专题训练(一) 有理数的大小比较方法归类
七年级数学上册 2.5《有理数大小的比较》有理数的大小比较的方法与技巧素材 (新版)华东师大版

有理数的大小比较的方法与技巧数的大小比较,是数学中经常遇到的问题,现介绍几种数的大小比较的方法和技巧.1.作差法比较两个数的大小,可以先求出两数的差,看差大于零、等于零或小于零,从而确定两个数的大小.即若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.例1已知A=987654321×987654324,B= 987654323×987654322,试比较A和B的大小.解:设987654321=m,则A=m(m+3),B=(m+1)(m+2)∵A-B=m(m+3)-(m+1)(m+2)=m2+3m-m2-3m-2=-2<0。
∴A<B。
2.作商法比较两个正数的大小,可以先求出这两个数的商,看商大于1、等于1或小于1,从而确定两个数的大小.3.倒数法比较两个数的大小,可以先求出其倒数,视其倒数的大小,从而确定这两个数的大小.4.变形法比较大小,有时可以通过把这些数适当地变形,再进行比较.分析:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.例6比较355、444、533的大小.解∵ 355=(35)11=24311444=(44)11=25611533=(53)11=12511∴ 444>355>5335、利用有理数大小的比较法则有理数大小的比较法则为:正数都大于零,负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小.例7特别需注意的一点,就是关于两个负数大小的比较,其一般步骤如下:(1)分别求出两个已知负数的绝对值;(2)比较两个绝对值的大小;(3)根据两个负数比较大小的法则得出结果.例8解:6、利用数轴比较法在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把须比较的有理数在数轴上表示出来,通过数轴判断两数的大小.例9已知:a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.解:∵a>0,b<0,说明表示a、b的点分别在原点的右边和左边,又由|b|<a知表示a的点到原点的距离大于表示b的点到原点的距离,则四个数在数轴上表示如图:故-a<b<-b<a.7、注意对字母的分类讨论法例10比较a与2a的大小.解:a表示的数可分为正数、零、负数三种情况:当a>0时,a<2a;当a=0时,a=2a;当a<0时,a>2a.。
有理数的大小比较的方法与技巧

有理数的大小比较的方法与技巧数的大小比较,是数学中经常遇到的问题,现介绍几种数的大小比较的方法和技巧.1.作差法比较两个数的大小,可以先求出两数的差,看差大于零、等于零或小于零,从而确定两个数的大小.即若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.例1已知A=987654321×987654324,B= 987654323×987654322,试比较A和B的大小.解:设987654321=m,则A=m(m+3),B=(m+1)(m+2)∵A-B=m(m+3)-(m+1)(m+2)=m2+3m-m2-3m-2=-2<0。
∴A<B。
2.作商法比较两个正数的大小,可以先求出这两个数的商,看商大于1、等于1或小于1,从而确定两个数的大小.3.倒数法比较两个数的大小,可以先求出其倒数,视其倒数的大小,从而确定这两个数的大小.4.变形法比较大小,有时可以通过把这些数适当地变形,再进行比较.分析:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.例6比较355、444、533的大小.解∵ 355=(35)11=24311444=(44)11=25611533=(53)11=12511∴ 444>355>5335、利用有理数大小的比较法则有理数大小的比较法则为:正数都大于零,负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小.例7特别需注意的一点,就是关于两个负数大小的比较,其一般步骤如下:(1)分别求出两个已知负数的绝对值;(2)比较两个绝对值的大小;(3)根据两个负数比较大小的法则得出结果.例8解:6、利用数轴比较法在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把须比较的有理数在数轴上表示出来,通过数轴判断两数的大小.例9已知:a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.解:∵a>0,b<0,说明表示a、b的点分别在原点的右边和左边,又由|b|<a知表示a的点到原点的距离大于表示b的点到原点的距离,则四个数在数轴上表示如图:故-a<b<-b<a.7、注意对字母的分类讨论法例10比较a与2a的大小.解:a表示的数可分为正数、零、负数三种情况:当a>0时,a<2a;当a=0时,a=2a;当a<0时,a>2a.-----精心整理,希望对您有所帮助!。
