复变函数习题解答(第6章)

合集下载

复变函数-第6章

复变函数-第6章

光滑曲线 Γ : w = f ( z (t )) (t0 ≤ t ≤ t1 ) 切向量 w′(t ) = f ′( z0 ) z ′(t0 ) ≠ 0 切向量辐角ψ = arg w′(t0 )
= arg f ′( z0 ) + arg z ′(t0 ) = arg f ′( z0 ) + ϕ
7
假设 | f ′( z0 ) |= r , arg f ′( z0 ) = α , 即 f ′( z0 ) = reiα , 则
| f ′( z0 ) | . | f ′( z ) − f ′( z0 ) |≤ 2 如果 z1 , z 2 ∈ D, 并且 Γ 是连接 z1 和 z 2 的线段, 则有
| f ( z1 ) − f ( z 2 ) |=

Γ
f ′( z )dz =

Γ
f ′( z0 )dz − ∫ ( f ′( z0 ) − f ′( z ))dz
f ′( z ) ≠ 0
单叶(单射)解析
局部单叶(单射)
解析且 f ′( z0 ) ≠ 0
定理 6.1.1 若 f (z )在 z0 解析, 且 f ′( z0 ) ≠ 0, 故存在以 z0为心 的圆盘 D 使得 f (z ) 在 D 上的单射(单叶).
3
定理 6.1.2 (保域定理) 若 w = f (z ) 为在区域 D 内解析的非常 数函数, 则它的值域 (像) G = f ( D) = {w | w = f ( z ), z ∈ D} 也是一个区域. 证明: 区域是连通的开集. (1) 证明 G 是一个开集, 即 G 内的每一点都是内点.
∀w0 ∈ G,
∃z0 ∈ D, s.t. w0 = f ( z0 ).

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

复变函数与积分变换答案-第6章共形映射

复变函数与积分变换答案-第6章共形映射

第六章 共形映射习题详解1、(1)21,2则'=+=w z w z ;伸缩率()22'==w i i ,旋转角()2'=A r g wi π;伸缩率()22'-=-=w i i ,旋转角()2'-=-Argw i π;(2)4=w z,则34'=w z ,伸缩率(1)4'=w ,旋转角()10'=Argw ;伸缩率()()()3(1)41421882'+=+=+=-=w i ii i i ()314'+=Argw i π。

2、21365,66,16w z z w z z '=--=-->部分被放大了,116z -<部分被缩小了。

3、43,41,w z z w z '=+=+具有伸缩率与旋转角不变性。

4、(1)1232,,1===-z z i z 分别映射成1233,1,0,w i w w =-=-=由30+32121::10111得+---+==++----w i i z zw i w z i i z; (2)123,1,0=∞==z z z 分别映射成1230,1,,w w w ==-=∞由-01111::11101得==-+--w w w z z; (3)1232,0,1===z z z 分别映射成1231,1,,w w w =-==∞由112121::110101得+--==----w z w w z z; (4)1230,,2===-z z i z 分别映射成1233,,1,w i w i w ===由3130206::1232得------==------w i i z z iw w i i z i i iz 。

5、由分式的分子与分母同乘以(或除以)非零复数后这些值不变化得:把系数,,,a b c d 加以整合有1ad bc -=。

6、(1)设(),az b f z cz d +=+由0()(0)0,()10,1,0()a b a i bf f i i i c d c i d ⋅+⋅-+=-=-==-⋅+⋅-+得解之0,2ab c d ===,故2();11122z z f z z z ==++(2)设(),az b f z cz d +=+由1(0)1,()(42)5==+f f i i ,得 ()0()11,420()5⋅+⋅+==+⋅+⋅+a b a i b i c d c i d ,解之()()11,(42)()424255=+=++=-++⎡⎤⎣⎦b d ai d i ci d d c i c d 05420,154222=⎧=+=⎧⎧⎪⇒⇒⇒⎨⎨⎨=-=-=-⎩⎩⎪⎩a a c d a d d c d c c d故 2()22==--+d f z dzz d 。

复变函数参考答案(1-8章)

复变函数参考答案(1-8章)

复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。

(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。

提示:本题注意到2(1)2i i −=−,2(1)2i i +=。

则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。

(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。

提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。

(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。

(5)2122lim1z zz z z z →+−−=−32。

提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。

(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。

提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。

连接0,2z +,2z −的三角形为Rt Δ。

因此推出向量2z =,2arg 3z π=,即1z =−+。

本题也可以利用代数法来做。

2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值: (1)5)i -(2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(56解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)z i +=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cossin22ii i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+-(5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+z x y≤≤+证明:首先,显然有z x y =≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而z =≥。

