四种命题的概念

合集下载

四种命题

四种命题

逆否命题: x UA∪ UB ,xA∪B 。

练一练
1.判断下列说法是否正确。
2)一个命题的否命题为真,它的逆命题一定为真。 3)一个命题的原命题为假,它的逆命题一定为假。 4)一个命题的逆否命题为假,它的否命题为假。 2.四种命题真假的个数可能为( )个。 答:0个、2个、4个。 如:原命题:若A∪B=A, 则A∩B=φ。 逆命题:若A∩B=φ,则A∪B=A。 否命题:若A∪B≠A,则A∩B≠φ。 逆否命题:若A∩B≠φ,则A∪B≠A。
四种命题的真假,有且只有下面四种情况:
原命题
真 真 假 假
逆命题
真 假 真 假
否命题
真 假 真 假
逆否命题
真 真 假 假
课 堂 小 结
原命题 若p则q 互 否 命 题 真 假 无 关 否命题 若﹁ p则﹁ q 逆命题 若q则p 互 否 命 题 真 假 无 关 逆否命题 若﹁ q则﹁p
总结
在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题,来 间接证明原命题为真命题.
例 证明:若p2+q2=2,则p+q≤2.
分析:直接证不好下手.
将“若p2+q2=2,则p+q≤2”看成原命题。 由于原命题和它的逆否命题具有相同的真 假性,要证原命题为真命题,可以证明它 的逆否命题为真命题。
2 2 即证明 为真命题 “若p q 2, 则p q 2.”
例 证明:若p2+q2=2,则p+q≤2.
若a2能被2整除,a是整数, 求证:a也能被2整除.
证:假设a不能被2整除,则a必为奇数, 故可令a=2m+1(m为整数), 由此得 a2=(2m+1)2=4m2+4m+1=4m(m+1)+1, 此结果表明a2是奇数, 这与题中的已知条件(a2能被2整除)相矛 盾, ∴a能被2整除.

四种命题及其关系

四种命题及其关系

对所有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 成立 不成立 不成立 P且 q
┐p或┐q 或
P或 q
┐p且┐q 且

原命题 逆命题 否命题

结论
两直线平行 同位角相等
同位角相等, 同位角相等, 两直线平行, 两直线平行,
同位角不相等, 两直线不平行 同位角不相等,
两直线不平行, 逆否命题 两直线不平行, 同位角不相等 互为逆否命题:一个命题的条件 结论分别是另一个 互为逆否命题:一个命题的条件和结论分别是另一个 条件和 命题的结论的否定 条件的否定, 结论的否定和 命题的结论的否定和条件的否定, 互为逆否命题。 这两个命题叫做互为逆否命题 这两个命题叫做互为逆否命题。 其中一个命题叫做原命题。 原 命 题:其中一个命题叫做原命题。 另一个命题叫做原命题的逆否命题。 逆否 命 题:另一个命题叫做原命题的逆否命题。 逆否命题:若 逆否命题 若┐q ,则┐ p 则 原命题: p,则 原命题:若p,则q

原命题 逆命题 否命题

结论
若f(x)是正弦函数,则f(x)是周期函数; f(x)是正弦函数 是正弦函数, f(x)是周期函数 是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; f(x)是周期函数 是周期函数, f(x)是正弦函数 是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; f(x)不是正弦函数 不是正弦函数, f(x)不是周期函数 不是周期函数;
例: “若x2+y2≠0,则x,y至少有一个不为0” ≠0, 至少有一个不为0” 是命题A的否命题,写出命题A及其逆命题、 是命题A的否命题,写出命题A及其逆命题、 逆否命题并判断它们的真假。 逆否命题并判断它们的真假。

四种命题

四种命题

四种命题的相互关系
¬p ¬q
¬q ¬p
一个符号 条件P的否定,记作“P”。读作“非 P”。
原命题则 q
逆否命题:若 q 则 p
命题:
原命题: 同位角相等,两直线平行。
逆命题: 两直线平行,同位角相等。
否命题: 同位角不相等,两直线不平行。
真 ___
假 真
假 ___ 假 ___

