小升初数学专用衔接教材 全套
小升初数学衔接资料(最完整版)

七年级数学上册第一章 有理数本章的教学时间大约需要课时,建议分配如下:§2.1 正数和负数---------------1课时 §2.2 数轴-------------------------1课时 §2.3 相反数------------------------1课时 §2.4 绝对值----------------------1课时 §2.5 有理数的大小比较----------1课时 §2.6 有理数的加法--------------1课时 §2.7 有理数的减法----------------1课时 §2.8 有理数的加减法混合运算--------1课时§2.9 有理数的乘法----------------1课时 §2.10有理数的除法----------------1课时 §2.11有理数的乘方----------------1课时 §2.12科学记数法------------------1课时 §2.13有理数的混合运算---------1课时 § 复习-----------------------------------1课时1.1正数和负数一、基础知识1. 像3、2、0.8这样大于0的数叫做正数。
(根据需要,有时也在正数前面加正号“+”。
)2. 像-1、-4、-0.6这样在正数前面加负号“-”的数叫做负数。
3. 0既不是正数也不是负数。
4.带有正号的数不一定是正数,同样带有负号的数不一定是负数。
说明:在天气预报图中,零下5℃是用―5℃来表示的。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数来表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示。
拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。
(完整版)小升初五年级数学培优教材(第三期)共四期

目录第1讲速算与巧算………………………………第2讲定义新运算………………………………第3讲追及问题………………………………第4讲列车过桥问题………………………………第5讲加法原理…………………………………第6讲乘法原理……………………………………第7讲计数原理的综合应用……………………………第8讲逻辑推理问题……………………………………第9讲列方程解应用题………………………………第10讲综合练习………………………………【知识要点】小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
【例题精讲】例1、计算:(1)0。
125×0.25×0.5×64(2)7.68÷2.5÷0.4例2、计算:(1)1.25×1。
08 (2)7。
5×9.9例3、计算:(1)(4.8×7。
5×8.1)÷(2.4×2.5×2。
7)(2) 1.1÷(1。
1÷1.2)÷(1.2÷1。
3)÷(1.3÷1。
4)例4、1240×3。
4+1.24×2300+12。
4×430例5、(2+3。
15+5。
87)×(3。
15+5。
87+7。
32)—(2+3。
15+5。
87+7。
32)×(3.15+5.87)【基础夯实】1、计算:(1)1.25×32×0。
25 (2)1.25×882、计算:(1)2。
5×10。
4 (2)3.8×0.993、计算:(1)4。
6×99+4.6 (2)7.5×101-7.54、计算:(1)4。
第六讲 有理数的应用-小升初数学衔接教材(人教版)

第六讲 有理数的应用知识1.掌握有理数的乘除乘方运算;2.掌握有理数的混合运算.方法1.能够正确计算有理数的乘除运算;2.能够正确计算有理数的混合运算.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求223ba cdx x +-+的值. 【答案】见试题解答内容【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,可以求得a+b ,cd ,x 的值,然后即可求得所求式子的值.【解答】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2, ∴a+b=0,cd=1,x=±2, 当x=2时,原式=23+1×22-0 =8+1×4-0 =8+4-0 =12;当x=-2时,原式=(-2)3+1×(-2)2-0 =-8+1×4-0 =-8+4-0 =-4,由上可得,原式的值为12或-4. 若a 与b 互为相反数,c 与d 互为倒数,|m |=2,求代数式3223m cd ba +-+的值. 01课堂目标02例题精析利用有理数的性质求值题型一例1例2【答案】见试题解答内容【分析】直接利用相反数以及倒数和绝对值的性质分别分析得出答案. 【解答】解:∵a 与b 互为相反数,c 与d 互为倒数,|m|=2, ∴a+b=0,cd=1,m=±2, 当m=2时, ∴原式=0-2+2×23 =14; 当m=-2时,∴原式=0-2+2×(-2)3 =--18,综上所述:代数式的值为14或-18.若a 、b 互为相反数,b 、c 互为倒数,并且m 是绝对值等于它本身的数.求bc m ba +++222值. 【答案】见试题解答内容【分析】利用相反数,倒数,以及绝对值的意义求出a+b ,cd ,m 的值,代入原式计算即可得到结果.【解答】解:由题意得:a+b=0,bc=1,m 为非负数,则原式=1.已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,|m |是最小的正整数,求cdb a m -++2020)(20192的值.【答案】1或-3.【分析】先根据相反数的性质、倒数的定义和绝对值的性质得出a+b=0,cd=1,|m|=1,再分别代入计算即可.【解答】解:根据题意知a+b=0,cd=1,|m|=1, 当m=1时,原式=2×1+0-1=1; 当m=-1时,原式=2×(-1)+0-1=-3; 综上,原式的值为1或-3.变式1 变式2 定义新运算题型二对于有理数a 、b ,定义一种新运算“⊗”如下:a b ab b a 2-=⊗,则=-⊗-)43()3(____ . 