算法大全第19章 神经网络模型
神经网络的模型和算法

神经网络的模型和算法人工智能领域中最流行的技术之一是神经网络。
神经网络是模拟神经系统对信息进行处理的一种模型。
它由多个相互连接的单元组成,形成图形结构,类似于人类神经系统。
神经网络经常被用于图像识别、语音识别和自然语言处理等应用领域。
本文将讨论神经网络的模型和算法。
神经网络的模型神经网络可以描述为由多个神经元单元组成的图形结构。
图形结构是由神经元单元之间的连接和对输入的响应特征定义的。
神经元单元可以被描述为一组输入和输出之间的特定函数。
神经网络的模型分为前向神经网络和反向神经网络。
前向神经网络根据输入数据的特征通过多个隐藏层传递信息,最终得到一个输出值。
反向神经网络则是通过输入和输出之间的关系来学习网络的参数。
反向传播算法被广泛地应用于训练多层前馈神经网络。
神经网络的算法神经网络的算法与其模型密切相关,下面将介绍几种常用的神经网络算法。
BP算法BP算法是一种反向传播算法,通过反向传播误差更新神经网络的权重和阈值,使得网络输出与期望输出之间的误差最小化。
BP算法分别计算输出层和隐含层的误差,然后反向传播误差,更新网络的权重和阈值。
Hopfield网络算法Hopfield网络算法是一种无监督学习模型,采用回馈结构,可以存储和检索模式。
Hopfield网络将重要的信息编码为状态向量,并选择一些不合法的状态,以期获得一些不同的结果。
Hopfield网络具有较好的容错性和大规模模式的处理能力。
自组织映射算法Kohonen SOM算法是一种无监督学习算法,可以进行数据降维和聚类分析。
该算法是基于映射的,将高维输入数据映射到低维输出层。
自组织映射算法将数据点映射到CRT图中的点,以发现数据库中存在的潜在结构。
总结神经网络作为人工智能工具之一,正在被应用于许多领域。
神经网络的模型和算法是其成功实现的关键。
本文介绍了几种常用的神经网络模型和算法,希望对读者理解神经网络提供一定的帮助。
[工学]42 人工神经网络的模型及算法
![[工学]42 人工神经网络的模型及算法](https://img.taocdn.com/s3/m/3fae6872ad02de80d5d84003.png)
8
C1
1
L1
Lt
Ct
t
jt
bj
Cq
q
Lq
输出层
b1
s1
1
j
sj
p
bp
隐含层
sp
ij
1
i
n
ai
BP网络结构
输入层
a1
an
图4.2.3
9
3.2.2 BP网络
BP(Back Propagation)是误差逆传播 (Error back-propagation)网络的简称。 它是应用最广、其基本思想直观、最容易理 解的多层前向神经网络。
t ( N 1) t ( N ) d tk
j 1,2,..., p;
8.
t 1,2,..., q
( 0 1)
修正输入层到中间层的连接权和中间层各单元的阈值:
ij ( N 1) ij ( N ) e kj aik
j ( N 1) j ( N ) e k j
d tk b k j 其中d tk ( ytk C tk ) f ( Lk t )
29
同理
ij
E k ij E k k b k s j j ij
q k b k s j j
E k Lk t k k L b t 1 t j
满足
1, y 1, x SA x SB
则称样本集为线性可分的,否则称为线性不可分的。
4
令
0 , (0 , 1 ,..., n )T,则在(1)式中,
y f ( i xi )
i 0 n
神经网络模型PPT课件

然而,人工神经网络却不具有这样的能 力,而可能估计出5.933或者6.007之类 的数字。换言之,如果属于定义清楚的 数学问题,却利用人工神经网络来解决, 并不妥当。人工神经网络最擅长之处, 在于复杂关系的辨认或是型态的对比。
人工神经网络的学习模式,若按照网 络神经间的联结强弱来划分类,大致 可分成三类:
表18-3
分为四组的人工神经网络分类结果
样本数 正确 错误 未知
预测组别 最低风险 次低风险 中度风险 高度风险
最低风险
25 22 1 2
22 0 1 0
实际组别
次低风险
中度中险
35
38
34
35
0
0
1
3
0
0
34
0
0
35
0
0
高度风险
30 28 0 2
0 0 0 28
表18-4
分为三组的人工神经网络分类结果
