薛定谔方程及的应用
1-4-薛定谔方程应用举例

第一讲第讲主要内容振动和波动量子力学的诞生量子力学的基本原理薛定谔方程应用举例1薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子2薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子6一维无限深势阱中粒子能级有如下特点:维无限深势阱中粒子能级有如下特点:z能级量子化。
量子力学的普遍规律,束缚态(E <V 0)能级量离子化(离散的,非连续的)。
量子化能量的值要取决于束缚势能的具体情况。
值得指出的是,束缚粒子存在量子化这一事实,可简单和直接的由满足薛定谔方程的波函数应用边界条件就得到了。
z粒子的最低能级,这与经典粒子不同。
这是微观粒子波性的表静的波是有意的从02/2221≠=ma E πh 这是微观粒子波动性的表现,静止的波是没有意义的。
从不确定度关系也可以给予粗略的说明。
211zE ∝n ,能级分布是不均匀的。
CdSe量子点的吸收边和发射峰显著依赖尺寸大小。
可应用于:•生物标记•LED照明•平板显示•太阳能电池12薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子13扫描隧道显微镜20薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子21谐振子能量本征值ωh ⎟⎠⎞⎜⎝⎛+=21n E n ( n = 0,1,2, … )m ω=βz为系统的本征角频率z束缚态,能级量子化。
图1.12 线性谐振子的势能曲线及本征值最低几条能级上的谐振子能量本征函数:122α谐本)(x n ψ)(x n ψ)2exp()(4/10x x απψ−=)21exp(2)(224/11x x x ααπαψ−=1exp(1212222x x x ααα−−=)2p()(2)(4/12πψ29)21exp()132(3)(22224/13x x x x αααπαψ−−=2⏐ψn (x )⏐图1.16 n =10时线性谐振子的几率密度z 实线表示量子谐振子位置概率分布,虚线为经典谐振子的概率分布。
薛定谔方程及其应用

x
y ( x, t ) Re[ Ae
]
1
2、量子力学波函数(复函数) 自由粒子是不受外力作用的粒子,它在运动 过程中作匀速直线运动(设沿X轴),其能量和 动量保持不变。 E h , 对应的德布罗意波的频率和波长: h P 结论:自由粒子的物质波是单色平面波。
波函数为:
对三维空间,沿矢径 r 方向传播的自由粒子的
粒子在0到a/2区域内出现的概率
8
二、薛定谔方程
9
经典力学中,已知力 F 及 x0、 υ 0,可由牛顿方 程求质点任意时刻状态。 在量子力学中,微观粒子的运动状态由波函数来 描写;状态随时间的变化遵循着一定的规律。
当微观粒子在某一时刻的状态为已知时,以后 时刻粒子所处的状态也要薛定谔方程来决定。
2
方程(1)的解为: f ( t ) ce
i Et
Et
(c为任一常数) 将 f ( t ) ce 代入 ( r , t ) ( r ) f ( t ) , 并把常数包含在 ( r ) 中,这样 就得到薛定谔方程的特解为:
定态薛定谔方程
( r , t ) ( r )e
0 (0 x a ) U ( x) ( x 0 , x a )
U ( x )
d U E 2 2m dx
2 2
2 d 2 E 2 2m dx
须有
U(x)
0
( x) 0
0 a
边界条件:
(0) (a ) 0
13
若粒子不是在一维空间而是在三维空间的势场 中运动,则其薛定谔方程为:
2 2 2 2 ( r , t ) ( r , t ) ( r , t ) ( r , t ) i [ ] 2 2 2 t 2m x y z U ( r , t ) ( r , t ) ⑥
薛定谔方程及其在量子物理中的应用