定义一种新运算“☆”,规则为:m ☆n =mn +mn -n ,例如:2☆3=23+2×3-3=8+6-3=11,解答下列问题:(1)(-2)☆4;(2)(-1)☆[(-5)☆2]. 【【【【☆1☆4☆☆2☆-27☆【分析】(1)根据m ☆n=m n +mn-n ,可以求得所求式子的值; (2)根据m ☆n=m n +mn-n ,可以求得所求式子的值. 【解答】解:(1)∵m ☆n=m n +mn-n , ∴(-2)☆4=(-2)4+(-2)×4-4 =16+(-8)+(-4) =4;(2)∵m ☆n=m n +mn-n , ∴(-1)☆[(-5)☆2]=(-1)☆[(-5)2+(-5)×2-2] =(-1)☆(25-10-2) =(-1)☆13=(-1)13+(-1)×13-13 =(-1)+(-13)+(-13) =-27.已知a ,b 为有理数,如果规定一种新的运算“☆”,规定:a ☆b =2b -3a ,例如:1☆2=2×2-3×1=4-3=1,计算:(2☆3)☆5=__________. 【答案】10.【分析】根据a ※b=2b-3a ,可以计算出所求式子的值. 【解答】解:∵a ※b=2b-3a , ∴(2※3)※5 =(2×3-3×2)※5 =(6-6)※5例1例2变式1=0※5 =2×5-3×0 =10-0 =10,故答案为:10.规定一种新运算a *b =a -b 2,则4*[5*(-2)]=__________.【答案】3.【分析】根据a*b=a-b 2,可以求得所求式子的值 【解答】解:∵a*b=a-b 2, ∴4*[5*(-2)] =4*[5-(-2)2] =4*(5-4) =4*1 =4-12 =4-1 =3,故答案为:3.某天早上,一辆交通巡逻车从A 地出发,在东西向的马路上巡视,中午到达B 地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km )第一次 第二次 第三次 第四次 第五次 第六次 第七次 +15﹣8+6+12﹣4+5﹣10(1)巡逻车在巡逻过程中,第 次离A 地最远. (2)B 地在A 地哪个方向,与A 地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?变式2 有理数中的实际应用题型三例1【答案】见试题解答内容【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【解答】解:(1)第一次距A地:15千米,第二次距A地:15-8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25-4=21千米,第六次距A地:21+5=26千米,第七次距A地:26-10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15-8+6+12-4+5-10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|-8|+|+6|+|+12|+|-4|+|+5|+|-10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上变式1到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+15,-8,+9,-6,+14,-5,+13,-4.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远时,距A地多少千米?【答案】见试题解答内容【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)先求出这一天航行的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量;(3)分别计算出各点离出发点的距离,取数值较大的点即可.【解答】解:(1)∵15-8+9-6+14-5+13-4=28,∴B地在A地的东边28千米;(2)这一天走的总路程为:15+|-8|+9+|-6|+14+|-5|+13|+|-4|=74千米,应耗油74×0.6=44.4(升),故还需补充的油量为:44.4-30=14.4(升),答:冲锋舟当天救灾过程中至少还需补充14.4升油;(3)∵路程记录中各点离出发点的距离分别为:15千米;15-8=7千米;7+9=16千米;16-6=10千米;10+14=24千米;24-5=19千米;19+13=32千米;32-4=28千米.∴冲锋舟离出发点A最远时,距A地32千米.汽油价格的毎一次调整影响着有车一族的汽车用油的费用.王旭驾驶的汽车毎一次都加92号汽油,例2他时刻关注92号汽油的价格变化.2018年12月20日92号汽油的价格为6.74元/升,下表是92号汽油价格在6.74元/升基础上连续七次调整的变化情况,其中在上一次价格的基础上涨价记为正数,降价记为负数,如表中的﹣0.12表示第四次调整是在第三次调整后的92号汽油价格基础上毎升降0.12元.调整次数第一次第二次第三次第四次第五次第六次第七次价格变化-0.30+0.27+0.27-0.12+0.18-0.05-0.10(1)在这七次调整中,哪次调整后92号汽油的价格最高,每升多少元?哪次调整后92号汽油的价格最低,每升多少元?(2)王旭一家在五一期间自驾游玩,他驾驶的汽车毎行驶100km耗油8升,如果在这次游玩中他驾驶的汽车一共行驶600km,92号汽油价格按第六次调整的价格计算,那么在这次游玩中王旭驾驶汽车的用油费用是多少元?【答案】见试题解答内容【分析】(1)求得这七次调整后92号汽油的价格,比较即可得到结论; (2)根据单位油价乘以总用油量,可得答案.【解答】解:(1)第一次价格:6.74-0.30=6.44(元), 第二次价格:6.44+0.27=6.71(元), 第三次价格:6.71+0.27=6.98(元), 第四次价格:6.98-0.12=6.86(元), 第五次价格:6.86+0.18=7.04(元), 第六次价格:7.04-0.05=6.99(元), 第七次价格:6.99-0.10=6.89(元),∵6.44<6.71<6.86<6.89<6.98<6.99<7.04,∴第五次调整后92号汽油的价格最高,每升7.04元,第一次调整后92号汽油的价格最低,每升6.44元;(2)600÷100×8=48(升), 6.99×48=335.52(元),答:在这次游玩中王旭驾驶汽车的用油费用是335.52元.2020年的“新冠肺炎”疫情的蔓延,市场上医用口罩销量大幅增加,某口罩加工厂为满足市场需求,计划每天生产6000个,由于各种原因与实际每天生产量相比有出入,下表是三月份某一周的生产情况(超产为正,减产为负,单位:个).