复变函数课后习题答案(全)之欧阳理创编

复变函数课后习题答案(全)之欧阳理创编

习题一答案2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6)= 5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:), 1), 1), )i i i i +-+---7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥(2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++, 而右端2222112211222Re[()()]x y x y x iy x iy =+++++- 2222112212122()x y x y x x y y =+++++221212()()x x y y =+++,由此,左端=右端,即原式成立。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ]7. 从⎰C e i z /√z dz 出发,其中C 是如图所示之周线(√z 沿正实轴取正值),证明:⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).【解】| ⎰C (R ) e i z /√z dz | ≤ ⎰C (R ) | e i z |/R 1/2 ds= ⎰[0, π/2] | e i ρ (cos θ + i sin θ )|/R 1/2 · R d θ = ⎰[0, π/2] | e - R sin θ | R 1/2 d θ≤ R 1/2 ⎰[0, π/2] e - R sin θ d θ.由sin θ ≥ 2θ/π (θ∈[0, π/2] ),故R 1/2⎰[0, π/2] e - R sin θ d θ≤ R 1/2 ⎰[0, π/2] e - (2R / π)θ d θ = (π/(2R 1/2))(1 – e - R ) ≤ π/(2R 1/2).所以,| ⎰C (R ) e i z /√z dz | → 0 (as R →+∞).而由| ⎰C (r ) e i z /√z dz | ≤ (π/(2r 1/2))(1 – e - r )知| ⎰C (r ) e i z /√z dz | → 0 (as r → 0+ ).当r → 0+,R →+∞时,⎰[r , R ] e i z /√z dz = ⎰[r , R ] e i x /√x dx = ⎰[r , R ] (cos x + i sin x )/√x dx→ ⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx .⎰[r i , R i ] e i z /√z dz = ⎰[r , R ] e i (i y )/√(i y ) i dy = ⎰[r , R ] e - y e i π/4/√y dy .= (1 + i )/√2 · ⎰[r , R ] e - y /√y dy = 2(1 + i )/√2 · ⎰[√r , √R ] e - u ^2 du→ (1 + i )√2 · ⎰(0, +∞) e - u ^2 du = (1 + i )√2 · √π/2 = (1 + i )√(π/2).由Cauchy 积分定理,⎰C e i z /√z dz = 0,故其极限也为0,所以,⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx = (1 + i )√(π/2),即⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).8. 从⎰C √z ln z /(1 + z )2 dz 出发,其中C 是如图所示之周线,证明:⎰(0, +∞) √x ln x /(1 + x )2 dx = π,⎰(0, +∞) √x /(1 + x )2 dx = π/2.【解】在割去原点及正实轴的z 平面上,√z ,ln z 都能分出单值解析分支,√z 取在正实轴的上岸取正值的那个分支,ln z 取在正实轴的上岸取实数值的那个分支.记f (z ) = √z ln z /(1 + z )2 dz .f (z )的有限奇点只有- 1,且- 1是f (z )的2阶极点.Res[√z ln z /(1 + z )2; - 1] = lim z → - 1 ((1 + z )2 · f (z ))’= lim z → - 1 (√z ln z )’ = lim z → - 1 (((1/2) ln z + 1 )√z /z )= ((1/2) ln (- 1) + 1 )√(- 1)/(- 1)= - ((1/2) πi + 1 )i = (1/2) π - i .当r < 1 < R 时,⎰C √z ln z /(1 + z )2 dz= ⎰C (r ) + ⎰C (R ) + ⎰L (1) + ⎰L (2) = 2πi Res[√z ln z /(1 + z )2; -1] = 2π + π2 i .⎰L (1) √z ln z /(1 + z )2 dz = ⎰(r , R ) √x ln x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx (当r → 0+,R →+∞时)⎰L (2) √z ln z /(1 + z )2 dz = ⎰(R , r ) (-√x )(ln x + 2πi )/(1 + x )2 dx= ⎰(r , R ) (√x ln x )/(1 + x )2 dx + 2πi ⎰(r , R )√x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx + 2πi ⎰(0, +∞) √x /(1 + x )2 dx (当r → 0+,R →+∞时). 