假 ___ 真 ___

真 ___ 真 ___
假 假
假 ___
2.四种命题的真假性之间的关系: 逆否命题 它们有相同 (1)两个命题互为_________, 的真假性. 互逆命题 互否命题 或_________, (2)两个命题为_________ 其真假性没有关系. 判断:(正确的打“√”,错误的打“×”) (1)两个互逆命题的真假性相同.( ) (2)原命题的逆命题与原命题的否命题真 假性相同.( ) (3)对于一个命题的四种命题,可以一个真 命题也没有.( )
【解析】1.选B.①否命题:若 x+y≠0,则x,y不互为相反数,真 命题.②逆否命题:若a2≤b2,则 a≤b,假命题.③否命题:若x>-3, 则x2-x-6≤0,假命题.④逆命题: 相等的两个角是对顶角,假命题. 故选B.
2.方法一:∵m>0,∴4m>0,∴4m+1>0, ∴方程x2+x-m=0的判别式Δ=4m+1>0. ∴方程x2+x-m=0有实数根. ∴原命题“如果m>0,则x2+x-m=0有实数 根”为真. 又因原命题与它的逆否命题等价,所以 “如果m>0,则x2+x-m=0有实数根”的逆 否命题也为真.
2、分别写出下列各命题 的逆命题、否命题和逆 否命题: (1)正方形的四边相等。

四种命题及其关系

四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。

2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。

对于上面的例子,其逆命题为“若x^2=1,则x = 1”。

3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。

对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。

4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。

对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。

二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。

原命题为真时,逆命题不一定为真。

例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。

2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。

例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。

3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。

例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。

4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。

例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。

四种命题

四种命题

四种命题112四种命题学习目标四种命题的内在联系,能根据一个命题构造它的逆命题、否命题和逆否命题学习过程四种命题的概念(1)对两个命题,如果一个命题的条和结论分别是另一个命题的结论和条,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若,则”,则逆命题为:“ ”(2) 一个命题的条和结论恰好是另一个命题的条的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”(3)一个命题的条和结论恰好是另一个命题的结论的否定和条的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”练习:下列四个命题:(1)若是正弦函数,则是周期函数;(2)若是周期函数,则是正弦函数;(3)若不是正弦函数,则不是周期函数;(4)若不是周期函数,则不是正弦函数(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知、、、是实数,若子,则”写出逆命题、否命题、逆否命题变式:设原命题为“已知、是实数,若是无理数,则、都是无理数”,写出它的逆命题、否命题、逆否命题动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称小结这节你学到了一些什么?你想进一步探究的问题是什么?后作业1写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若都是偶数,则是偶数;(2)若,则方程有实数根2把下列命题改写成“若,则”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等6命题“如果,那么”的逆否命题是()A如果,那么B如果,那么如果,那么D如果,那么7若ab=0则a=0或b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:8若则a=0且b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:四种命题二时学习目标1四种命题关系图;2四种命题真假关系3,命题的否定与原命题真假关系,否命题及命题的否定形式区别。

四种命题

四种命题

结 论 3
原命题和逆否题 总是同真同假
观察下列命题的真假,并总结规律。
真 否命题:若a≤b,则a+c≤b+c 真 逆命题:若a+c>b+c,则a>b 假 否命题:若四边形不是正方形,则四边形两对角线不垂直。 假 逆命题:若四边形两对角线垂直,则四边形是正方形。 真 否命题:若a≤b,则ac2≤bc2
结 论 1
原命题的真假和逆命题
的真假没有关系
判断下列否命题的真假,并总结规律。
原命题:若a>b,则a+c>b+c 否命题:若a≤b,则a+c≤b+c
真 真
真 原命题:若四边形是正方形,则四边形两对角线垂直。 假 否命题:若四边形不是正方形,则四边形两对角线不直。
原命题:若a>b,则ac2>bc2
例如: 原命题: 同位角相等,两直线平行
否命题: 同位角不相等,两直线不平行 总结: 原命题: 若p则q
否命题: 若 p 则 q
3、互为逆否命题
一个命题的条件和结论,分别是另一个命题
的结论的否定和条件的否定,这两个命题就
叫做互为逆否命题。把其中一个叫做原命题,
则另一个叫做原命题的逆否命题。
原命题: 同位角相等,两直线平行 例如: 逆否命题: 两直线不平行,同位角不相等 总结:原命题: 若p则q 逆否命题: 若 q 则 p
真 真
三边对应不全相等的两个三角形不全等。 真
逆否命题: 不全等的两个三角形三边对应不全相等。真 原命题: 逆命题: 否命题: 若a+b是偶数,则a、b都是偶数。 若a、b都是偶数,则a+b是偶数。 若a+b不是偶数,则a、b不都是偶数。