比较有理数大小的类型和方法

比较有理数大小的类型与方法一、两个有理数比较大小,可以归纳为五种情况:(1)两个正数,如3和310; 分析:1、一个分数和一个小数比较大小时,要统一成分数或者小数,一般统一成小数;2、异分母的两个分数比较大小时,先通分再比较。
(2)正数和0,如3和0;分析:由“比较大小的法则:正数大于零”,直接可得出3>0(3)负数和0,如-2和0;分析:由“比较大小的法则:负数小于零”,直接可得出-2<0(4)一个负数和一个正数,如-2和3;分析:由“比较大小的法则:负数小于正数”,直接可得出-2<3(5)两个负数,如-2和-3。
分析:因为33,22=-=-,2<3,由“两个负数比较大小,绝对值大的反而小”,可得-2>-3二、比较有理数大小的方法方法一:利用数轴比较有理数的大小数轴上的点表示的数,右边的总比左边的大。
例1:在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514. 解:如图所示.-6<-514<-35<0<1.5<2. 例2:如图,有理数a 在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a解:选B例3:大于-2.5而小于3.5的整数共有个。
解:6个例4:已知a>0,b<0,且b>a,试比较a、a-、b、b-的大小。
解:根据题意画出数轴,如图在数轴上表示a-、b-的点。
根据“数轴上的点表示的数,右边的总比左边的大”,可得b<-a<a<-b方法二:利用比较大小的法则比较有理数大小。
正数大于0,负数小于0,正数大于负数。
两个负数比较大小,绝对值大的反而小。
例5:在3,-9,412,-2四个有理数中,最大的是()A.3B.-9C.412 D.-2解:选C方法三:利用特殊值比较有理数的大小。
例6:比较2a与3a的大小。
解:当0<a时,aa32>当0=a时,aa32=当0>a时,aa32<。
七上:有理数大小比较的常用方法与技巧

七上:有理数大小比较的常用方法与技巧以下主要讲述有理数大小比较的常用方法 数轴比较法、代数比较法、差值比较法、商值比较法。
此外,还有倒数比较法、中间值比较法、平方比较法、换元比较法等。
(一)数轴比较法比较法则:将各数分别表示在在数轴上,右边的点表示的数总比左边的点表示的数大,即越往右数越大。
例1. 把下列各数表示的点画在数轴上,并用“<”把这些数连接起来. -|-1.5| ,-5 ,⎪⎭⎫ ⎝⎛--25 , 0 , (-2)2 .用“<”把这些数连接起来:___________________________.如图:所以 变式:已知:a <0,b >0,且|a |<b ,试比较a ,-a ,b ,-b 的大小.(二)代数比较法比较法则:正数大于零,负数小于零,正数大于一切负数;两个负数,绝对值大的反而小。
特别注意:负数之间的大小比较一般步骤:(1)分别求出已知负数的绝对值;(2)比较所得的绝对值的大小;(3)根据法则得出结果。
例2. 下面不等式正确的是( )A .4332-<- B.11361-<- C.()()2278-<- D.91.01.1-< 解析:A 选项,两个都是负数,其绝对值分别是4332、,因4332<,故4332->-,A 错. B 选项,计算后两个数分别为11361、,且11361<,B 正确. C 选项,()()()()222278,4964,497,648->->=-=-即,C 错. D 选项,正数大于一切负数,故1.1>-0.91,D 错.(三)差值比较法比较法则:设a ,b 是两个任意的数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b 。
例3. 已知a =221×224,b =222×223,试比较a 和b 的大小。
解:设221=m ,则a =m(m+3),b =(m+1)(m+2)∵A-B =m(m+3)-(m+1)(m+2)=m 2+3m-m 2-3m-2=-2<0∴a <b变式3:已知a =1133×1135,b =1132×1134,试比较a 和b 的大小。
初一数学有理数的大小比较试题

初一数学有理数的大小比较试题1.比较-和-的大小.【答案】->-.【解析】本题考查的是有理数的大小比较根据有理数的大小比较法则:两个负数,绝对值大的反而小,进行比较,也可根据数轴上右边的数总比左边的大进行比较。