因为z · √z ln z /(1 + z )2 → 0 (当| z |→ +∞时),故⎰C(R) √z ln z/(1 + z)2dz→ 0 (当R → +∞时).因为z ·√z ln z/(1 + z)2 → 0 (当| z |→ 0时),故⎰C(r) √z ln z/(1 + z)2dz→ 0 (当r → 0时).所以,⎰L(1)+ ⎰L(2)→π/2 -i (当r→ 0+,R→+∞时).故2⎰(0, +∞)√x ln x/(1 + x)2dx + 2πi⎰(0, +∞) √x /(1 + x)2dx = 2π + π2i.所以,⎰(0, +∞)√x ln x/(1 + x)2dx = π,⎰(0, +∞)√x /(1 + x)2dx = π/2.9. 证明:I = ⎰(0, 1) 1/((1 + x2)(1 -x2)1/2) dx = π/23/2.在割线的上岸(1 -z2)1/2取正值的那一支.因i和-i都是f(z)的一阶极点,故Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = i= -i/23/2.Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = –i= -i/23/2.若x在上岸,则f(x) = 1/((1 + x2)(1 -x2)1/2);若x在下岸,则f(x) = e-i π/((1 + x2)(1 -x2)1/2);⎰L(1) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.⎰L(2) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.因为lim z→–1 (1 + z) f(z) = 0,lim z→ 1 (1 -z) f(z) = 0,故⎰S(r) f(z) dz→ 0,⎰T(r) f(z) dz→ 0 (as r → 0).因为lim z→∞z f(z) = 0,故⎰C(R) f(z) dz→ 0 (as R → +∞).故⎰L(1) f(z) dz + ⎰L(2) f(z) dz→ (2πi)(Res[ f(z); i] + Res[ f(z); -i]) (as r→ 0+,R→+∞).所以2⎰(– 1, 1) f(x) dx = (2πi)(Res[ f(z); i] + Res[ f(z); -i]) = (2πi)(-i/23/2) = 2π/23/2.故⎰(– 1, 1) f(x) dx = π/23/2.10. 证明方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内恰有一个根,且为实根.【解】在单位圆周C : | z | = 1上,设z = x + i y,则z-λ= (x -λ) + i y,故| e z-λ| = | e (x -λ) + i y | = | e x -λ| < 1 = | z |,由Rouché定理,N(z - e z-λ, C) = N(z, C) = 1.故z - e z-λ = 0在单位圆内恰有一个根.设f(x) = x - e x-λ,x∈ .因f(- 1) = (- 1)- e-1 -λ < 0,f(1) = 1- e 1 -λ > 0,故x - e x-λ = 0在区间(- 1, 1)内有根.所以方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内的唯一根为实根.[原题是错题.例如c = 1/2,λ= 2,则∀z∈ ,当| z | < 1时,| c z-λ| = | exp((z-λ) Ln c)| = | exp(( z– 2)(ln| 1/2| + 2kπi)) | = e (2 –z)ln2 > 1 > | z |.]11. 证明方程e z- eλz n= 0 ( λ> 1 )在单位圆| z | < 1内有n个根.【解】在单位圆周C : | z | = 1上,| e z| = e Re(z)≤ e | z |≤ e < eλ= | eλz n |,由Rouché定理,N(eλz n- e z, C) = N(eλz n, C) = N(z n, C) = n.12. 若f(z)在周线C内部除有一个一阶极点外解析,且连续到C,在C上| f(z) | = 1,证明f(z) = a ( | a | > 1 )在C内部恰好有一个根.【解】考虑圆K = { z∈ | | z–a | < | a |}.因为| (a-f(z)) -a | = | f(z) | = 1 < | a |,故a-f(z)∈K.因ln(a-f(z))的每个分支,以及他们的导数(ln(a-f(z))’都在K内解析;故i ∆C arg (a-f(z) ) = ⎰C(ln(a-f(z))’dz = 0.由辐角原理,N(a -f(z), C) -P(a -f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而a -f(z)在周线C内部除有一个一阶极点外解析,故P(a -f(z), C) = 1.因此N(a -f(z), C) = 1,故f(z) = a ( | a | > 1 )在C内部恰好有一个根.13. 若f(z)在周线C的内部亚纯且连续到C,试证:(1) 若z∈C时,| f(z) | < 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的极点个数.(2) 若z∈C时,| f(z) | > 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的零点个数.【解】(1) 类似第12题,设K = { z∈ | | z– 1 | < 1}.因| (1 -f(z)) – 1 | = | f(z) | < 1,故(1 -f(z))∈K.