薛定谔方程及其在量子物理中的应用量子物理是一门研究微观世界的科学,它描述了微观粒子的行为和性质。
在量子物理中,薛定谔方程是一个非常重要的数学工具,它被用来描述量子系统的演化和态函数的变化。
本文将介绍薛定谔方程的基本原理以及它在量子物理中的应用。
薛定谔方程由奥地利物理学家埃尔温·薛定谔于1925年提出,它是一种描述量子系统的波动方程。
薛定谔方程的基本形式为:iħ∂ψ/∂t = Ĥψ其中,i是虚数单位,ħ是普朗克常数的约化常数,t是时间,ψ是系统的波函数,Ĥ是系统的哈密顿算符。
薛定谔方程是一个偏微分方程,它描述了波函数随时间的演化规律。
薛定谔方程的解决了经典物理学无法解释的一系列现象,例如电子在原子中的行为、粒子的干涉和衍射等。
在量子力学中,波函数是描述粒子状态的数学对象,它包含了粒子的位置、动量和能量等信息。
通过求解薛定谔方程,我们可以得到系统的波函数,从而了解系统的性质和行为。
薛定谔方程在量子物理中的应用非常广泛。
首先,它被用来解释原子和分子的结构。
根据薛定谔方程,我们可以计算出原子和分子的能级和波函数,从而推导出它们的光谱特性和化学性质。
此外,薛定谔方程还被用来研究固体材料的电子结构和导电性质,为材料科学和电子器件的设计提供了理论基础。
其次,薛定谔方程在粒子物理学中也有重要应用。
量子场论是描述基本粒子的理论框架,其中的场满足薛定谔方程。
通过求解薛定谔方程,我们可以得到场的模式和激发态,从而计算出粒子的质量、自旋和相互作用等性质。
薛定谔方程还被用来研究粒子的散射和衰变等过程,为粒子物理实验的解释提供了理论依据。
此外,薛定谔方程还在量子计算和量子通信等领域有着重要应用。
量子计算利用量子叠加和量子纠缠的特性,可以实现比经典计算更高效的算法。
薛定谔方程提供了描述量子比特演化的数学工具,为量子计算的设计和优化提供了理论基础。
量子通信利用量子纠缠的特性,可以实现更安全和更快速的通信方式。
薛定谔方程被用来描述量子纠缠的产生和传输,为量子通信技术的发展提供了理论支持。
《薛定谔方程》课件

波函数需要满足归一化条件,即 ∫Ψ*(r,t)Ψ(r,t)dV=1,以确保粒 子存在于有限空间内。
时间演化算符
时间演化算符定义
时间演化算符描述波函数的演化过程,通常表示为 U(t),其中t是时间。
时间演化算符的性质
时间演化算符是幺正算符,即U(t)U*(t)=I,其中I是 单位算符。
时间演化算符的作用
时间演化算符可以将初始时刻的波函数演化到任意时 刻的波函数。
能量算符
能量算符定义
能量算符描述微观粒子的能 量,通常表示为H。
能量算符的性质
能量算符是厄米特算符,即 H=H*。
能量算符的作用
能量算符可以将波函数投影 到能量本征态上,得到粒子 的能量。
边界条件和初始条件
边界条件
描述波函数在边界上的行为,如周期 边界、反射边界等。
原理
通过选取适当的变分函数,将薛定谔方程的 求解问题转化为求变分极值的问题。
步骤
选取合适的变分函数,将薛定谔方程转化为变分问 题,然后利用变分法的基本原理求解该问题。
应用范围
适用于具有某些特殊性质的薛定谔方程,如 具有对称性、周期性等性质的问题。
04
薛定谔方程的经典实例
一维无限深势阱
描述
一维无限深势阱是一个理想化的模型,用于描述粒子在一维空间中的 运动,其中势能只在有限区域内存在。
在生物学中,它可以用来描述生物分子的结构和性质, 如蛋白质的结构和功能等。
02
薛定谔方程的基本概念
波函数
01
波函数定义
波函数是描述微观粒子状态的函 数,通常表示为Ψ(rห้องสมุดไป่ตู้t),其中r是 位置向量,t是时间。
02
波函数的性质
薛定谔方程可以解释的生活中的问题

