解读“数学王子”高斯正十七边形的作法(上)

合集下载

正十七边形作图

正十七边形作图
+ +
1. 如圖, 以 O 為圓心作圓,過 O 作直徑 AC; 2. 過 O 作 AC 的垂線,交圓於 B; 3. 在 OB、OC 上 分別 截 取 I、D 使 得 OI = 1 1 OA, OD= OA; 4 16 4. 以 D 為 圓 心, DI 為 半 徑 作 圓,分 別 交 OA、OC 於 W1 , W2 ; 5. 以 W1 為 圓 心, W1 I 為 半 徑 作 弧,交 W1 A 於 E1 ; 6. 以 W2 為 圓 心, W2 I 為 半 徑 作 弧,交 W1 A 於 E3 ; P5
m
4. 在邊數不超過 100 的正多邊形中,僅用尺規 作 圖 的 有 24 個 。 它 們 分別 是: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96 邊形。 1
4.3
+
B P4
+ +
P3 P2
+
P7
+
P1 K P8 C P9
+ + + + + + + P11 + P12 + + +
I
+
N5 F
+
O E
N3
+
A
P16
P10
P15
+
P14
P13
3
4.5
正 十 七 邊 形 作 圖 :方法(三 )
1. 如圖, 以 O 為圓心作圓,作兩條彼此正交的直徑 AB 和 CD; 2. 過 A 與 D 分別作切線交於 S; 1 3. 在 AS 上取點 E 使得 AE = AS ; 4 4. 以 E 為圓心, OE 為半徑,作弧交 AS 於 F, F’; 5. 以 F 為圓心, OF 為半徑,作弧交 AS 於 H; 6. 以 F’ 為圓心, OF’ 為半徑,作弧交 AS 於 H’; 7. 過 H 作 AH 的垂線交 OC 的延線於 T; 8. 延長 HT 至 Q, 使得 TQ = AH’; 9. 以 BQ 為直徑,作圓交 CT 於 M; 10. 作 OM 的中垂線, 交圓於 P; 11. 以 P 為圓心, PC 為半徑,在圓周上靠 B 的一邊截取 P1 點; 12. 從 P1 出發在圓周上以 P P1 為半徑截取 P2 , P3 , · · · , P15 作為正十七邊形的各頂點。 B

高斯正十七边形原理

高斯正十七边形原理

高斯正十七边形原理嘿,朋友们!今天咱来聊聊高斯正十七边形原理。

你说这高斯正十七边形,那可真是数学里的一颗璀璨明珠啊!想象一下,就好像是在数学的大花园里,正十七边形就是那朵最特别、最耀眼的花。

咱平常看到的图形,什么三角形、四边形,那都太常见了。

可这正十七边形,它可不一样。

它就像是一个神秘的密码,等待着我们去解开。

高斯啊,那可是个超级厉害的数学家。

他就像是一个神奇的魔法师,轻轻挥动手中的魔法棒,就把这复杂无比的正十七边形给搞定了。

你说这神奇不神奇?咱普通人可能连想都不敢想能画出正十七边形,可高斯就能做到。

这就好像是别人都还在山脚下徘徊,高斯一下子就登上了山顶,看到了别人看不到的风景。

那这正十七边形原理到底是啥呢?简单来说,就是通过一些巧妙的方法和计算,能精确地画出正十七边形。

这可不是随随便便就能做到的,得有深厚的数学功底和超级厉害的头脑才行。

咱平常过日子,有时候也得有点这种钻研的精神。

遇到难题别退缩,就像高斯面对正十七边形一样,勇往直前,去寻找解决的办法。

你想想看,要是我们都能有高斯这种精神,那还有什么事情是做不到的呢?是不是很多困难都会迎刃而解呢?这高斯正十七边形原理啊,还告诉我们一个道理,那就是别小看任何一个看似不可能的事情。

也许一开始觉得很难,觉得根本没法完成,但只要我们肯下功夫,说不定就能创造奇迹呢!就像高斯,他当初要是觉得正十七边形太难了,就放弃了,那我们现在还能知道这个神奇的原理吗?肯定不能啊!所以啊,朋友们,让我们向高斯学习,向这神秘又美妙的正十七边形原理致敬!在生活中遇到困难时,就想想高斯和他的正十七边形,告诉自己:只要努力,没有什么是不可能的!这就是我想说的,大家觉得有没有道理呢?原创不易,请尊重原创,谢谢!。