(2)与原计划产量比较,这周产量超产或减产多少个?(3)若口罩加工厂实行计件工资制,每生产一个口罩0.2元,则本周口罩加工厂应支付工人 的工资总额是多少元?【答案】(1)产量最多的一天比产量最少的一天多生产500个; (2)这周产量超产500个;(3)本周口罩加工厂应支付工人的工资总额是8500元.变式2【分析】(1)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(2)求出一周记录的和即可求出这周产量超产或减产多少个;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解. 【解答】解:(1)+300-(-200)=500(个), (2)+150-200+300-100-50+250+150=500(个),(3)6000×7+(150-200+300-100-50+250+150)=42500(个), 42500×0.2=8500(元),答:(1)产量最多的一天比产量最少的一天多生产500个; (2)这周产量超产500个;(3)本周口罩加工厂应支付工人的工资总额是8500元.第六讲 有理数的应用作业1.若a 与b 互为相反数,b 与c 互为倒数,并且m 的平方等于它本身,试求m bc m ba 3222-+++的值. 【答案】见试题解答内容【分析】直接利用有理数的混合运算法则计算得出答案【解答】解:∵a 与b 互为相反数b 与c 互为倒数,并且m 的平方等于它本身, ∴a+b=0,bc=1,m=1或0; 当m=1时,则原式=0+1-3=-2; 当m=0时,则原式=0+1-0=1.2.已知:a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是2,求代数式222m mcdb a --+的值. 【答案】见试题解答内容【分析】根据题意可得,a+b=0,cd=1,m=±2,代入求解即可.作业一 利用有理数的性质求值【解答】解:由题意得,a+b=0,cd=1,m=±2, 分两种情况:(1)当m=2时,原式=29-;(2)当m=-2时,原式=27-1.对于有理数a ,b ,定义一种新运算“⊗”,规定a ⊗b =|a +b |-|a -b |.计算(-3)⊗2的值. 【答案】见试题解答内容【分析】根据a ⊗b=|a+b|-|a-b|,可以求得所求式子的值. 【解答】解:∵a ⊗b=|a+b|-|a-b|, ∴(-3)⊗2=|(-3)+2|-|(-3)-2| =1-5 =-4.2.定义一种新运算“⊗”,即m ⊗n =(m +2)×3-n ,例如2⊗3=(2+2)×3-3=9.根据规定解答下列问题: (1)求6⊗(-3)的值;(2)通过计算说明6⊗(-3)与(-3)⊗6的值相等吗? 【答案】见试题解答内容【分析】(1)利用题中的新定义计算即可得到结果; (2)分别计算出两式的值,即可做出判断. 【解答】解:(1)6⊗(-3)=(6+2)×3-(-3) =24+3 =27;(2)(-3)⊗6=(-3+2)×3-6 =-3-6 =-9,所以6⊗(-3)与(-3)⊗6的值不相等.作业二 定义新运算作业三有理数中的实际应用1.有10袋小麦,每袋以90kg为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量(kg)+1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1(1)请通过计算说明这10袋小麦总计超过多少kg或不足多少kg?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【答案】(1)超过5.4kg;(2)2263.5元.【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解答】解:(1)+1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1=5.4(kg).故这10袋小麦总计超过5.4kg;(2)(90×10+5.4)×2.5=2263.5(元).故10袋小麦一共可以卖2263.5元.2.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,-9,+8,-7,+13,-6,+12,-5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【答案】见试题解答内容【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵14-9+8-7+13-6+12-5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14-9=5千米;14-9+8=13千米;14-9+8-7=6千米;14-9+8-7+13=19千米;14-9+8-7+13-6=13千米;14-9+8-7+13-6+12=25千米;14-9+8-7+13-6+12-5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|-9|+8+|-7|+13+|-6|+12+|-5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37-28=9(升)。
【暑期衔接】专题01《正数与负数》 精编讲义)-2022年暑假小升初数学衔接(人教版)(原卷版)

