDM , 所以平面//BDM 平面AEF .…14分20.(本小题满分14分) (Ⅰ)解:由题意,知5c =,53c a=,…1分所以3a =,222b a c =-=,……3分所以椭圆C 的标准方程为22 1 94x y +=.…4分(Ⅱ)证明:由题意,点B 在圆M 上,且线段AB 为圆M 的直径,所以PA PB ⊥. …5分当直线PA x ⊥轴时,易得直线PA 的方程为3x =±, 由题意,得直线PB 的方程为2y =±,显然直线PB 与椭圆C 相切.同理当直线//PA x 轴时,直线PB 也与椭圆C 相切.…7分 当直线PA 与x 轴既不平行也不垂直时,设点00(),P x y ,直线PA 的斜率为k ,则0k ≠,直线PB 的斜率1k-,所以直线PA :00()y y k x x -=-,直线PB :00()1y y x x k-=--,…9分 由0022(),1,94y y k x x x y -=-+=⎧⎪⎨⎪⎩ 消去y ,得2220000(94)18()9()360k x y kx kx y kx ++-+--=.…11分因为直线PA 与椭圆C 相切,所以22210000[18()]4(94)[9()36]0y kx k k y kx ∆=--+--=,整理,得22210000144[(9)24]0x k x y k y ∆=---+-=. (1) …12分 同理,由直线PB 与椭圆C 的方程联立,得2220000211144[(9)24]x x y y k k∆=--++-. (2) 因为点P 为圆22 13M x y +=:上任意一点,所以220013x y +=,即220013y x =-.代入(1)式,得2220000(9)2(9)0x k x y k x --+-=, 代入(2)式,得222200002144[(9)2(4)]x x y k y k k∆=--++- 22200002144[(9)2(9)]x x y k x k k =--++- 2220002144[(9)2(9)]x k x y k x k=--+- 0=.FB CM EAHD OG所以此时直线PB与椭圆C相切.综上,直线PB与椭圆C相切. …14分。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

高二上学期文科数学期末试卷,附答案

高二上学期文科数学期末试卷,附答案

高二上学期数学期末试卷(新课标)文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( ) w w w .x k b 1.c o mA .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.[来源:学&科&网Z&X&X&K]其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415B .95C .6D .7二、填空题:本大题共3小题,每小题5分,共15分.11.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是.12.某三棱锥的三视图如图所示,该三棱锥的体积是。

高二年级(文科)数学第一学期期末试卷(后附详细答案)

高二年级(文科)数学第一学期期末试卷(后附详细答案)

高二年级第一学期期末考试试卷数 学(文科)考试时间:120分钟 满分150分一、选择题:本大题共12小题,每小题5分,共60分.将答案写在后面的框内,否则一律不给0分.1.“1x ≠”是“2320x x -+≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A .22143x y -= B .22153x y -= C .221259x y -= D .221169x y -= 7. “函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A .必要非充分条件 B .充分非必要条件 C.充分必要条件D .既非充分也非必要条件8.曲线y=x-1/x 在x=1处的切线方程为 ( )A .2x-y-2=0B .2x-y+2=0C .2x+y-2=0D .X-y-2=09. 双曲线221259x y -=的离心率e 等于 ( ) A .5B .534 C .3D .910. 若函数f(x)=13-8x+2x 2,且f /(x 0)=4,则x 0等于( )A .23B .22C .2D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.命题“若0a >,则1a >”的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.求曲线x xy sin =在点M (∏,0)处的切线方程为 .16. 已知椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .高二年级第一学期期末考试试卷答题卡数 学(文科)考试时间:120分钟 满分150分学校: 班级: 姓名: 总分:命题人:高尚军二、填空题(每小题4分,共20分)13. 14.15. 16. 三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)已知函数x ex f x ln )(= ; 求这个函数的图像在x=1处的切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安庆一中2007——2008学年度第一学期高二(文科)
数学期末考试卷
一、 选择题(本大题共11小题,每小题3分,共33分) 1、已知
()ln f x x =,则()f e '的值为( )
A .1
B .-1
C .e
D .1
e
2、设命题
p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断
命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .3
3、“a >b >0”是“ab <2
2
2b a +”的 ( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
4、物体的运动位移方程是S =10t -t 2 (S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s
5、椭圆14
2
2=+
y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或8
6、抛物线2
y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )
A .
1716 B .1516 C .78
D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为
( )