《高斯的正17边形》读后感

《高斯的正17边形》读后感

《高斯的正17边形》读后感困难,似乎是一个仿佛永远也跨越不了的桥梁。

每当你跨越一个的时候,你会发现,还有一个更大更长的桥梁在等着你。

你越害怕困难、畏惧困难,它便会更加强大;但你如果相信自己、拥有坚定不移的信念,你便可以轻而易举地跨越困难。

《高斯的正17边形》这篇文章,便告诉了我们这个道理。

1796年的一天,德国哥廷根大学中,一个有数学天分的青年正在做导师单独布置给他的三道数学题。

前两道很快就完成了。

第三道在另一张纸上:只用圆规和一把没有刻度的直尺,画一个17边形。

青年绞尽脑汁,可依旧是毫无进展。

困难激起了他的斗志,当窗口露出曙光的时候,他终于完成了第三道题。

再见到导师的时候,青年心里充满了内疚和自责。

导师一接过青年的作业时却惊呆了,他让青年当着自己的面再做一个17边形。

青年很快做出了一个正17边形,导师激动地对青年说:“你知不知道?你解开了一桩有两千年多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,可你一个晚上就解出来了。

你是个真正的天才!”原来,导师想解决它,却因为失误才将这张纸条给了青年。

每当这位青年回忆起这一幕时,总是说:“如果有人告诉我这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。

”这个青年就是数学王子高斯。

就算别人不曾成功,你也不能气馁;就算别人说“不行”,你也不能失去信心。

有些事情,在不清楚它到底有多难时,我们往往能够做得更好!由此看来,真正的困难并不是困难本身,而是我们对困难的畏惧。

做任何事的时候,都要充满信心。

不管旁人的看法如何,我们都不能放弃。

有志者事竟成。

只要你努力了就一定会有收获!投诉。

解读数学王子高斯正十七边形的作法-上

解读数学王子高斯正十七边形的作法-上

解读“数学王子”高斯正十七边形的作法(上)江苏省泰州市朱庄中学曹开清 225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

数学家高斯正17边形的故事

数学家高斯正17边形的故事

数学家高斯正17边形的故事“嘿,你们知道吗,那个伟大的数学家高斯啊,他可真是个传奇人物!”记得那是一个阳光明媚的午后,我和几个朋友聚在一块儿闲聊。

我们正讨论着那些历史上赫赫有名的人物,不知怎么的就说到了高斯。

“哎呀,高斯那可是数学天才啊!”一个朋友感叹道。

“没错没错,我听说他最厉害的就是画那个正 17 边形!”另一个朋友接着说。

我好奇地追问:“正 17 边形?那有啥特别的呀?”朋友兴致勃勃地开始给我讲解:“你想啊,要徒手画出一个正 17 边形可不容易啊,但高斯就做到了!这得需要多厉害的数学头脑啊!”我想象着高斯在纸上专注地画着正 17 边形的样子,心中涌起一股敬佩之情。

据说啊,高斯在很年轻的时候就对这个问题产生了浓厚的兴趣。

他整日整夜地思考,不断尝试各种方法。

那时候的他,就像一个在数学海洋中奋力探索的勇士,丝毫不畏惧困难。

“他难道就不会觉得累,不会想放弃吗?”我忍不住问。

“哎呀,人家那是对数学的热爱呀,这种热爱能让他克服一切!”朋友回答道。

是啊,热爱,这是多么强大的力量啊!高斯因为热爱,所以能坚持不懈地去攻克这个难题。

就好像我们每个人在生活中,如果有了热爱,是不是也能创造出属于自己的奇迹呢?我仿佛看到高斯在无数个夜晚,在昏暗的灯光下,一笔一划地勾勒着正17 边形,那专注的神情,那执着的态度,真的太让人钦佩了。

我们生活中也会遇到各种各样的挑战,有时候可能觉得很难,就想要退缩。

可是想想高斯,他面对那么难的问题都没有放弃,我们又有什么理由轻易放弃呢?高斯的正 17 边形,不仅仅是一个数学成就,更是一种精神的象征,一种告诉我们要勇往直前、永不放弃的象征!我们难道不应该向他学习吗?。