解法一:利用绝对值知识因为|-|=,|-|=,<.所以根据两个负数,绝对值大的反而小,可得->-.解法二:利用数轴,把它们表示在数轴上(如图所示).根据右边的数总比左边的大,可得:->-.比较两个有理数的大小可用有理数的大小比较法则,也可利用数轴.2.将有理数0,-3.14,-,2.7,-4,0.14按从小到大的顺序排列,用“< ”号连接起来.【答案】【解析】本题考查的是有理数的大小比较根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小,进行比较即可。
,,,且,,涉及多个数的大小比较时,可先将它们分三类:正数,0,负数,•因为正数都大于0,负数都小于0,正数的大小比较我们在小学就已学过,•故本题的关键是几个负数的大小比较.3.把-3.5,│-2│,-1.5,0的绝对值,3,-3.5•的相反数按从大到小的顺序排列起来.【答案】│-3.5│>│-2│>│-1.5│>0>-3【解析】本题考查的是绝对值、相反数的定义,有理数的大小比较先根据绝对值、相反数的定义求出结果,在根据有理数的大小比较法则即可比较。
-3.5的绝对值是3.5,│-2│=2的绝对值是2,-1.5的绝对值是1.5,0的绝对值是0,3的相反数是,-3.5•的相反数是3.5,。
解答本题的关键是明确需要比较的具体是哪几个数。
4.在有理数-,0,│-(-3)│,-│+1000│,-(-5)中最大的数是()A.0B.-(-5)C.-│+1000│D.-【答案】B【解析】本题考查的是相反数、绝对值的定义,有理数的大小比较先根据相反数、绝对值的定义将各数化简,再根据有理数的大小比较法则比较即可.,,,而5是最大的数,这些数中最大的数是,故选B.解答本题的关键是首先根据相反数、绝对值的定义将各数化简。
人教版七年级上册有理数的比较大小的八种方法

专训2 有理数的比较大小的八种方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.【导学号:11972021】利用特殊值法比较大小8.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.答案1.解:因为5293-1731=5293-5193=193>0,所以5293>1731. 点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071. 点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017. 点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111. 因为101111>1011 111,所以1111 111<1 11111 111. 点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116. 因为12 016<12 015<116<115, 所以-2 0152 016<-2 0142 015<-1516<-1415. 点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|-1+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3; ②当a =0时,a =a 3; ③当a <0时,|a|>⎪⎪⎪⎪a 3,则a <a 3.初中数学试卷灿若寒星 制作。
有理数的大小比较(4种题型)(解析版)(浙教版)

有理数的大小比较(4种题型)【知识梳理】1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:要点:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b a-b >0,则a >b ;若a-b =0,则a =b ;若a-b<0,a <b ;反之成立. 4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【考点剖析】 题型一:借助数轴直接比较数的大小例1.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较. 解:如图所示:1a b >a b >1a b =a b =1ab<a b <因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键. 【变式1】在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)【答案】数轴见详解,1(3)2(1)452−+<−<−−<−<.【分析】将各数表示在数轴上,再用“<”连接即可. 【详解】解:如图所示:∴用“<”连接各数为:1(3)2(1)452−+<−<−−<−<;【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.