5
4
C.
或5
3
8、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥3 9、()()()
等于则可导在设x
x x f x x f x x f x 3lim ,000
0--+→( )
A .()02x f '
B .()0x f '
C .()03x f '
D .()04x f '
10、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆
B .双曲线
C .抛物线
D .无法确定
11、已知P 是椭圆
19
252
2=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(2
1
OF OP OQ +=
4||=OQ ,则点P 到该椭圆左准线的距离为( )
.4 C D.
2
5 安庆一中2007——2008学年度第一学期高二(文科)
数学期末考试卷
一、 选择题(本大题共11小题,每小题3分,共33分)
二、 填空题(本大题共4小题,每小题3分,共12分)
12、命题:01,2
=+-∈∃x x R x 的否定是
13、若双曲线 4422
=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,
则△AF 2B 的周长是 14、写出导函数是)(x f '=x +
x
1
的一个函数为 . 15、以下四个关于圆锥曲线的命题中:
①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;
②双曲线
221259x y -=与椭圆2
2135x y +=有相同的焦点; ③方程02522
=+-x x 的两根可分别作为椭圆和双曲线的离心率;
④和定点)0,5(A 及定直线25:4l x =的距离之比为5
4
的点的轨迹方程为
221169x y -=. 其中真命题的序号为 _______.
三、 解答题(本大题共6小题,共55分)
16、(本题满分8分)已知命题p :方程
11
22
2=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线152
2=-m
x y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围. 17、(本题满分8分)设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个
公共点,两函数的图象在点P 处有相同的切线。

试用t 分别表示a ,b ,c 。

18、(本题满分8分)
(1)已知双曲线的一条渐近线方程是x y 2
3
-
=,焦距为132,求此双曲线的标准方程; (2)求以双曲线19
162
2=-x y 的焦点为顶点,顶点为焦点的椭圆标准方程。

19、(本题满分9分)双曲线22
221x y a b
-= (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线
l 的距离与点(-1,0)到直线l 的距离之和s ≥4
5
c.求双曲线的离心率e 的取值范围.
20、(本题满分10分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |= 3 ,曲线段DE
上任一点到A 、B 两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作一条直线与曲线段DE 相交,且所
得弦以C 为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.
21、(本题满分12分)若直线l :0=++c my x 与抛物线x y 22
=交于A 、B 两点,O 点是坐标原点。

(1)当m =-1,c =-2时,求证:OA ⊥OB ;
(2)若OA ⊥OB ,求证:直线l 恒过定点;并求出这个定点坐标。

(3)当OA ⊥OB 时,试问△OAB 的外接圆与抛物线的准线位置关系如何?证明你的结论。

高二数学(文科)参考答案:
1、D
2、C
3、A
4、C
5、C
6、B
7、B
8、D
9、D 10、A 11、D
12、01,2
≠+-∈∀x x R x 13、18 14、答案不唯一,如x x x f ln 2
1)(2
+=
15、②③ 16、p :0<m <
31 q :0< m <15 p 真q 假,则空集;p 假q 真,则153
1
<≤m 故m 的取值范围为153
1
<≤m
17、因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2
t a -=. 又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '=' 而.23,2)(,3)(2
2
bt a t bx x g a x x f =+='+='所以
将2
t a -=代入上式得.t b
= 因此.3t ab c -==故2t a -=,t b =,.3t c -=
18、(1)
1942
2=-y x 或14922=-x y ;(2)125
922=+y x . 19、:直线l 的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l 的距离d 1 =
2
2
)1(b
a a
b +-.
同理得到点(-1,0)到直线l 的距离d 2 =
2
2
)1(b
a a
b ++.
s= d 1 +d 2=
c
ab
b a ab 222
2=
+.由s ≥54c,得
c c ab 542≥,即22225c a c a ≥-.
于是得22215
e e ≥-.即4e 4-25e 2+25≤0.解不等式,得4
5
≤e 2≤5.由于e>1>0,所以e 的取值范围是
52
5
≤≤e . 20、(1)以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系,
则A (-2,0),B (2,0),C (2, 3 ),D (-2,3). 依题意,曲线段DE 是以A 、B 为焦点的椭圆的一部分.
∴所求方程为
)320,42(112
162
2≤≤≤≤-=+y x y x (2)设这样的弦存在,其方程为:
得2
2
2
2
(34)16)16360k x k x k ++-+--= 设弦的端点为M (x 1,y 1),N (x 2,y 2),则由
∴弦MN 所在直线方程为y x =+验证得知,
这时(0,(4,0)M N 适合条件.
故这样的直线存在,其方程为y x =+ 21、解:设A(x 1,y 1)、B(x 2,y 2),由⎩⎨
⎧==++
202
x y c my x 得0222
=++c my y 可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2, (1) 当m =-1,c =-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.
(2) 当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直线l :0
2=-+my x 过定点(2,0).
(3) 由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。

),(2m c m D --而(m 2—c+
21)2-[(m 2—c)2+m 2 ]=c -4
1
由(2)知c=-2 ∴圆心到准线的距离大于半径,故△OAB 的外接圆与抛物线的准线相离。

相关文档
最新文档