其中每经过一次训练过程,就将模拟的 结果与实际状况作比较,将其中的差异 回馈到系统中,以调整节点的强度,如 此即能获致自我组织及自我学习的效果。 在与环境互动时,亦可调整自身的结构, 以使系统结果能接近真实状况;人工神 经网络还具有容错(fault tolerance) 的特性,若是网络中有数个单元遭到损 坏,不致影响整个网络的功能。
样本数 正确 错误 未知
预测组别 低风险 中风险 高风险
低风险
27 26 0 1
26 0 0
实际组别
中风险
70 70 0 0
0 70 0
高风险
31 31 0 0
0 0 31
表18-5 分为二组的人工神经网络分类结果
样本数 正确 错误 未知
第十九章 神经网络模型

若把输入的维数增加一维,则可把阈值包括进去。例如 ,
此处增加了一个新的连接,其输入为(或),权值为(或),如下图所 示。
激活函数可以有以下几种: (i)阈值函数
(1) 即阶梯函数。这时相应的输出为
其中,常称此种神经元为模型。 (ii)分段线性函数 (2)
个标本,用所得到的方法加以识别。
(iii)设Af是宝贵的传粉益虫,Apf是某疾病的载体,是否应该修
改分类方法。
如上的问题是有代表性的,它的特点是要求依据已知资料(9支Af
的数据和6支Apf的数据)制定一种分类方法,类别是已经给定的(Af或
Apf)。今后,我们将9支Af及6支Apf的数据集合称之为学习样本。
第十九章 神经网络模型
§1 神经网络简介 人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在 反映人脑结构及功能的一种抽象数学模型。自1943年美国心理学家W. McCulloch和数学家W. Pitts提出形式神经元的抽象数学模型—MP模型以 来,人工神经网络理论技术经过了50多年曲折的发展。特别是20世纪80 年代,人工神经网络的研究取得了重大进展,有关的理论和方法已经发 展成一门界于物理学、数学、计算机科学和神经生物学之间的交叉学 科。它在模式识别,图像处理,智能控制,组合优化,金融预测与管 理,通信,机器人以及专家系统等领域得到广泛的应用,提出了40多种 神经网络模型,其中比较著名的有感知机,Hopfield网络,Boltzman 机,自适应共振理论及反向传播网络(BP)等。在这里我们仅讨论最 基本的网络模型及其学习算法。 1.1 人工神经元模型 下图表示出了作为人工神经网络(artificial neural network,以下简 称NN)的基本单元的神经元模型,它有三个基本要素:
神经网络模型及算法简介共41页

▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
Hale Waihona Puke 谢谢!4140、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
神经网络模型及算法简介
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
神经网络的计算模型与算法分析

神经网络的计算模型与算法分析神经网络是一种基于人工智能的计算模型,它通过模拟人脑神经元间的连接和信息传递过程,实现对现实世界的感知、理解和处理。
一、神经网络的计算模型神经网络的核心是神经元,它是一种具有生物特征的数学模型。
神经元有多个输入、一个输出和一个激活函数,它通过对输入信号进行加权和求和,并在通过激活函数后输出,完成对信息的处理和传递。
神经网络由多个神经元层组成,其中输入层接收外部输入,输出层产生最终输出,中间层则扮演着信息传递和处理的重要角色。
这些神经元之间通过连接相互联系,形成了一张图,称为神经网络。
二、神经网络的算法分析1.反向传播算法反向传播算法是神经网络中最常用的学习算法之一,它是一种基于梯度下降的优化方法。
其基本思想是通过计算误差的梯度来更新网络中的权重和偏置,从而降低误差。
反向传播算法需要进行两个步骤,前向传播和后向传播。
前向传播是指从输入层到输出层的信号传递过程,后向传播则是计算误差梯度并进行权重和偏置更新的过程。
通过反复进行前向传播和后向传播,最终可以得到训练后的神经网络。
2.卷积神经网络卷积神经网络是一种特殊的神经网络,它通过卷积操作来提取数据的特征。
卷积操作类似于模板匹配,遍历数据并将一个小的卷积核与其进行匹配,从而得到局部特征。
卷积神经网络由卷积层、池化层和全连接层组成。
卷积层进行特征提取,池化层用于下采样,全连接层则负责输出。