正十七边形尺规作图及证明

正十七边形尺规作图及证明

正十七边形尺规作图及证明正十七边形样本图正十七边形作法:第一步:在给定直线l上作一个圆O交直线于点A,B,分别以A,B为圆心,AB,BA为半径作弧,两弧交于点C,D,连接CD;第二步:以C为半径,CO为半径作弧交圆于点E,F,连接EF交CD于点K,再分别以K,O为圆心,KO,OK为半径作弧,两弧交于点G,H,连接GH交直线CD于点P,连接PB;第三步:再以P为圆心,小于PB的长度为半径作弧U,分别交AB,CD于点M,N,再分别以M,N为圆心,MN,NM为半径作弧,两弧圆外的交点为Q,连接QP交圆于点T,再分别以T,M为圆心,TM,MT为半径作弧,两弧圆外的交点为R,连接PR交弧U于上面的点S,下面的点W;第四步:连接S,W,再分别以S,W为圆心,SW,WS为半径作弧交于圆外的点Y,连接PY交弧U于点X,再分别以X,S为圆心SX,XS为半径作弧,两弧圆外的交点为Z,连接PZ;第五步:PZ交AB于点A₁,再分别以A₁,B为圆心,A₁B,B A₁作弧交于点A ₂,B₁,连接A₂,B₁交AB于点B₂,交圆于点C₁,连接B₂,C₁;第六步:再最后的C₁B依次戴取分点,直到最后作出十七个分点后连接,便是正十七边形。

正十七边形证明我们知道,一个正多边形的中心角的余弦值如果不是超越数,就可以用尺规作出该正多边形,求出的中心角的三角函数值代数式也就是包含了过程。

计算360cos 17⎛⎫︒ ⎪⎝⎭设正十七边形的中心角为α,则17360α=︒即16360αα=︒-亦即()sin16sin 360sin ααα=︒-=-由诱导公式()cos 2cos παα-=,我们发现:()()()()()()()()()()()()cos cos 360cos 17cos16cos 2cos 3602cos 172cos15cos3cos 3603cos 173cos14cos 4cos 3604cos 174cos13cos5cos 3604cos 175cos12cos 6cos 3606cos 176cos11cos 7ααααααααααααααααααααααααααααααα=︒-=-==︒-=-==︒-=-==︒-=-==︒-=-==︒-=-=()()()()cos 3607cos 177cos10cos8cos 3608cos 178cos9ααααααααα=︒-=-==︒-=-=因此我们有结论1:cos cos16cos 2cos15cos3cos14cos 4cos13cos5cos12cos 6cos11cos 7cos10cos8cos9αααααααααααααααα======== 该结论我们以后使用。

正十七边形作法

正十七边形作法
正十七边形是几何图形的一个特殊类型,它是由十七条相等的线段组成的,具有十七个角和十七个边,所以它被称为正十七边形。

由于其外形美丽,受到了艺术家和几何学家的青睐,它出现在许多艺术品,如十九世纪英国著名画家弗兰克拉特勒的《正十七边形》中。

正十七边形的历史可以追溯到古代希腊几何学家,他们发现了一些基础几何知识,其中之一就是正十七边形,而创造出这种图形的人则首先是希腊几何学家厄塞尔罗斯(Eureleos),他展示了这种图形
最早的形式,也就是正十七边形。

正十七边形的制作可以分为三个步骤。

首先,画一个圆,圆心到圆周上任意点A的距离为R,其次,画一个外接圆,圆心到A的距离为2R,同时画一个8R的小圆,圆心到A的距离为21R,然后,以小
圆为半径画一个正多边形,十七边的话就会得到一个正十七边形。

正十七边形的图形具有着不可复制的特点,这是由于它具有特殊的构造,也就是说它的角度和边长是以一定的数量和比例来构成的,不可以随意更改。

正十七边形的比例规律不仅仅出现在角度和边长上,在数学上,它也有许多有趣的特性,例如它有一个主对称轴,即从图形的中心点出发,通过其所有的顶点,可以看出来它是一个非常对称的正十七边形。

正十七边形是一种美丽的几何图形,它常常被用来装饰艺术品或用作图案。

目前,正十七边形已经广泛应用于许多不同的领域,如构图、分配、交互设计等,它在空间结构和构图中也发挥着重要作用。

正十七边形作法是一种古老的设计,它不仅在几何学中具有重要意义,而且在许多其他的领域,例如装饰、建筑等也有重要的地位,它的存在也给人们带来了视觉上的美感,使人们在欣赏这种艺术性的几何结构的同时,也感受到了几何的精确性和完美的美学体验。