2022年人教版暑假小升初数学衔接知识讲练精编讲义专题01《正数与负数》教学目标1.了解正数与负数是从实际需要中产生的.2.理解正数、负数及0的意义,掌握正数、负数的表示方法.3.会用正数、负数表示具有相反意义的量.(重点、难点)新课导入课堂引入观察下列图片,体会数的产生和发展过程.新课讲授思考:根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?结合你在实际生活中接触到的数,试举例新闻报道:某年,我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%.知识点01:正、负数的认识问题1:说一说上面用到的各数的含义.(1)天气预报中的3,电梯按钮中的1-10,新闻报道中的1.8%;2)天气预报中的-3,电梯按钮中的-1,-2,新闻报道中的-2.7%.问题2:上面这两类数,分别属于什么数?概念归纳像1,2,3,1.8%这样大于0的数叫做正数.像-3,-1,-2,-2.7%这样在正数前面加上符号“-”(负)的数叫做负数.注意有时,我们为了明确表达意义,在正数前面也加上“+”(正)号,如+3,+1.8%,+0.5,….不过一般情况下我们省略“+”不写.思考1 :(1)负数有什么特点?(2)如果一个数不是正数就是负数,对吗?(1)从定义中我们发现负数的前面必须有负号“-”.(2)不对.0既不是正数,也不是负数.思考2:0只表示没有吗?1.空罐中的金币数量;2.温度中的0℃;3.海平面的高度;4.标准水位;5.身高比较的基准;6.正数和负数的界点;……引入正、负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的分界点.知识点02:用正、负数表示具有相反意义的量你会用正、负数来表示它们吗?我们以海平面高度为基准,珠穆朗玛峰的海拔高度比海平面高8848米,记为+8844.4米;鲁番盆地的海拔高度比海平面低155米,我们记为-155米.方法归纳根据相反意义合理使用正、负数对实际问题进行表示.一般情况下,把向北(东)、上升、增加、收入等规定为正,把它们的相反意义规定为负典例分析【典例分析01】(2022•南平模拟)手机移动支付给生活带来便捷.右图是张老师2021年9月18日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是()A.收入19元B.支出8元C.支出5元D.收入6元【思路引导】根据有理数的加法法则求和即可.【完整解答】解:19+(﹣8)+(﹣5)=6(元),故选:D.【考察注意点】本题考查了正数和负数,掌握正数和负数表示相反意义的量是解题的关键.【典例分析02】(2021秋•虎林市校级期末)用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是元;(2)小商店每天亏损20元,一周的利润是元;(3)小商店一周的利涧是1400元,平均每天的利润是元;(4)小商店一周共亏损840元,平均每天的利润是元.【思路引导】(1)利用每天的利润乘天数即可;(2)利用每天的利润乘天数即可;(3)利用总利润除以7即可;(4)利用总利润除以7即可.【完整解答】解:(1)由题意得:250×30=7500(元),∴小商店平均每天可盈利250元,一个月(按30天计算)的利润是7500元,故答案为:7500;(2)小商店每天亏损20元,即小商店每天的利润是﹣20元,则一周的利润是:﹣20×7=﹣140(元),故答案为:﹣140;(3)由题意得:1400÷7=200(元),∴小商店一周的利涧是1400元,平均每天的利润是200元,故答案为:200;(4)因为小商店一周共亏损840元,即小商店一周的利润是﹣840元,则平均每天的利润是:﹣840÷7=﹣120(元),故答案为:﹣120.【考察注意点】本题考查了正数和负数,熟练掌握正数和负数的意义是解题的关键.【变式训练01】(2021秋•延庆区期末)据北京市金融监管局消息,将在2022年2月举办的北京冬奥会试点数字人民币.市场预期有关部门会以其作为起始点,在全国普及数字人民币.2021年12月10日,小明的妈妈在北京建行数字人民币钱包中存入100元,记作+100,那么﹣40表示()A.支出40元B.收入40元C.支出60元D.收入60元【变式训练02】(2021秋•鞍山期末)“惠天”超市新进5袋萝卜准备在冬季零售,每袋包装100kg为标准,超市员工以超过的千克数记为正数,不足的千克数记为负数记录如下:﹣2.5,3,5.5,﹣3.5,4,则超市这批萝卜的总重量是千克.【变式训练03】(2021秋•涡阳县期末)李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作.课堂巩固基础达标一.选择题1.(2022•巧家县二模)如果将175cm作为标准身高,高于标准身高3cm记作+3cm,那么身高170cm应记作()A.﹣3cm B.﹣5cm C.+5cm D.﹣170cm2.(2021秋•井研县期末)为庆祝建党100周年,某党支部制作了精美的纪念章,其质量要求是“50±0.20克”,则下列纪念章质量符合标准的是()A.49.70克B.50.30克C.50.25克D.49.85克3.(2021秋•潍坊期末)按照国际规定,巴黎的时间比北京的时间晚7小时(例如,当北京时间是上午8:00时,则巴黎时间是凌晨1:00),从巴黎乘飞机飞往北京需11个小时,飞机从巴黎5:00起飞,那么到达北京的当地时间是()A.23:00 B.16:00 C.11:00 D.8:004.(2021秋•吉林期末)北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.14:00 B.16:00 C.21:00 D.23:005.(2021秋•岱岳区期中)某水库的水位将80米作为标准水位,水位为85.3米记为+5.3米,则水位为76.8米应记为()A.+76.8米B.﹣76.8米C.+3.2米D.﹣3.2米二.填空题6.(2021秋•济南期末)如果+40m表示向东走40m,那么向西走30m可以表示为m.7.(2021秋•仁寿县期末)某水果店盈利701元时我们记作+701元,那么亏本259元记作元.(2021秋•历下区期末)中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,8.则向上浮30m记为m.9.(2021秋•朝阳区期末)月球表面的白天平均温度为零上126℃,夜间平均温度为零下150℃.