集合知识点+基础习题(有答案)
集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合练习题带答案

集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。
以下是一些集合的练习题以及相应的答案,供学生练习和参考。
练习题1:判断下列集合是否正确,并给出理由。
- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。
- B集合正确,它表示所有偶数的集合,满足集合的定义。
- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。
练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。
- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。
- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。
- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。
练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。
答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。
练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。
答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。
练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。
答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。
高一集合知识点带配套高考真题(带答案)

高一专题 集合一:集合的含义及其关系1、集合的概念:2、集合中的元素具有的三个性质:___________、_______和_________;3、集合的3种表示方法:________、________、________; 4.常见集合的符号表示若一个集合中含有n 个元素,则它的子集个数为: 真子集个数为: 非空子集个数为: 非空真子集个数为: 三:集合的基本运算1.两个集合的交集:A B = {}x x A x B ∈∈且;特点:2.两个集合的并集: A B ={}x x A x B ∈∈或;特点: 3.两个集合的补集:设全集是U,集合A U ⊆,则U C A ={}x x U x A∈∉且职业:考点一集合的含义与表示真题1:(2012湖南,文1)设集合{}101,,-=M,{}xxxN==2,则=NM () BA.{}1,0,1-B.{}1,0C.{}1D.{}0真题2:(2015广东)如果集合{}0122=++=xaxxA中只有一个元素,则a的值是() BA.0B.0或1C.1D.不能确定变式训练变1:(2014,新课标,文1)已知集合{}202,,-=A,{}022=--=xxxB,则=BA () BA.φB.{}2C. {}0D.{}2-变2:(2014,四川,文1)已知集合()(){}021≤-+=xxxA,集合B为整数集,则=BA ()DA.{}0,1-B.{}1,0C. {}1,0,12--, D.{}2,1,0,1-变3:(2011,北京,理1)已知集合{}12≤=xxP,{}aM=。
若PMP=,则a的取值范围是()C A.(]1-∞-, B.[)∞+,1 C. []11,- D.(][)∞+-∞-,,11考点二子集与元素互异性真题1:(2013,福建,文3)若集合{}321,,=A,{}431,,=B,则BA 的子集个数为() CA.2B.3C. 4D.16真题2:(高考预测)已知{}baA,,2=,{}2,,22b aB=,且BA=,求a,b的值。
集合(含答案)

1.集合的基本概念 (1)我们把研究对象统称为________,把一些元素组成的总体 叫做________. (2)集合中元素的三个特性:________,________, _____. (3)集合常用的表示方法:________和________. 2.常用数集的符号 数集 符号 3.元素与集合、集合与集合之间的关系 (1)元素与集合之间存在两种关系:如果 a 是集合 A 中的元素, 就说 a ________集合 A,记作________;如果 a 不是集合 A 中的元 素,就说 a________集合 A,记作________. (2)集合与集合之间的关系: 表示 关系 相等 子集 文字语言 集合 A 与集合 B 中的所有元素都相同 A 中任意一个元素均为 B 中的元素 符号语言 __________ ⇔A=B ________或 ________ 正整数集 自然数集 整数集 有理数集 实数集
真子集
A 中任意一个元素均为 B 中的元素,且 B 中至少有一个元素不是 A 中的元素
________或 ________ ⊆A, B (B≠ )
空集
空集是任何集合的子集,是任何______的 真子集
结论:集合{a1,a2,„,an}的子集有______个,非空子集有 ________个,非空真子集有________个.
类型二
集合间的关系
例 2. 已知集合 A={x|x2-3x-10≤0}. (1)若 B={x|m+1≤x≤2m-1},B⊆A,求实数 m 的取值范围; (2)若 B={x|m-6≤x≤2m-1},A=B,求实数 m 的取值范围; (3)若 B={x|m-6≤x≤2m-1},A⊆B,求实数 m 的取值范围. 解:由 A={x|x2-3x-10≤0},得 A={x|-2≤x≤5}, (1)若 B⊆A,则 ①当 B=∅,有 m+1>2m-1,即 m<2,此时满足 B⊆A; m+1≤2m-1, ②当 B≠∅,有m+1≥-2,
高一数学集合、函数知识点总结、相应试题及答案

第一章(上) 集合[基础训练A 组] 一、选择题1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()AC B C B .()()A B A C C .()()A B B CD .()A B C4.下面有四个命题:其中正确命题的个数为( )(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; A .0个 B .1个 C .2个 D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈ 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则C 的非空子集的个数为 。
3.若集合{}|37A x x =≤<,{}|210B x x =<<,则AB =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。
集合的概念与运算例题及答案