薛定谔方程(Schrödinger equation)是量子力学中的基本方程之一,它描述了微观粒子的运动和行为。
虽然其理论极其复杂,但薛定谔方程却可以被用来解释生活中许多奇妙的现象和问题。
本文将围绕薛定谔方程可以解释的生活中的问题展开讨论,以帮助读者更好地理解这一基础物理理论在日常生活中的应用。
一、量子隧穿效应薛定谔方程首次揭示了量子隧穿效应(quantum tunneling effect),即微观粒子可以在经典力学下无法穿越的势垒的情况下通过反常的方式穿越而无需克服这一势垒。
这一效应在生活中有很多应用,例如:1. 在隧道二极管中,量子隧穿效应使电子得以“穿越”势垒,从而帮助二极管正常工作;2. 核聚变反应中,负电子穿越核力垒,帮助实现核聚变;3. 化学反应中的“反常”速率,有时是由于量子隧穿效应引起的。
二、量子纠缠薛定谔方程还描述了量子纠缠现象,即使两个空间分隔较远的粒子,它们的状态仍然会同时发生变化,这种现象被爱因斯坦称为“一种鬼魅的行为”。
量子纠缠的出现在生活中也有许多实际应用:1. 量子计算机中,利用量子纠缠可以实现超越经典计算机的运算速度和处理能力;2. 量子密钥分发技术中的安全传输,依赖于量子纠缠的特性来保证信息的安全传输;3. 量子纠缠还被应用于实现远距离的量子通信,实现了远距离的量子纠缠态转移。
三、量子力学与生活除了上面提到的具体现象外,薛定谔方程的一些概念和原理也对我们日常生活产生了深远的影响:1. 不确定性原理:薛定谔方程提出了不确定性原理,即无法同时准确地确定微观粒子的位置和动量,这一概念改变了人们对于现实世界的理解,并且在科学研究和生活中也有很多应用;2. 双缝实验:薛定谔方程对光子和电子的双缝干涉实验提出了解释,这一实验揭示了微粒子的波粒二象性,为光学技术和电子技术的发展做出了重要贡献;3. 量子力学的数学形式和基本原理也为信息技术、纳米技术、光学技术等领域的发展提供了理论基础。
薛定谔方程及其在量子力学中的应用

薛定谔方程及其在量子力学中的应用量子力学是一门研究微观世界的科学,它描述了微观粒子的行为和性质。
薛定谔方程是量子力学的基石之一,它由奥地利物理学家埃尔温·薛定谔于1925年提出,是描述微观粒子的波函数随时间演化的数学方程。
薛定谔方程的形式为:iħ∂Ψ/∂t = -ħ²/2m∇²Ψ + VΨ其中,i是虚数单位,ħ是普朗克常数的约化常数(ħ=h/2π,h为普朗克常数),Ψ是波函数,t是时间,m是粒子的质量,∇²是拉普拉斯算符,V是势能。
薛定谔方程描述了波函数随时间的演化,通过求解薛定谔方程,我们可以得到波函数的时间演化规律,从而了解微观粒子的行为和性质。
薛定谔方程在量子力学中有广泛的应用。
首先,它可以用来描述粒子的定态和非定态。
定态是指粒子的能量和其他性质都是确定的状态,非定态是指粒子的能量和其他性质都不是确定的状态。
通过求解薛定谔方程,我们可以得到粒子的定态波函数,从而得到粒子的能量和其他性质。
而非定态波函数则描述了粒子的能量和其他性质在不同状态之间的转变。
其次,薛定谔方程还可以用来解释粒子的波粒二象性。
根据薛定谔方程,波函数Ψ可以表示粒子的概率幅,即波函数的模的平方|Ψ|²表示在某个位置上找到粒子的概率。
这就是波粒二象性,即微观粒子既具有粒子性又具有波动性。
薛定谔方程还可以用来解释量子力学中的量子纠缠现象。
量子纠缠是指两个或多个粒子之间存在着一种特殊的关系,它们的状态是相互依赖的,无论它们之间的距离有多远。
薛定谔方程可以描述量子纠缠现象,通过求解薛定谔方程,我们可以得到纠缠态的波函数,从而了解量子纠缠的本质和特性。
此外,薛定谔方程还可以应用于量子力学中的量子力学力学中的研究。
量子力学力学是一种研究微观粒子运动规律的方法,它可以通过求解薛定谔方程得到粒子的运动轨迹和动力学性质。
总之,薛定谔方程是量子力学的基础方程之一,它描述了微观粒子的波函数随时间演化的规律。
量子力学中的薛定谔方程和量子力学