如果零上126℃记作+126℃,那么零下150℃应该记作℃.10.(2021秋•海门市期末)如果“盈利10%'记为+10%,那么“亏损6%”记为.三.解答题11.(2021秋•莲池区校级期中)体课上全班女生进行了百米测验,达标成绩为18秒,下面是第一组8名女生的成绩记录,其中,“+”号表示成绩大于18秒,“﹣”号表示成绩小于18秒.﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6(1)这个小组女生的达标率是.(2)求出这个小组的平均成绩.12.(2021秋•蒙阴县期中)蒙阴县的蜜桃闻名全国,现有20筐蜜桃,以每筐23千克为标准,超过或不足的千克数分别用正数或负数来表示,记录如下:(1)与标准重量比较,20筐蜜桃总计超过或不足多少千克?﹣3 ﹣2 ﹣1.5 0 1 2.5 与标准质量的差值(单位:千克)筐数 1 4 2 3 2 8 (2)若蜜桃每千克售价5元,则这20筐可卖多少元?13.(2021秋•丹阳市期中)乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).(1)其中偏差最大的乒乓球直径是mm;(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是;良好率是.14.(2021秋•临汾期末)山西稷山板枣栽培历史有上千年,种类繁多,有板枣、长枣、圆枣等,以板枣最为有名.小明所在的小区购买了8筐稷山板枣,若以每筐10kg为基准,把超过10kg的千克数记为正数,不足10kg的千克数记为负数,记录如下:①+3;②﹣1.4;③+2;④﹣4;⑤+5;⑥﹣3.5;⑦+1;⑧﹣0.5.(1)这8筐稷山板枣中,重量最重的是kg,比重量最轻的重了kg.(2)这8筐稷山板枣的总重量是多少kg?15.(2021秋•宁波期末)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.宁国把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是宁国第一周柚子的销售情况:星期一二三四五六日+3 ﹣5 ﹣2 +11 ﹣7 +13 +5柚子销售超过或不足计划量情况(单位:千克)(1)宁国第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)宁国第一周实际销售柚子的总量是多少千克?(3)若宁国按8元/千克进行柚子销售,平均运费为3元/千克,则宁国第一周销售柚子一共收入多少元?一.选择题1.(2021秋•吉林期末)北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.14:00 B.16:00 C.21:00 D.23:002.(2021秋•虎林市校级期末)下列各数﹣2,2,﹣5,0,π,0.0123中,负数的个数有()A.1个B.2个C.3个D.4个3.(2021秋•孝感月考)如果“盈利10%”记作+10%,那么﹣4%表示()A.亏损4% B.亏损6% C.盈利4% D.少赚4%4.(2021•淄川区一模)某超市出售的三种品牌月饼袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g5.(2009秋•宝应县校级期末)学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了﹣20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处二.填空题6.(2021秋•郧阳区期中)某蓄水池的标准水位记为0m,如果水面高于标准水位0.26m表示为+0.26m,那么水面低于标准水位0.5m表示为m.7.(2021秋•宜州区期中)某种零件,标明要求是Φ20±0.02mm(Φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件(填“合格”或“不合格”).8.(2020秋•荔湾区期末)如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作.9.(2021•福建模拟)一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.10.(2021•双柏县模拟)如果盈利80元记作+80元,那么亏损40元记作元.11.(2021秋•罗城县期末)生活中常有用正负数表示范围的情形,例如某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃范围内保存才合适.三.解答题12.(2021秋•楚雄市校级期中)小明用50元买了10支钢笔,准备以一定的价格出售,如果每支钢笔以6元的价格为标准,超过的记作正数,不足的记为负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2,1.9,0.9.(1)这10支钢笔的最高售价和最低售价各是几元?(2)当小亮卖完钢笔后是盈利还是亏损?盈利或亏损了多少元?13.(2020秋•大足区期末)2020年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支情况存入一笔钱,如表为小黄从7月到12月的存款情况:月份7 8 9 10 11 12﹣400 ﹣100 +500 +300 +100 ﹣500与上一月比较/元(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,存折上共有多少元存款?14.(2021秋•深圳期中)滨海大道是我市一条东西走向的最美的景观大道.某天出租车司机李师傅从上午8:00﹣9:15在该路上运营,共连续载了十批乘客,若把第一批乘客的出发地定为原点,向东为正,向西为负,李师傅运营这十批乘客的里程表示如下(单位:千米):+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,+3;(1)将最后一批乘客送到目的地时,李师傅在原点边千米;(2)上午8:00﹣9:15李师傅开车的平均速度大约多少千米/时?15.(2021秋•达川区期中)出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣2,﹣3,﹣2,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到的乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元.不计汽车的损耗,那么小王这天下午是盈利(或亏损)多少钱?16.(2021秋•射洪市期中)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?。