1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
集合知识点+基础习题(有答案)

集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).1.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.2.常用的数集及其记法我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合之间的关系4.反馈演练1.填空题2.选择题⑴以下说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如: A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如: B={不大于3的所有实数}2、描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示如: 集合{1,2,3,4,5}用图示法表示为:三、集合间的基本关系观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3) A={正方形},B={四边形}.(4) A=∅,B={0}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。
集合复习题带答案解析

集合复习题带答案解析集合是数学中的基本概念之一,它描述了一组元素的全体。
在高中数学中,集合的概念和运算是基础中的基础。
以下是一些集合的复习题以及相应的答案解析。
题目1:已知集合A={x | x > 3},集合B={x | x < 5},求A∩B。
答案:A∩B = {x | 3 < x < 5}解析:集合A包含所有大于3的元素,集合B包含所有小于5的元素。
求两个集合的交集,即求同时满足两个条件的元素。
因此,交集中的元素x必须同时大于3且小于5。
题目2:集合C={x | x^2 - 5x + 6 = 0},求C的元素。
答案: C = {2, 3}解析:集合C由满足方程x^2 - 5x + 6 = 0的所有x组成。
解这个一元二次方程,我们可以得到x的值为2和3,因此C的元素就是这两个数。
题目3:已知集合D={x | x = 2k, k∈Z},集合E={x | x = 3m,m∈Z},求D∪E。
答案:D∪E = R (全体实数集)解析:集合D包含所有2的整数倍,集合E包含所有3的整数倍。
由于任何整数都可以表示为6的倍数(2和3的最小公倍数),因此D和E的并集包含了所有整数,也就是全体实数集。
题目4:集合F={x | x^2 - 4x + 3 = 0},判断F是否是空集。
答案: F不是空集。
解析:集合F由满足方程x^2 - 4x + 3 = 0的所有x组成。
这个方程可以通过因式分解为(x - 1)(x - 3) = 0,解得x = 1或x = 3。
因此,F包含元素1和3,不是空集。
题目5:已知集合G={x | x^2 + 2x + 1 = 0},求G的补集。
答案: G的补集是所有不在G中的实数。
解析:集合G由满足方程x^2 + 2x + 1 = 0的所有x组成。
这个方程可以写成(x + 1)^2 = 0,解得x = -1。
因此,G只包含一个元素-1。
G的补集就是除了-1以外的所有实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合练习题
知识点
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).
1.集合中元素具的有几个特征
⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.
⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.
⑶无序性-即集合中的元素没有次序之分.
2.常用的数集及其记法
我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.
常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
3.元素与集合之间的关系
4.反馈演练
1.填空题
2.选择题
⑴以下说法正确的( )
(A) “实数集”可记为{R}或{实数集}
(B){a,b,c,d}与{c,d,b,a}是两个不同的集合
(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定
⑵已知2是集合M={}中的元素,则实数为( )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
二、集合的几种表示方法
1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.
*有限集与无限集*
⑴有限集-------含有有限个元素的集合叫有限集
例如: A={1~20以内所有质数}
⑵无限集--------含有无限个元素的集合叫无限集
例如: B={不大于3的所有实数}
2、描述法-用集合所含元素的共同特征表示集合的方法.
具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.
3、图示法-- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示
如: 集合{1,2,3,4,5}用图示法表示为:
三、集合间的基本关系
观察下面几组集合,集合A与集合B具有什么关系
(1) A={1,2,3},B={1,2,3,4,5}.
(2) A={x|x>3},B={x|3x-6>0}.
(3) A={正方形},B={四边形}.
(4) A=∅,B={0}.
1.子集
定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。