四种命题的概念


第7页/共10页
四种命题的概念
4、写出下列命题的逆命题,并判断原命题和逆命题的真假:
(1)若 x2 1,则x 1 (2)对顶角相等; (3)等腰三角形的两腰相等; (4)x2 2x 8 0 的解集为空集。
解:(1)逆命题是:若 x 1,则x2 1
原命题是假命题,逆命题是真命题 (2)逆命题是:如果两个角相等,则这两个角是对顶角
解:逆命题:当 c>0时,若ac>bc,则a>b 否命题:当 c>0时,若a≤b,则ac≤bc 逆否命题:当 c>0时,若ac≤bc,则a≤b
注意:本题中的“当c>0时”是大前提,不论在写逆命题、否命题或逆否命 题时都应该把它写在最前面;而本题原命题的条件p时:若a>b,结 论是:ac>bc.
第6页/共10页
第4页/共10页
四种命题的概念
例2、写出命题“若xy=0,则x=0或y=0的逆命题、否命题、逆否命题 解:逆命题:若x=0或y=0,则xy=0
否命题:若xy≠0,则x≠0且y≠0 逆否命题:若x≠0或y ≠0,则xy≠0 注意:(1)┓(p或q)=(┓p)且(┓q)
┓(p且q)=(┓p)或(┓q) (2)要写出原命题的逆命题,否命题,逆否命题关键是要找出原命
原命题是真命题,逆命题是假命题 (3)逆命题是:如果一个三角形有两边相等,那么这个三角形
是等腰三角形 原命题是真命题,逆命题是真命题
(4)逆命题是:空集是 x2 2x 8 0 的解集
第8页/共10页
四种命题的概念
课后小结: 1、四种命题的概念; 2、四种命题的表示方法; 3、能根据原命题写出原命题的逆命题、否命题及逆否命题。
观察下列两个命题,说出他们的不同之处 (1)同位角相等,两直线平行。 (2)两直线不平行,同位角不相等。

数学中的四种命题


真命题 真命题 假命题 假命题 真命题
练习
1,将命题"a>0时,函数 ,将命题" 的值随x值的增 时 函数y=ax+b的值随 值的增 的值随 加而增加"改写成" 则 的形式 的形式, 加而增加"改写成"p则q"的形式,并判断命题的 真假. 真假. 解答:a>0时,若x增加,则函数 增加, 解答 时 增加 则函数y=ax+b的值也随之 的值也随之 增加,它是真命题. 增加,它是真命题.
原结论 是 都是 大于 小于 反设词 不是 不都是 原结论 至少有一个 反设词 一个也没有
至少有两个 至多有一个 至少有n个 至多有(n-1)个 至少有n 至多有( 不大于 个 大于或等于 至多有n个 至少有(n+1)个 至多有n 至少有( 个 存在某x, 存在某 , 成立
对Байду номын сангаас有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 不成立 成立 不成立
"若p则q"形式的命题 若 则 形式的命题
命题"若整数 是质数 是质数, 是奇数. 命题"若整数a是质数,则a是奇数."具 是奇数 q 的形式. 有"若p则q"的形式. p 则 的形式
通常,我们把这种形式的命题中的 叫做 通常 我们把这种形式的命题中的p叫做 我们把这种形式的命题中的 命题的条件 叫做命题的结论 条件,q叫做命题的结论. 命题的条件 叫做命题的结论. "若p则q"形式的命题是命题的一种形 则 形式的命题是命题的一种形 式而不是唯一的形式,也可写成 如果p, 也可写成" 式而不是唯一的形式 也可写成"如果 那么q" 只要 就有q"等形式 只要p,就有 等形式. 那么 "只要 就有 等形式. 其中p和 可以是命题也可以不是命题 可以是命题也可以不是命题. 其中 和q可以是命题也可以不是命题