数学小升初衔接教材

数学⼩升初衔接教材七年级数学(上)学案1.1 正数与负数⼀、学习⽬标:了解正数和负数是从实际需要中产⽣的;能正确判断⼀个数是正数还是负数;明确0既不是正数也不是负数;会⽤正数、负数表⽰实际问题中具有相反意义的量。
⼆、重点:会判断正数、负数,运⽤正负数表⽰具有相反意义的量。
难点:负数的引⼊。
三、疑点:负数概念的建⽴。
四、学习过程:⼩学知识回顾:1. 整数包括奇数和偶数,奇数(举例……);偶数(……)2. 分数包括真分数和假分数,真分数(……);假分数(……)3. ⼩数包括有限⼩数和⽆限⼩数,有限⼩数如;⽆限⼩数如。
课前准备:1.数的产⽣:由记数、排序产⽣数如;由表⽰“没有”“空位”产⽣数;由分物、测量产⽣数如。
北京冬季⾥某⼀天的⽓温为“-3℃-3℃”表⽰什么意义?“-3”的含义是什么?这天温差是多少?2.归纳总结:①正数的概念:______________ 负数的概念:______________ 数 0___________。
现在学习的数可以分为三类、和在同⼀个问题中,分别⽤正数与负数表⽰的量具有的意义。
②如果把⼀个物体向右移动 1m 记作 +1m ,那么这个物体⼜移动了—1m 的意义是,如何描述这时物体的位置?。
3. 我的疑惑是:合作探究:(⼀)1.探究点① . 怎样区分正数和负数?读下列各数,并指出其中哪些是正数,哪些是负数:-2,3,0,+3,1.5,-3.14,100,-1.732.正数有:_________________. 负数有:________________.2.探究点②. 如何⽤正数和负数表⽰的量具有相反意义的量?在下列横线上填上适当的词,使前后构成意义相反的量:(1)收⼊3500元,______6500元;(2)_______800⽶,下降240⽶;(3)向北前进200⽶,_______300⽶。
3.深化知识运⽤点①. ⽤正数和负数表⽰的量具有相反意义的量如果某球队⼀个赛季胜12场,记作+12场,那么该队这个赛季负6场,可记作_______。
小升初暑假班衔接教材数学新

目录第一讲负数 (2)第二讲数轴 (5)第三讲绝对值 (9)第四讲有理数的加法 (13)第五讲有理数的减法及加减混合算 (17)第六讲有理数的乘法 (21)第七讲有理数的除法 (23)第八讲有理数的乘方 (25)第九讲有理数的混合运算 (28)第十讲代数式及代数式求值 (31)第十一讲合并同类项 (34)第十二讲一元一次方程 (39)第十三讲一元一次方程的应用 (43)第十四讲丰富的图形世界 (49)第十五讲平面图形及其位置关系 (59)专题一负数1、相关知识链接小学学过的数:(1)整数(自然数):0,1,2,3…………(2)分数:1131,,,1,2342……………(3)小数:0.5,1.2,0.25…………提问:(1)温度:零上8度,零下8度,在数学中怎么表示?(2)海拔高度:+25,-25分别表示什么意思?(3)生活中常说负债800元,在数学中又是什么意思?2、 教材知识详解负数的产生:我们把其中一种意义的量规定为正,把另一种和它意义相反的量规定为负,这样就产生了负数。
【知识点1】正数与负数的概念(1) 正数:像5,1.2,13,125等比0大的数叫做正数。
(2) 负数:像-5,-1.2,-13,-125等在正数前面加上“-”号的数叫做负数,负数比0小,“-”不能省略。
注:(1)0既不是正数也不是负数,它是正数负数的分界点(2)并不是所有带有“-”号的数字都叫做负数,例如0 【例1】下列那些数为负数 5,2,-8.3,4.7,-13,0,-0 【知识点2】有理数及其分类(1) 有理数:整数和分数统称为有理数,整数包括正整数、0、负整数、分数(包括正分数和负分数)。
注:分数可以与有限小数和无限循环小数相互转化。
(2) 有理数分类:按性质分类:,5.20, 5.2⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎪⎪⎨-⎪⎪⎩⎩正整数:如1,2, 3,...正有理数11正分数:如,, (23)有理数负整数:如-1,-2,- 3,…负有理数11负分数:如-,-, (23)按定义分类:,5.2, 5.2⎧⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎪⎪⎪⎨⎪⎪-⎪⎪⎩⎩正整数:如1,2, 3,…整数0负整数:如-1,-2,- 3,…有理数11正分数:如,,…23分数11负分数:如-,-,…23 【例2】把下列各数填在相应的集合内,-23,0.5,-32, 28, 0, 4, 513, -5.2. 整数集合{ } 负数集合{ } 负分数集合{ } 非负正数数集合{ }【基础练习】1、零下30C 记作( )0C ;( )既不是正数,也不是负数。
小升初数学衔接班教案

小升初数学衔接班教案小升初数学衔接班教案1教学目的:认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。
教学重点:看懂并能简单地分析扇形统计图所反映的情况。
教学难点:看懂并能简单地分析扇形统计图所反映的情况。
教学过程:一、导入1、同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况?2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,制成条形统计图。
二、新授1、观察条形统计图,你从中得到了哪些有用的信息?2、从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)3、生成扇形统计图。