因i ∆C arg (a-f(z) ) = ⎰C(ln(1 -f(z))’dz = 0.故由辐角原理,N(1-f(z), C) -P(1-f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而P(1-f(z), C) = P( f(z), C),所以,N(1-f(z), C) = P( f(z), C).(2) 因z∈C时,| f(z) | > 1,故在C上,恒有f(z) ≠ 0,即f(z)在C上无零点.设g(z) = 1/f(z) ( 若z是f(z)极点则规定g(z) = 0,若z是f(z)的零点不定义g(z)).那么,g(z)在C的内部亚纯且连续到C,并且当z∈C时,| g(z) | < 1.由(1)的结论,在C的内部,方程g(z) = 1的根的个数等于g(z)的极点的个数.再注意到方程g(z) = 1和方程f(z) = 1在C的内部的根的个数相同,并且,因为在C的内部,z是f(z)的零点⇔z是g(z)的极点,故g(z)的极点个数等于f(z)的零点个数;所以,方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的零点个数.14. 设ϕ(z)在C : | z | = 1内部解析,且连续到C.在C上,| ϕ(z) | < 1.试证:在C的内部只有一个点z0,使ϕ(z0) = z0.【解】设f(z) = z,则f(z)在C内部解析且连续到C,在C上,| f(z) | = 1 > | ϕ(z) |.由Rouché定理,N( f(z) -ϕ(z), C) = N( f(z), C) = 1.即方程ϕ(z) = z在C的内部只有一个根.p273第六章习题(二) [ 2, 3, 4, 5 ]2. 计算积分(1/(2πi))⎰C 1/(ζ(ζ- z)) dζ,其中C为单位圆周| ζ| = 1,z∉C.【解】设f(ζ) = 1/(ζ(ζ- z)).当| z | > 1时,f(ζ)在C内部的唯一奇点0是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = - 1/z.当0 < | z | < 1时,f(ζ)在C内部的两个奇点0, z都是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] + Res[f(ζ), z] = (- 1/z) + (1/z) = 0.当| z | = 0时,f(ζ)在C内部的唯一奇点0是2阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = 0.3. 设f(z)在| z | < 1内解析,在| z | ≤ 1上连续,试证:(1 - | z |2) f(z) = (1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ,其中z属于C的内部.【解】设g(ζ) = f(ζ) ((1-z*ζ)/(ζ- z)).若f(z) = 0,则z是g(ζ)的解析点,因此g(ζ)在| ζ | < 1内解析,在| ζ | ≤ 1上连续,故⎰C : | ζ| = 1g(ζ) dζ = 0,因此等式成立.若f(z) ≠ 0,则z是g(ζ)的一阶极点,故(1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ = Res[f(ζ) ((1-z*ζ)/(ζ- z)), z]= f(z) (1-z*z ) = (1 - | z |2) f(z).4. 试证:(z n/n! )2 = (1/(2πi))⎰C : | ζ| = 1 (z n e zζ)/(n! ζ n + 1 ) dζ,这里C是围绕原点的一条周线.【解】只需要证明,当z≠ 0时,z n/n! = (1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ.由高阶导数公式,(n!/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = (e zζ)(n)|ζ= 0= (z n e zζ)|ζ= 0= z n.或(1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = Res[e zζ/ζ n + 1, 0] = ((e zζ)(n)|ζ= 0)/n!= z n/n!.5. 试证(含∞的区域的留数定理):设D是 ∞内含有∞的区域,其边界C是由有限条互不包含且互不相交的周线C1, C2, ..., C m组成,又设函数f(z)在D内除去有限个孤立奇点z1, z2, ..., z n及∞外解析,且连续到边界C,则⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).【解】∀j : 1 ≤j ≤m,因∞不在C j上,故C j ⊆ 中,因此C j是有界集.故可取充分大的R > 0,使得周线C1, C2, ..., C m及在 中的孤立奇点z1, z2, ..., z n 都在圆K = { z∈ | | z | < R }内.由留数定理,⎰∂K f(z) dz + ⎰-C f(z) dz = 2πi∑1≤k≤n Res[f(z), z k];而Res[f(z), ∞] = - (1/(2πi))⎰∂K f(z) dz,所以,⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞•︒ℵℜ℘∇∏∑⎰⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,★z∈ ∞α1, α2, ...αn lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】z⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

相关文档
最新文档