【变式2】如图,数轴上依次有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则在这四个点中表示的数绝对值最大的点是( )A .MB .PC .ND .Q【答案】D【分析】先利用相反数的定义确定原点为线段MN 的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q 表示的数的绝对值最大. 【详解】解:∵点M ,N 表示的数互为相反数, ∴原点为线段MN 的中点, ∴点Q 到原点的距离最大, ∴点Q 表示的数的绝对值最大. 故选:D .【点睛】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了相反数. 【变式3】(1)在数轴把下列各数表示出来,并比较它们的相反数的大小:-3,0,-13,52,0.25(2)比较下列各组数的大小①35-与34− ②| 5.8|−−与( 5.8)−−【答案】(1)数轴见详解;10.2503523−<−<<<;(2)①3354−>−;② 5.8(5.8)−−<−− 【分析】(1)由数轴的定义画出数轴并标出各数,然后写出它们的相反数并比较大小; (2)由比较大小的法则进行比较,即可得到答案. 【详解】解:(1)数轴如图所示:由题意,3−的相反数是3;0的相反数是0;13−的相反数是13;52的相反数是52−;0.25的相反数是0.25−;∴10.2503523−<−<<<;(2)①∵3354<, ∴3354−>−; ②| 5.8| 5.8−−=−,( 5.8) 5.8−−=, ∴5.8(5.8)−−<−−;【点睛】本题考查了数轴的定义,比较有理数的大小,解题的关键是熟练掌握所学的知识,正确的进行解题.题型二:借助数轴间接比较数的大小例2.已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a|<|b|,则有:-b <a <-a <b.故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小. 【变式1】下列四个数表示在数轴上,它们对应的点中,离原点最近的是( ) A .2− B .1.3C .0.4−D .0.6【答案】C【分析】离原点最近,即求这四个点对应的实数绝对值的最小值即可.【详解】解:22,1.3 1.3,0.40.4,0.60.6−==−==又2 1.30.60.4>>>∴离原点最近的是0.4−,故选:C .【点睛】本题考查有理数的大小比较、有理数与数轴的对应关系、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.【变式2】已知0a <,0ab <,且a b >,那么将a ,b ,a −,b −按照由大到小的顺序排列正确的是( ) A .a b b a −>−>> B .b a a b >>−>− C .b a a b >−>>− D .a b b a −>>−>【答案】D【分析】根据条件设出符合条件的具体数值,根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答. 【详解】解:∵a <0,ab <0, ∴b >0, 又∵|a|>|b|,∴设a=-2,b=1,则-a=2,-b=-1 则-2<-1<1<2. 故-a >b >-b >a . 故选:D .【点睛】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是根据条件设出符合条件的数值,再比较大小.题型三:运用法则直接比较大小 例3.比较下列各对数的大小:①-1与-0.01; ②2−−与0; ③-0.3与31−; ④⎪⎪⎭⎫⎝⎛−−91与101−−。
有理数大小的比较专题训练

降 (2 一 )一( 2 ):2 -8 6℃ , 为 每 小 时 能 降 温 4℃ , 因 所 以 降温 2 ℃ 需 要的 时 间为 2 + = - ( 时 )即 6 6 4 6l 小 , - ,
4 而 1 <4<5<7 所 以 D 的 身 高 与 标 准 身 高 的 , <3 ,
差 的 绝 对值 最 小 。说 明他 的 身 高 最 接 近 标 准 身 高 ,
所 以应 该选 D 为 仪 仗 队员 . 4 小 虫爬 行 的 总路 程 =} 5I - +I 1 +} 8I . + +I 3I + 0I 一 +
维普资讯
@ 练
鬻 耀
比 较
黑 堡 龙江 生』
在 日常 的生 活 和 学 习 中 , 们 经 常需 要 比较 两 个 数 的 大 小 , 小 学 时 . 家 一 般 都 会 比较 两 个 我 在 大 数 的 大 小. 在数 的范 围扩 大 了 , 人 了 负数 , 习 了有 理 数 , 么 你 知 道 如 何 比较 两 个 有 理 数 的 大 现 引 学 那 小 吗 ? 下 面介 绍 两 种 比较 有 理数 大小 的方 法 , 同学 们 学 习 时 参 考. 供
则 B点 的 海 拨 高 度 为 一 7 10米 . ( )- 88一 ( 148 ] 0X3 2 [6. 一 7 .) ÷1 0:16÷1 0= 0 0X3
所 以 一3 >一4
.