引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)4、根据统计图上表示的情况,你对我班同学有哪些建议?5、回顾知识生成,归纳扇形统计图的特点和作用。
6、“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)三、应用练习1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。
(引导学生说说怎样安排时间才合理,才能做到劳逸结合)2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内沟通。
(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)四、总结学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。
教学追记:扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。
从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图特点的认识。
小升初数学衔接班教案2教学目标:1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
第七讲 单项式与多项式-小升初数学衔接教材(人教版)

第七讲单项式与多项式知识1.掌握单项式和多项式的定义;2.掌握单项式的系数和次数的概念;3.掌握代数式的认识和书写.方法1.能够正确判断出单项式的系数和次数;2.能够正确写出多项式是几次几项式;3.掌握整体代入法.1.单项式◆单项式概念:在代数式中,若只含有乘法(包括乘方)运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.◆单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.【注意】:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写;(3)单项式的系数是带分数时,通常写成假分数.2.代数式◆代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.◆代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;①字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;①后面带单位的相加或相减的式子要用括号括起来;①除法运算写成分数形式,即除号改为分数线;①带分数与字母相乘时,带分数要写成假分数的形式;①当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.2.多项式◆多项式概念:几个单项式的和叫多项式.01课堂目标02知识梳理◆多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数.下列各式中,符合代数式书写要求的是( )A .x 6B .n m ÷C .1abD .a 23【答案】D【分析】根据代数式的书写要求判断各项.【解答】解:A 、不符合代数式书写规则,应改为6x ,故此选项不符合题意; B 、不符合代数式书写规则,应该为nm,故此选项不符合题意; C 、不符合代数式书写规则,应该为ab ,故此选项不符合题意; D 、符合代数式书写规则,故此选项符合题意. 故选:D . 下列代数式符合书写要求的是( )A .a 321B .b a ÷C .22r πD .2⋅n【答案】C【分析】根据代数式的书写要求对各选项依次进行判断即可解答.【解答】解:A 、带分数要写成假分数,原书写错误,故此选项不符合题意; B 、应写成分数的形式,原书写错误,故此选项不符合题意; C 、符合书写要求,故此选项符合题意;D 、2应写在字母的前面,乘号省略,原书写错误,故此选项不符合题意. 故选:C .下列各式最符合代数式书写规范的是( )A .a 211B .baC .13-a 个D .3⨯a【答案】B【分析】根据代数式的书写要求判断各项.【解答】解:A 、带分数要写成假分数的形式,原书写不规范,故此选项不符合题意; B 、除法按照分数的写法来写,原书写规范,故此选项符合题意;C 、代数和后面写单位要加括号,原书写不规范,故此选项不符合题意;D 、数字与字母相乘时,数字要写在字母的前面且省略乘号,原书写不规范,故此选项不符合题意; 故选:B .03例题精析代数式题型一例1例2变式1下列各式mn 21-,m ,8,a 1,622++x x ,52y x -,πy x 42+,y 1中,整式有( )A .3个B .4个C .6个D .7个【答案】C在代数式:243x ,ab 3,5+x ,x y 5,4-,3y,a b a -2中,整式有( ) A .4个 B .5个C .6个D .7个【答案】C在式子8n m +,y x 22,x 1,5-,a ,2π,2+π中,单项式的个数是( ) A .3个B .4个C .5个D .6个【答案】C已知y x +,0,a -,y x 232-,2y x +,4a,42-π中单项式有( )A .3个B .4个C .5个D .6个【答案】C 单项式323b a π-的系数为______,次数为______.【答案】3π-;5 9442zy x π的系数是______,次数是______.【答案】94π;7 单项式22xy π-的系数和次数分别是( )【答案】D【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.整式的概念题型二例1【方法总结】整式的分母中不能含有字母,且常数也是整式. 变式1 单项式题型三例1 【注意】π是常数,常数是单项式. 变式1 例2例3【注意】π是常数,不是字母. 变式2【解答】解:单项式-2πxy 2的系数和次数分别是:-2π和3. 故选:D . 单项式b a 3161π-的系数和次数分别是( ) A .5161,-B .5161, C .4161,π-D .4161,π 【答案】C 如果单项式c b a m 23π是6次单项式,那么m 的值是( )A .2B .3C .4D .5【答案】B【分析】利用单项式的次数确定方法得出m 的值即可. 