尺规作图正十七边形

16cosacos2acos4acos8a=-1
又由2cosacos2a=cosa+cos3a等,有
2(cosa+cos2a+…+cos8a)=-1
注意到 cos15a=cos2a,cos12a=cos5a,令
x=cosa+cos2a+cos4a+cos8a
y=coos7a
可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出
备注三
正十七边形的尺规作图存在之证明:
设正17边形中心角为a,则17a=360度,即16a=360度-a
故sin16a=-sina,而
sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a
因sina不等于0,两边除之有:
作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 ,过F点,此圆交直线OA于G4和G6两点。
步骤三:
过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点,P4为第四顶点,P6为第六顶点。
以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。
正17边形很好做啊
正17边形的作法
作法:
1.作一个半径为1的圆O,在圆O中作互相垂直的两条直径A1B1,C1D1
2.在A1B1找一点B,使OB=1/4
3.以B为圆心,BD1为半径画弧,交A1B1线于C和C'
4.分别以C,C'为圆心,以CD1,C'D1为半径画弧,交A1B1线于D和D'

解读“数学王子”高斯正十七边形的作法(上)精品文档7页

解读“数学王子”高斯正十七边形的作法江苏省泰州市朱庄中学曹开清225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

美如画,正多边形的尺规作图法,数学原来如此美丽!

美如画,正多边形的尺规作图法,数学原来如此美丽!
导读:他10岁时巧妙算出1-100的等差数列之和;24岁时发表《算术研究》,奠定近代数论的基础,还独立给代数基本定理作出4个证明;他希望自己的墓碑上能刻一个正十七边形。

1777年的今天,数学家高斯出生。

认真看,这就是美如画的正十七边形尺规作图方法
所谓的尺规作图是指只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。

值得注意的是,以上的“直尺”和“圆规”是抽象意义的,跟现实中的并非完全相同,具体而言,有以下的限制:直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。

只可以用它来将两个点连在一起,不可以在上画刻度。

圆规可以开至无限宽,但上面亦不能有刻度。

它只可以拉开成你之前构造过的长度或一个任意的长度。

正三角形尺规作图法
正五边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解读“数学王子”高斯正十七边形的作法江苏省泰州市朱庄中学曹开清225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

这道题把他难住了——所学过的数学知识竟然对解出这道题没有任何帮助。

时间一分一秒的过去了,第三道题竟毫无进展。

他绞尽脑汁,尝试着用一些超常规的思路去寻求答案。

当窗口露出曙光时,他终于解决了这道难题。

当他把作业交给导师时,感到很惭愧。

他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,……”导师看完作业后,激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米得没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。

你是一个真正的天才!”原来,导师也一直想解开这道难题。

那天,他是因为拿错了,才将写有这道题目的纸条交给了学生。

在这件事情发生后,高斯曾回忆说:“如果有人告诉我,那是一道千古难题,我可能永远也没有信心将它解出来。

”1796年3月30日,当高斯差一个月满十九岁时,在期刊上发表《关于正十七边形作图的问题》。

他显然以此为自豪,还要求以后将正十七边形刻在他的墓碑上。

然而高斯的纪念碑上并没有刻上十七边形,而刻着一颗十七角星,原来是负责刻纪念碑的雕刻家认为:“正十七边形和圆太像了,刻出来之后,每个人都会误以为是一个圆。

”1877年布雷默尔奉汉诺威王之命为高斯做一个纪念奖章。

上面刻着:“汉诺威王乔治V. 献给数学王子高斯(Georgius V. rex Hannoverage Mathematicorum principi)”,自那之后,高斯就以“数学王子”着称于世。