3 8 秒 )故 从 A 点 到 C点 所 用 的 时 间 为 3 8 . 1( , 1秒
3 规 定 向东 为 正 , 有 25 . 则 .X4+(2 ) :25X( 一 . X7 . 4— 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(一) 有理数的大小比较方法归类
► 类型一 利用法则比较大小
1.比较大小:-45与-56
. 2.比较下列各数的大小:
(1)-|-1|与-(-1); (2)-(-3)与0;
(3)-⎝⎛⎭⎫-16与-⎪⎪⎪
⎪-17; (4)-|-(-3.4)|与-()+|3.4|.
► 类型二 利用数轴比较大小
3.根据有理数a ,b ,c 在数轴上对应的位置,比较下列各对数的大小.
图ZT -1-1
(1)|a|________|b|; (2)|a|________|c|;
(3)-a________-b; (4)-|b|________-|c|;
(5)-b________c; (6)-a________|c|.
4.数轴上的点A ,B ,C ,D 分别表示数a ,b ,c ,d ,已知点A 在点B 的右侧,点C 在点B 的左侧,点D 在点B ,C 之间,则a ,b ,c ,d 的大小关系是________(用“<”连接).
5.在数轴上表示下列各数:-2.5,|-7|,-6,3.2,5.5,|4|,并比较它们的大小.
6.若a <0,b >0且|a|<|b|,试用“<”连接a ,b ,-a ,-b.
► 类型三 利用求差比较大小
7.比较4750与3740
的大小. ► 类型四 利用求商比较大小
8.比较5251与2627
的大小. 9.比较-99100与-100101
的大小. ► 类型五 借助特殊值比较
10.若a 是小于1的正数,则将a ,⎪⎪⎪⎪-1a ,-a ,-1a
用“>”连接起来,正确的是( ) A .a >⎪⎪⎪⎪-1a >-1a
>-a B .-1a
>a >-a >⎪⎪⎪⎪-1a C .⎪⎪⎪⎪-1a >-a >a >-1a
D .⎪⎪⎪⎪-1a >a >-a >-1a
详解详析
1.解:因为⎪⎪⎪⎪-45=45,⎪⎪⎪⎪-56=56,又56>45
,根据两个负数,绝对值大的反而小,得出结论:-45>-56
. 2.解:(1)分别化简两数,得-|-1|=-1,-(-1)=1.因为负数小于正数,所以-|-1|<-(-1).
(2)化简-(-3),得-(-3)=3.因为正数都大于0,所以-(-3)>0.
(3)分别化简两数,得-⎝⎛⎭⎫-16=16,-⎪⎪⎪⎪-17=-17
.因为正数大于负数,所以-⎝⎛⎭⎫-16>-⎪⎪⎪
⎪-17. (4)分别化简两数,得-|-(-3.4)|=-3.4,-(+|3.4|)=-3.4,所以-|-(-3.4)|=-(+|3.4|).
3.(1)> (2)> (3)> (4)< (5)> (6)>
4.[答案] c <d <b <a
[解析] 根据题意,可以大致描出点A ,B ,C ,D 的位置,如图,根据以向右为正方向的数轴上,右边的点所表示的数比左边的点所表示的数大,有c <d <b <a .
5.解:|-7|=7,|4|=4.
在数轴上表示各数如下:
按从大到小的顺序排列为|-7|>5.5>|4|>3.2>-2.5>-6.
6.[解析] 画出数轴,在数轴上标出a ,b ,-a ,-b ,如图所示.
根据“以向右为正方向的数轴上,右边的点表示的数比左边的点表示的数大”可得结果. 解:-b <a <-a <b .
7.[解析] 先求出两数的差值,与0相比较,再比较原来两数的大小.
解:因为4750-3740=47×40-37×5050×40
=1880-18502000>0, 所以4750>3740
. 8.[解析] 先求出两数的商值,与1相比较,再比较原来两数的大小.
解:因为5251÷2627=5251×2726=5451
>1, 所以5251>2627
. 9.解:因为99100÷100101=99100×101100=999910000
<1, 所以99100<100101
, 所以-99100>-100101
. 10.[答案] D。