《四种命题》的教学设计

《四种命题》的教学设计任何一种教学都要从设计开始。

教学设计是一种按照指示去实施、完成短期任务的活动,它是一个系统、有秩序并且依据科学原理和方法的活动,它的目的是发挥教学的有效性,通过一定的步骤,逐渐实现预定的教学目标。

和其它教学一样,四种命题也需要一定的教学设计,实现教学目标。

一、四种命题的定义:1、问句陈述命题:这是一种最基本的命题,也称为“否定题”,是指在问句中提出的疑问,要求考生按照是非正误选择。

2、直接表达命题:这种命题只要求考生选择相应的答案,无需写出任何理由。

3、简答命题:这种命题要求考生简单地回答问题,可以有简短的解释,也可以有理由,但也不能过长。

4、分析命题:这种命题要求考生在答题的基础上,进一步分析问题,提出解决方法。

二、四种命题教学设计:1、针对问句陈述命题:在本教学设计上,首先在课前对问句陈述命题进行讲解,介绍此类命题的特点,如果是否定题,要求考生正确选择“正确”或“错误”,如果是肯定题,考生应正确选择是的答案。

接着让考生实践,根据讲解的内容,解答问句陈述命题。

2、针对直接表达命题:首先老师对学生进行直接表达命题的讲解,引导学生正确理解命题的内容,然后在根据老师提出的问题,理解命题的语义,并进行实践,反复锻炼。

3、针对简答命题:在教学中,老师首先对简答命题进行讲解,然后让学生充分利用自己的知识,有理有据地回答问题。

最后,让学生总结和归纳出学习要点,加深印象。

4、针对分析命题:教学活动中,老师首先对分析命题进行讲解,在讲解的过程中,要教会学生弄清问题的细节和特点,然后在根据问题的特点,提出解决方案,最后让学生对解决方案进行综合考虑,给出自己的解决方案。

三、四种命题教学反馈:教学中,学生从听课到实践过程中要及时进行反馈,及时调整学习策略,完善有关教学内容。

1、问句陈述命题:在教学反馈的过程中,要让学生及时反思,对自己掌握了解的情况进行评估,对未理解的地方思考、猜测,课堂上反馈口化,实践层面上利用简单的自测题进行反馈,并及时矫正向正确的方向前进。