【解答】解:∵单项式3a m b 2c 是6次单项式, ∴m+2+1=6, 解得:m=3, 故m 的值取3. 故选:B .已知1)3(+-m xy m 是关于x ,y 的五次单项式,则m 的值①______. 【答案】-3.【分析】根据单项式的次数的概念列出方程,解方程得到答案. 【解答】解:由题意得,|m|+1+1=5,m-3≠0, 解得,m=-3, 故答案为:-3.多项式122342222+--xy y x x 有______项,是______次式,所以该多项式是______次______项式. 该多项式的二次项系数是______,三次项的系数是______,常数项是______.【答案】四;四;四;四;4;-2;1多项式421222+-b a b a π是______次______项式.三次项的系数是______,常数项是______.【答案】四;三;-π;4 多项式4)3(21+--x m y x m是关于x 的四次三项式,则m 的值是______. 【答案】-3 ①①项式1)2(3212---+y m y x m 是关于x ,y 的五次三项式,则常数m 的①①______.【答案】-3变式3 例4变式4 多项式题型四例1【注意】多项式的项数和次数必须用大写数字书写.变式1 例2例3若多项式65)4(13--++-x x x m n 是关于x 的二次三项式,则=m ______,=n ______. 【答案】-4;3已知3)2(2152+--y m yx m是四次三项式,则=m ______. 【答案】-2 将多项式32231532y x xy xy -+-按字母y 降幂排列是_______________________.【答案】25331232++--xy xy y x①①式323235x xy y y x --+按x 的降①①①①_______________________. 【答案】322335y xy y x x +-+- 多项①1322-+-b kab a ①①①ab ①①①=k ______.【答案】0多项式2)1(2+--xy x m 中不含2x 项,则=m ______. 【答案】1第七讲 单项式与多项式作业1.下列各式中,符合代数式书写要求的是( )(1)y x 2431;(2)3⨯a ;(3)2÷ab ;(4)322b a -.A .4个B .3个C .2个D .1个【答案】D2.代数式a -b 2的意义表述正确的是( )A .a 减去b 的平方的差B .a 与b 差的平方C .a 、b 平方的差D .a 的平方与b 的平方的差【答案】A【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:a-b 2的意义为a 减去b 的平方的差. 故选:A .变式2 变式3 例4变式4 例5【方法总结】不含某项,那么这一项的系数等于0. 变式5 作业一 代数式1.下列代数式:(1)mn 32-;(2)m ;(3)2π;(4)a b ;(5)12+m ;(6)5yx +;(7)y x y x -+2;(8)2122++x x ;(9)y y y 153-+之中整式有( )A .3个B .4个C .5个D .6个【答案】D2.请写出一个只含有字母x ,y ,且次数不超过3的整式:__________. 【答案】示例2xy 23.单项式24xy -的系数为______,次数为______. 【答案】-4;34.单项式5332y x π-的系数是______,次数是______次.【答案】35π-;5 5.已知m y x m 4)3(-是关于x ,y 的七次单项式,求m =______. 【答案】-36.已知2)2(y x a a +是关于x 、y 的四次单项式,则a 的值等于______. 【答案】21.对于多项式2432--m m ,下列说法正确的是( )A .它是关于m 的二次二项式B .它的一次项系数是4C .它的常数项是-2D .它的二次项是3【答案】C【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数可得答案. 【解答】解:A 、它是关于m 的二次三项式,故原题说法错误; B 、它的一次项系数是-4,故原题说法错误; C 、它的常数项是-2,故原题说法正确; D 、它的二次项是3m 2,故原题说法错误; 故选:C .2.关于多项式243524-+-xy y x y x ,下列说法正确的是( )A .三次项系数为3B .常数项是-2C .多项式的项是5x 4y ,3x 2y ,4xy ,-2D .这个多项式是四次四项式【答案】B作业二 整式与单项式作业三 多项式【分析】根据多项式的项、次数的定义逐个判断即可.【解答】解:A 、多项式5x 4y-3x 2y+4xy-2的三次项的系数为-3,错误,故本选项不符合题意; B 、多项式5x 4y-3x 2y+4xy-2的常数项是-2,正确,故本选项符合题意;C 、多项式5x 4y-3x 2y+4xy-2的项为5x 4y ,-3x 2y ,4xy ,-2,错误,故本选项不符合题意;D 、多项式5x 4y-3x 2y+4xy-2是5次四项式,错误,故本选项不符合题意; 故选:B .3.多项式42333-+-my xy x π的二次项系数是______. 【答案】-2π4.多项式1)4(32+--b xy y x a 是关于x 的三次二项式,那么a -b =______. 【答案】a=4,b=2,a-b=25.若322-+-a a x 是关于a 的三次三项式,则x =______. 【答案】5或-16.按字母x 升幂排列多项式“123322-+--x xy y x ”为:___________________. 【答案】223123xy x y x ---+7.当=k ______时,代数式84)63(22--++y xy k x 中不含xy 项. 【答案】因为多项式不含xy 项,所以3k+6=0,所以k=-2 8.多项式12)1(23+-++y x m y x 中不含2x 项,则=m ______. 【答案】因为多项式不含x 2项,所以m+1=0,所以m=-1。