通过逐层组合并进行训练,卷积神经网络可以实现对复杂数据的高效分类任务。
3.循环神经网络循环神经网络是一种具有记忆性的神经网络,它利用前一时刻的输出来预测当前时刻的输出。
循环神经网络的核心是循环单元,它通过循环运算将输出作为输入传递给下一个时刻。
循环神经网络有多种结构,最常见的是基于长短时记忆单元(LSTM)的网络结构。
LSTM可以有效地解决长期依赖问题,并且在序列数据分析、语音识别等方面有着广泛的应用。
三、结语神经网络作为一种重要的人工智能技术,正在被越来越多的领域所应用。
神经元网络的模型和算法

神经元网络的模型和算法神经元网络是一种模拟生物神经系统的人工神经网络,具有很强的自适应能力和学习能力。
它由大量的神经元和相互之间的连接构成,可以处理各种复杂的信息。
本文将介绍神经元网络的模型和算法。
一、神经元模型神经元是神经元网络中的基本单元,它接受输入信号并产生输出信号。
神经元模型主要分为阈值型神经元模型和sigmoid型神经元模型两种。
阈值型神经元模型是最简单的神经元模型,它的输入和输出都是二进制变量,当输入超过一定阈值时,输出为1,否则为0。
这种模型适合处理离散的信息。
sigmoid型神经元模型则采用连续的输出,它的输出是一个0到1之间的实数,它的输入可以是离散的或连续的。
sigmoid型神经元模型主要用于处理连续的信息,如图像和声音信号。
二、神经元网络结构神经元网络是由大量的神经元和神经元之间的连接构成的。
神经元网络可以分为前馈神经元网络和反馈神经元网络两种。
前馈神经元网络是最简单的神经元网络,它的神经元之间的连接只允许从输入层到输出层,不允许有环,这种网络模型适合处理输入和输出之间的映射关系。
反馈神经元网络的神经元之间的连接可以形成环,每个神经元的输出可以成为下一个时刻另一个神经元的输入,这种神经元网络适用于处理时序信息和自适应控制。
三、神经元网络算法神经元网络的学习算法主要分为有监督学习算法和无监督学习算法两种。
有监督学习算法是指在训练样本中提供了期望输出的算法,最常用的算法是反向传播算法。
反向传播算法是通过神经网络的前向传播和误差反向传播两个过程来更新神经元之间的权重,以达到误差最小化的目的。
无监督学习算法是指在训练样本中没有提供期望输出的算法,常用的算法有自组织映射算法和竞争型学习算法。
自组织映射算法是一种无监督学习算法,它可以用于挖掘输入数据的潜力拓扑结构。
竞争型学习算法是指在网络中的神经元之间进行竞争,以选择最优的神经元作为输入的输出,从而实现无监督学习。
四、应用神经元网络的应用非常广泛,主要应用于模式识别、人工智能、控制系统、预测等领域。
数学建模-神经网络算法ppt课件

• 1949年,心理学家Hebb实现了对脑细胞之间相互影响的数学描述, 从心理学的角度提出了至今仍对神经网络理论有着重要影响的Hebb 学习法则。
• 1958年,E.Rosenblatt提出了描述信息在人脑中贮存和记忆的数学 模型,即著名的感知机模型(Perceptron)。
ppt课件完整
6
2. 人工神经网络的基本功能
• (1)联想记忆功能
– 由于神经网络具有分布 存储信息和并行计算的 性能,因此它具有对外 界刺激信息和输入模式 进行联想记忆的能力。
– 联想记忆有两种基本形 式
• 自联想记忆
• 异联想记忆
ppt课件完整
7
• 自联想记忆
– 网络中预先存储(记忆)多种模式信息
ppt课件完整
20
3. 神经网络的发展历史(续)
• (4) 新连接机制时期(1986-现在) – 神经网络从理论走向应用领域,出现了神经网络芯片 和神经计算机。 – 神经网络主要应用领域有
• 模式识别与图象处理(语音、指纹、故障检测和图象压缩等) • 控制与优化 • 预测与管理(市场预测、风险分析) •等
均为常数。
ppt课件完整
29
假设1:多输入单输出
ppt课件完整
• 正如生物神经元 有许多激励输入 一样,人工神经 元也应该有许多 的输入信号
• 图中,每个输入 的大小用确定数 值xi表示,它们同 时输入神经元j, 神经元的单输出 用oj表示。
30
假设2:输入类型——兴奋性和抑制性
• 生物神经元具有不同的突 触性质和突触强度,其对 输入的影响是使有些输入 在神经元产生脉冲输出过 程中所起的作用比另外一 些输入更为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s j
=
wijϕ (
w
jk
I
s k
)
j =1
j =1
k =1