二、高斯正十七边形尺规作图的思路(这里是纯三角法)作正十七边形的关键是作出cos 172π,为此要建立求解cos 172π的方程。

设正17边形中心角为α,则17α=2π,即16α=2π-α故sin16α=-sinα ,而sin16α=2sin8α cos8α=4sin4α cos4α cos8α=8 sin2α cos2α cos4α cos8α=16 sinα cosα cos2α cos4α cos8α因sinα ≠0,两边除以sinα,有16cosα cos2α cos4α cos8α=-1由积化和差公式,得4(cosα+cos3α)(cos4α+cos12α)=-1展开,得4(cosα cos4α+cosα cos12α+cos3α cos4α+cos3α cos12α)=-1再由积化和差公式,得2[(cos3α+cos5α)+(cos11+cos13α)+(co sα+cos7α)+(cos9α+cos15α)]=-1注意到 cos11α=cos6α,cos13α=cos4α,cos9α=cos8α,cos15α=cos2α,有 2(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1设 a =2(cosα+ cos2α+cos4α+ cos8α),b =2(cos3α+ cos5α+cos6α+ cos7α),则 a +b =-1又ab =2(cosα+cos2α+cos4α+cos8α)·2(cos3α+co s5α+cos6α+cos7α)=4cosα(cos3α+cos5α+cos6α+cos7α)+4cos2α(cos3α+cos5α+cos6α+cos7α)+4cos4α(cos3α+cos5α+cos6α+cos7α)+4cos8α(cos3α+cos5α+cos6α+cos7α) 再展开之后共16项,对这16项的每一项应用积化和差公式,可得:ab =2 [(cos2α+cos4α)+(cos4α+cos6α)+(cos5α+cos7α)+(cos6α+cos8α)+(cos α+cos5α)+(cos3α+cos7α)+(cos4α+cos8α)+(cos5α+cos9α)+(cosα+cos7α)+(cosα+cos9α)+(cos2α+cos10α)+(cos3α+cos11α)+(cos5α+cos11α)+(cos3α+cos13α)+(cos2α+cos14α)+(cosα+cos15α)]注意到cos9α=cos8α,cos10α=cos7α, cos11α=cos6α,cos13α=cos4α,cos14α=cos3α,cos15α=cos2α,有ab =2×4(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-4因为cosα+cos2α+cos8α=(cos172π+cos 174π)+cos 1716π =2cos 17πcos 173π-cos 17π=2cos 17π(cos 173π-21) 又 0 < 173π < 3π < 2π 所以cos 173π> 21 即cosα+cos2α+cos8α > 0又因为 cos4α=cos 178π> 0 所以 a =cosα+cos2α+cos4α+cos8α > 0又 ab =-4< 0所以有a > 0, b< 0可解得a =2171+-,b =2171--再设c =2(cosα+cos4α),d =2(cos2α+cos8α),则c+d =acd=2(cosα+ cos4α)·2(cos2α+ cos8α)=4 (cosαcos2α+cosαcos8α+cos4αcos2α+cos4αcos8α)=2 [(cosα+cos3α)+(cos7α+cos9α)+(cos2α+cos6α)+(cos4α+cos12α)]注意到cos9α=cos8α,cos12α=cos5α,有cd=2[(cosα+cos3α)+(cos7α+cos8α)+(cos2α+cos6α)+(cos4α+cos5α)]=2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1因为0 < α < 2α < 4α < 8α < π所以cosα > cos2α,cos4α > cos8α两式相加得cosα+cos4α> cos2α+cos8α或2(cosα+cos4α)> 2(cos2α+cos8α)即c > d,又cd=-1 < 0所以有c > 0,d < 0可解得c=24 2++aa,【d=24 2+-aa】类似地,设e=2(cos3α+cos5α),f=2(cos6α+cos7α)则e+f=bef=2(cos3α+cos5α)·2(cos6α+cos7α)=4(cos3αcos6α+cos3αcos7α+cos5αcos6α+cos5αcos7α)=2 [(cos3α+cos9α)+(cos4α+cos10α)+(cosα+cos11α)+(cos2α+cos12α)]注意到cos9α=cos8α,cos10α=cos7α,cos11α=cos6α,cos12α=cos5α,有ef=2[(cos3α+cos8α)+(cos4α+cos7α)+(cosα+cos6α)+(cos2α+cos5α)]=2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+co s7α+cos8α)=-1因为0 < 3α < 5α < 6α < 7α < π所以有cos3α > cos6α,cos5α > cos7α两式相加得cos3α+cos5α> cos6α+cos7α2(cos3α+cos5α)> 2(cos6α+cos7α)即e > f,又ef=-1 < 0所以有e > 0,f < 0可解得e=24 2++bb,【f=24 2+-bb】由c =2(cosα+cos4α),得cosα+cos4α=2c ,即cos 172π+cos 178π=2c e =2(cos3α+cos5α),应用积化和差公式,得cosαcos4α=4e ,即 cos 172πcos 178π=4e 因为0<172π<178π<2π,所以cos 172π>cos 178π>0 所以cos 172π=442e c c -+,【cos 178π=442e c c --】 于是,我们得到一系列的等式:a =2171+-,b =2171--,c =242++a a ,e =242++b b , cos 172π=442e c c -+ 有了这些等式,只要依次作出a 、b 、c 、e ,便可作出cos172π。

相关文档
最新文档