命题的四种形式举例

命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。

命题可以是直言命题、条件命题、模态命题和复合命题。

下面分别介绍这四种形式的命题,并给出相应的例子。

1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。

例如:“所有猫都是哺乳动物。

”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。

2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。

条件命题通常由两个部分组成:前件和后件。

前件是条件,后件是结果。

例如:“如果天下雨,那么地会湿。

”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。

3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。

例如:“明天可能会下雨。

”这个命题就是一个模态命题,表达了明天下雨的可能性。

4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。

复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。

例如:“如果天下雨,那么地会湿,但是今天没下雨。

”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。

以上就是四种形式的命题及其举例。

在逻辑学中,这些命题形式被广泛用于推理和论证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论是:ac>bc.
四种命题的概念
3a 3 3、设原命题是“若a 0,则 4a 4
”的相关命题如下,在题后面的
括号里注明它是这一命题的什么命题:
3a 3 ( 1 )若a 0, 则 ( 4a 4 3a 3 (2)若 , 则a 0 ( 4a 4 3a 3 (3)若 ,则a 0 ( 4a 4
四种命题的概念
例2、写出命题“若xy=0,则x=0或y=0的逆命题、否命题、逆否命题 解:逆命题:若x=0或y=0,则xy=0 否命题:若xy≠0,则x≠0且y≠0 逆否命题:若x≠0或y ≠0,则xy≠0 注意:(1)┓(p或q)=(┓p)且(┓q) ┓(p且q)=(┓p)或(┓q)
(2)要写出原命题的逆命题,否命题,逆否命题关键是要找出原命 题的条件p和结论q
原命题:同位角相等,两直线平行。
条件(题设):同位角相等。 结论:两直线平行 它的逆命题:两直线平行,同位角相等。
原命题:同位角不相等,两直线不平行。
它的逆命题:两直线不平行,同位角不相等。
四种命题的概念
二、新知识:四种命题的概念: 1、原命题:通常把所给定的一个命题叫做原命题,如果用p和q分别表示
四种命题的概念
例1、把下列命题改写成“若p则q”的形式,并写出它的逆命题、否命题 及逆否命题. (1)负数的平方是正数; (2)正方形的四条边相等.
解:(1)原命题可以写成: 若一个数是负数,则它的平方是正数;
逆命题:若一个数的平方是正数,则它是负数; 否命题:若一个数不是负数,则它的平方不是正数; 逆否命题:若一个数的平方不是正数,则它不是负数; (2)原命题可以写成:若一个四边形是正方形,则它的四条边相等; 逆命题:若一个四边形的四条边相等,则它是正方形; 否命题:若一个四边形不是正方形,则它的四条边不相等; 逆否命题:若一个四边形的四条边不相等,则它不是正方形;
原命题的条件和结论,
则原命题可表示为:若p则q. 2、逆命题:在两个命题中,如果第一个命题的条件(或题设)是第二个命 题的结论,且第一个命题的结论是第二个命题的条件,这两个 命题叫互逆命题。其中一个命题叫做原命题,另一个命题叫做 原命题的逆命题 原命题的逆命题可表示为:若q则p. 观察下列两个命题,说出他们的不同之处
否命题 逆命题
) ) )
逆否命题
四种命题的概念
4、写出下列命题的逆命题,并判断原命题和逆命题的真假:
(1)若
x 2 1,则x 1来自(2)对顶角相等;(3)等腰三角形的两腰相等; (4)x 2
解:(1)逆命题是:若 原命题是假命题,逆命题是真命题
2 x 8 0 的解集为空集。 x 1,则x 2 1
(1)同位角相等,两直线平行。
(2)同位角不相等,两直线不平行。
四种命题的概念
3、互否命题 :一个命题的条件和结论,分别是另一个命题的条件的 否定和结论的否定。 否命题的形式可以写成:若非p则非q 其中:“非”字可以用符号“﹃”代替 即“若非p则非q”可以写成:若﹃p ,则﹃q 观察下列两个命题,说出他们的不同之处 (1)同位角相等,两直线平行。 (2)两直线不平行,同位角不相等。 4、逆否命题:一个命题的条件和结论,分别是另一个命题的结论的否 定和条件的否定。 逆否命题的形式可表示为:若非q则非p 或 若﹃q,则﹃p
四种命题的概念
学习目标: 1、理解四种命题的概念;
2、掌握四种命题的表示方法;
3、能根据原命题写出原命题的逆命题、否命题及逆否命题
四种命题的概念
一、复习回顾: 逆命题:在两个命题中,如果第一个命题的条件(或题设)是第二个命 题的结论,且第一个命题的结论是第二个命题的条件,这两个 命题叫互逆命题。其中一个命题叫做原命题,另一个命题叫做 原命题的逆命题。 例如:
四种命题的概念
1、设原命题是“若a=0,则 ab=0”,写出它的逆命题、否命题与逆否命题。
解:逆命题:若ab=0,则a=0 否命题:若a≠0,则ab≠0 逆否命题:若ab≠0,则a≠0 2、设原命题是“当 c>0时,若a>b,则ac>bc“写出它的逆命题、否命题与 逆否命题。 解:逆命题:当 c>0时,若ac>bc,则a>b 否命题:当 c>0时,若a≤b,则ac≤bc 逆否命题:当 c>0时,若ac≤bc,则a≤b 注意:本题中的“当c>0时”是大前提,不论在写逆命题、否命题或逆否命 题时都应该把它写在最前面;而本题原命题的条件p时:若a>b,结
(2)逆命题是:如果两个角相等,则这两个角是对顶角 原命题是真命题,逆命题是假命题 (3)逆命题是:如果一个三角形有两边相等,那么这个三角形 是等腰三角形 原命题是真命题,逆命题是真命题 (4)逆命题是:空集是
x 2 2 x 8 0 的解集
四种命题的概念
课后小结: 1、四种命题的概念; 2、四种命题的表示方法; 3、能根据原命题写出原命题的逆命题、否命题及逆否命题。
相关文档
最新文档