网络的最终输出是
(7)
3
3
2
∑ ∑ ∑ Ois = ϕ (his ) = ϕ (
wij
H
s j
)
=
ϕ
(
wijϕ (
w
jk
I
s k
))
(8)
j =1
j =1
k =1
这里,没有考虑阈值,正如前面已经说明的那样,这一点是无关紧要的。还应指出的是,
以上作用可分别以数学式表达出来:
p
∑ uk = wkj x j , vk = uk −θk , yk = ϕ (vk ) j =1
式中 x1, x2 ,L, x p 为输入信号, wk1, wk 2 ,L, wkp 为神经元 k 之权值, uk 为线性组合结 果,θk 为阈值,ϕ (⋅) 为激活函数, yk 为神经元 k 的输出。
ϕ (v) = tanh⎜⎛ v ⎟⎞ = 1− exp(−v) ⎝ 2 ⎠ 1+ exp(−v)
这类函数具有平滑和渐近性,并保持单调性。
(4)
Matlab 中的激活(传递)函数如下表所示:
函数名
功能
purelin
线性传递函数
-231-
hardlim hardlims satlin satlins logsig tansig radbas compet
角及翅膀长度输入网络,视其输出模式靠近 (1,0) 亦或 (0,1) ,就可能判断其归属。当然,
有可能出现介于中间无法判断的情况。现在的问题是,如何找到一组适当的权值,实现 上面所设想的网络功能。
2.3 向后传播算法 对于一个多层网络,如何求得一组恰当的权值,使网络具有特定的功能,在很长一 段时间内,曾经是使研究工作者感到困难的一个问题,直到 1985 年,美国加州大学的 一个研究小组提出了所谓向后传播算法(Back-Propagation),使问题有了重大进展,这 一算法也是促成人工神经网络研究迅猛发展的一个原因。下面就来介绍这一算法。
(i)一组连接(对应于生物神经元的突触),连接强度由各连接上的权值表示,权 值为正表示激活,为负表示抑制。
(ii)一个求和单元,用于求取各输入信号的加权和(线性组合)。 (iii)一个非线性激活函数,起非线性映射作用并将神经元输出幅度限制在一定范
围内(一般限制在 (0,1) 或 (−1,1) 之间)。 此外还有一个阈值θk (或偏置 bk = −θk )。
结构。有些文献将这样的网络称为两层前传网络,称为两层的理由是,只有中间层及输
出层的单元才对信号进行处理;输入层的单元对输入数据没有任何加工,故不计算在层
数之内。
为了叙述上的方便,此处引人如下记号上的约定:令 s 表示一个确定的已知样品标 号,在蠓虫问题中, s = 1,2,L,15 ,分别表示学习样本中的 15 个样品;当将第 s 个样
对于任何一组确定的输入,输出是所有权{wij , w jk }的函数。
如果我们能够选定一组适当的权值{wij , w jk },使得对应于学习样本中任何一组 Af
样品的输入
(
I1s
,
I
s 2
)
,输出
(O1s
,
O2s
)
=
(1,0)
,对应于
Apf
的输入数据,输出为
(0,1)
,
那么蠓虫分类问题实际上就解决了。因为,对于任何一个未知类别的样品,只要将其触
了。最上面一层称为输出层,在我们的例子中只包含二个单元,用以输出与每一组输入
数据相对应的分类信息.任何一个中间层单元接受所有输入每一个输出单元,供输出层再次加工,同层的神经元彼此不相联接,输入
与输出单元之间也没有直接联接。这样,除了神经元的形式定义外,我们又给出了网络
硬限幅传递函数 对称硬限幅传递函数 饱和线性传递函数 对称饱和线性传递函数 对数 S 形传递函数 正切 S 形传递函数 径向基传递函数 竞争层传递函数
各个函数的定义及使用方法,可以参看 Matlab 的帮助(如在 Matlab 命令窗口运行
help tansig,可以看到 tantig 的使用方法,及 tansig 的定义为ϕ (v)
激活函数由
ϕ(v) =
1
1+ exp(−αv)
• 来决定。图中最下面单元,即由 所示的一层称为输入层,用以输入已知测量值。在
我们的例子中,它只需包括两个单元,一个用以输入触角长度,一个用以输入翅膀长度。
中间一层称为处理层或隐单元层,单元个数适当选取,对于它的选取方法,有一些文献
进行了讨论,但通过试验来决定,或许是最好的途径。在我们的例子中,取三个就足够
个其它结点作为其输入)。通常前馈网络可分为不同的层,第 i 层的输入只与第 i −1 层
输出相连,输入和输出结点与外界相连,而其它中间层则称为隐层。