这时我们也说集合A是集合B的子集(subset)。
如果集合A不包含于集合B,或集合B不包含集合A,就记作AB(或BA),即:若存在x∈A,有x∉B,则AB(或BA)
说明:A ⊆B 与B ⊇A 是同义的,而A ⊆B 与B ⊆A 是互逆的。
规定:空集∅是任何集合的子集,即对于任意一个集合A 都有∅⊆A 。
例1.判断下列集合的关系.
(1) N_____Z; (2) N_____Q; (3) R_____Z; (4) R_____Q;
(5) A={x| (x-1)2=0}, B={y|y 2-3y+2=0};
(6) A={1,3}, B={x|x 2-3x+2=0};
(7) A={-1,1}, B={x|x 2-1=0};
(8)A={x|x 是两条边相等的三角形} B={x|x 是等腰三角形}。
问题:观察(7)和(8),集合A 与集合B 的元素,有何关系
⇒集合A 与集合B 的元素完全相同,从而有:
2.集合相等
定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素(即A ⊆B ),同时集合B 的任何一个元素都是集合A 的元素(即B ⊆A ),则称集合A 等于集合B ,记作A=B 。
如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},此时有A=B 。
问题:(1)集合A 是否是其本身的子集(由定义可知,是)
(2)除去∅与A 本身外,集合A 的其它子集与集合A 的关系如何(包含于A ,但不等于A )
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A ⊆A (任何集合都是其自身的子集);
(
2
)
若
A EMBED Equation.3 ⊆
B ,而且A ≠B (即B 中至少有一个元素不在A 中),则称集合A 是集合B 的真子集
(p r o p
e r
s u b s e t ),(3)对于
集合
A ,
B ,
C ,若
A B
,B
C
,即
可
得
出
4.证明集合相等的方法:
(1) 证明集合A ,B 中的元素完全相同;(具体数据) (2) 分别证明A ⊆B 和B ⊆A 即可。
(抽象情况) 对于集合A ,B ,若A ⊆B 而且B ⊆A ,则A=B 。
例1.判断下列两组集合是否相等 (1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}
例2
.解不等式x-3>2,并把结果用集合表示。
结论:一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0。
1、已知集合,,且,则等于 (A ) (B ) (C ) (D )
2、设全集,集合,,则A.B.C.D.
3、若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)
4、若集合M={-1,0,1},N={0,1,2},则M∩N等于
A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}
5、若全集,则集合等于()
A. B. C. D.
6、若,则
A.B.C.D.
7、已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则=
A.{6,8}
B. {5,7}
C. {4,6,7}
D. {1,3,5,6,8}
8、若全集M=,N=,=()
(A)(B) (C) (D)
9、设全集则()A.B.C.D.
10、已知集合P={x︱x2≤1},M={a}.若P∪M=P,则a的取值范围是
A.(-∞, -1]B.[1, +∞)C.[-1,1] D.(-∞,-1] ∪[1,+∞)
11、若全集,集合,则。
12、已知集合A={x},B={x}},则A B=
A.{x} B.{x} C.{x} D.{x}
13、集合,,,则等于
(A)(B) (C) (D)
14、已知集合A={x|x<3}.B={1,2,3,4},则(C R A)∩B=
(A){4} (B){3,4} (C){2,3,4} (D){1,2,3,4}
15、已知集合M={1,2,3,4},M N={2,3},则集合N可以为().
A.{1,2,3}
B.{1,3,4}
C.{1,2,4}
D.{2,3,5}
16、已知全集,,,则
A.B.C.D.
17、已知集合,若,则实数的取值范围是()A.B.C.D.
18、已知集合,,则()
A.B.C.D.
19、设全集,集合,则集合= A.B.C.D.
20、若集合,,则等于
(A)(B)(C)(D){,}
21、已知集合,,则图中阴影部分表示的集合为
A. B. C. D.
22、设集合()
A.B.C.D.
23、设全集则(CuA)∩B=( ) A.B.C.D.
24、设全集,集合,,则A.B.C.D.
25、已知为实数集,,则=( ) A.B.C.D.
26、若全集U=R,集合= ()
A.(-2,2)B.C.D.
27、设全集则(CuA)∩B= ( )
A. B. C. D.
28、已知集合,集合,则
A.B.C.D.
29、设集合,,则
A.B.C.D.
30、设U={1,2,3,4},M={1,2},N={2,3},则C U(M N)=
A.{1,2,3} B.{2} C.{1,3,4} D.{4}
31、已知全集,集合,则等于A.B.C.D.
32、设集合,=
A.[0,2] B.C.D.(0,2)
33、设全集,则等于
34、设全集U={1,3,5,7}则集合M满足={5,7},则集合M为
A.B.或C.{1,3,5,7} D.或或
35、已知集合则
36、若全集,集合,则。
37、已知全集,,,那么_______.
38、设U={1,2,3,4,5}, A={1,2,3}, B={2,4}, 则A∪=
39、集合,,若,则实数的值为.
40、设全集,集合C U M={5,7},则的值为__________.。