(ii)反馈型网络
所有结点都是计算单元,同时也可接受输入,并向外界输出。
NN 的工作过程主要分为两个阶段:第一个阶段是学习期,此时各计算单元状态不
变,各连线上的权值可通过学习来修改;第二阶段是工作期,此时各连接权固定,计算
若把输入的维数增加一维,则可把阈值θk 包括进去。例如
p
∑ vk = wkj x j , yk = ϕ (uk ) j=0
此处增加了一个新的连接,其输入为 x0 = −1(或 + 1 ),权值为 wk0 = θk (或 bk ),如
下图所示。
-230-
激活函数ϕ (⋅) 可以有以下几种:
(i)阈值函数
依据的资料是触角和翅膀的长度,已经测得了 9 支 Af 和 6 支 Apf 的数据如下: Af: (1.24,1.27),(1.36,1.74),(1.38,1.64),(1.38,1.82),(1.38,1.90),(1.40,1.70), (1.48,1.82),(1.54,1.82),(1.56,2.08). Apf: (1.14,1.82),(1.18,1.96),(1.20,1.86),(1.26,2.00),(1.28,2.00),(1.30,1.96). 现在的问题是: (i)根据如上资料,如何制定一种方法,正确地区分两类蠓虫。 (ii)对触角和翼长分别为(1.24,1.80),(1.28,1.84)与(1.40,2.04)的 3 个标本,用所得
(10)
易知,对每一个变量 wij 或 wij 而言,这是一个连续可微的非线性函数,为了求得其极
小点与极小值,最为方便的就是使用最速下降法。最速下降法是一种迭代算法,为求出
E(W ) 的(局部)极小,它从一个任取的初始点W0 出发,计算在W0 点的负梯度方向 — ∇E(W0 ) ,这是函数在该点下降最快的方向;只要 ∇E(W0 ) ≠ 0 ,就可沿该方向移动 一小段距离,达到一个新的点W1 = W0 −η∇E(W0 ) ,η 是一个参数,只要η 足够小, 定能保证 E(W1 ) < E(W0 ) 。不断重复这一过程,一定能达到 E 的一个(局部)极小点。
=
2 1 + e−2v
− 1)。
1.2 网络结构及工作方式
除单元特性外,网络的拓扑结构也是 NN 的一个重要特性。从连接方式看 NN 主要
有两种。
(i)前馈型网络
各神经元接受前一层的输入,并输出给下一层,没有反馈。结点分为两类,即输入
单元和计算单元,每一计算单元可有任意个输入,但只有一个输出(它可耦合到任意多
(Ti s
− Ois )2
(9)
度量了在一组给定的权下,实际输出与理想输出的差异,由此,寻找一组恰当的权的问
题,自然地归结为求适当W 的值,使 E(W ) 达到极小的问题。将式(8)代入(9),有
∑ ∑ ∑ E(W ) =
1 2
s,i
[Ti s
3
2
−ϕ(
wijϕ (
w
jk
I
s k
))]2
j =1
k =1
−1< v <1 v ≤ −1
(2)
它类似于一个放大系数为 1 的非线性放大器,当工作于线性区时它是一个线性组合器,
放大系数趋于无穷大时变成一个阈值单元。
(iii)sigmoid 函数 最常用的函数形式为
ϕ(v) =
1
1+ exp(−αv)
(3)
参数α > 0 可控制其斜率。另一种常用的是双曲正切函数
如前所述,我们希望对应于学习样本中 Af 样品的输出是 (1,0) ,对应于 Apf 的输出
是 (0,1) ,这样的输出称之为理想输出。实际上要精确地作到这一点是不可能的,只能
希望实际输出尽可能地接近理想输出。为清楚起见,把对应于样品 s 的理想输出记为
{Tis } ,那么
∑ E(W )
=
1 2
i,s
品的原始数据输入网络时,相应的输出单元状态记为 Ois (i = 1,2) ,隐单元状态记为
H
s j
(
j
=
1,2,3)
,输入单元取值记为
I
s k
(k
=
1,2)
。请注意,此处下标 i,
j,k
依次对应于
输出层、中间层及输入层。在这一约定下,从中间层到输出层的权记为 wij ,从输入层
到中间层的权记为 w jk 。如果 wij , w jk 均已给定,那么,对应于任何一组确定的输入
到的方法加以识别。 (iii)设 Af 是宝贵的传粉益虫,Apf 是某疾病的载体,是否应该修改分类方法。 如上的问题是有代表性的,它的特点是要求依据已知资料(9 支 Af 的数据和 6 支
Apf 的数据)制定一种分类方法,类别是已经给定的(Af 或 Apf)。今后,我们将 9 支