薛定谔方程的物理意义
它决定了粒子在给定势能下 的波函数和概率密度
薛定谔方程是描述量子力学中 粒子运动状态的偏微分方程
薛定谔方程是量子力学的基本 方程之一,是理解和预测物质
行为的关键工具
薛定谔方程的解可以揭示粒子 的能量、动量和角动量等属性
薛定谔方程的解 法
分离变量法
分离变量法:将薛定谔方程中的波 函数分离为空间和动量两个部分, 从而简化求解过程
无法处理量子纠缠 和量子误差问题
在某些情况下会导 致波函数塌缩的不 确定性问题
不能解释量子纠缠现象
不能解释量子纠缠现象 无法描述粒子间的相互作用 对初始条件的敏感性 无法预测量子系统的长期演化
量子力学的其他 重要概念和方程
波函数的概念和性质
波函数定义:描 述微观粒子状态 的函数
波函数的性质: 概率幅、复数、 归一化
波函数的物理意义: 微观粒子在空间中 的概率分布
波函数与薛定谔方 程的关系:薛定谔 方程用于求解波函 数的演化
量子态的概念和描述
定义:量子态是量子力学中一个物理系统的状态,由波函数描述
特性:量子态具有叠加性和相干性,即一个量子态可以表示为其他量子态的线性 组合,且不同量子态之间存在干涉现象 描述方法:通常使用波函数来描述量子态,波函数满足薛定谔方程,并具有归一 化条件
为
薛定谔方程的应 用
在原子物理中的应用
解释原子光谱的线型
描述原子状态的波函数
揭示原子能级的分布规律
预测原子辐射和吸收光子的 过程
在固体物理中的应用
描述电子行为: 薛定谔方程是描 述固体中电子行 为的基石。
计算能带结构: 通过求解薛定谔 方程,可以计算 出固体的能带结 构。
薛定谔方程一般表达式

薛定谔方程一般表达式
目录
1.薛定谔方程的定义和一般表达式
2.薛定谔方程的适用条件
3.薛定谔方程在物理学中的重要性
4.薛定谔方程的实际应用
正文
薛定谔方程是量子力学中的一个基本方程,描述了一个微观粒子的运动状态。
它是由奥地利物理学家薛定谔在 1926 年提出的,对于量子力学的发展起到了重要的作用。
薛定谔方程的一般表达式为:i(Ψ/t) = HΨ,其中 i 是虚数单位,是约化普朗克常数,Ψ是波函数,t 是时间,H 是哈密顿算子。
这个方程描述了一个量子系统在时间演化下的状态变化,是量子力学基本方程之一。
薛定谔方程的适用条件是:系统的哈密顿量 H 是时间独立的,这意
味着系统在演化过程中能量是守恒的。
此外,薛定谔方程仅适用于量子体系,不适用于经典物理体系。
薛定谔方程在物理学中的重要性体现在它对于量子力学的发展起到
了关键作用。
它提供了一种描述微观粒子运动状态的方法,使得人们可以更好地理解原子、分子等微观世界的现象。
此外,薛定谔方程在实际应用中也有着广泛的应用,例如在量子计算、量子通信、量子力学基础研究等领域都有重要的应用价值。
第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 f (t ) 1 2 2 i [ (r ) V (r ) (r )] f (t ) t (r ) 2m
很明显,上式右边只是 矢径 的函数,而左边只 是时间t的函数,为了使上式成立,必须两边恒等于 某一个常数,设以E表示,则有: 11
r
f (t ) i Ef (t ) ( 1) t 2 2 (r ) V (r ) (r ) E (r ) (2) 2m
p E V ( x, t ) 2m
将上式作用于波函数上,此时的薛定谔方程为:
2
( x, t ) ( x, t ) i V ( x, t ) ( x, t ) 2 t 2m x
2 2
⑤
8
由此可知,粒子能量E和动量P与下列作用在波 函数上的算符相当:
E i , t
方程(1)的解为: f 将 f (t ) ce 入 并把常数包含在 程的特解为:
( x, t ) i E0e t
上式两边都乘以
i ( Et px )
i E ( x, t ) ①
( x, t ) i E ( x, t ) t
对 x 求二阶偏导
i
得:
( x, t ) i i p0e p ( x, t ) x i 2 2 ( Et px ) ( x, t ) ip 2 p ( ) e 2 ( x, t ) 0 2 x 2
i ( Et px )
②
6
上式两边都乘以
2m
得:
2 2 ( x, t ) p 2 ( x, t ) 2 2m x 2m
把对t 求导的式子写在下面
②
( x, t ) i E ( x, t ) t
①
当粒子速度远小于光速c时(v<<c)自由粒子的动量 和能量满足以下关系:
ቤተ መጻሕፍቲ ባይዱ
E i , p i t
(r , t ) (r ) f (t )
10
2 (r , t) 2 代入 i (r , t) V ( r, t) ( r, t ) t 2m
得:
2 2 i [ (r ) f (t )] [ (r ) f (t )] U (r ) (r ) f (t ) t 2m 两边除以 (r ) f (t ),可得:
p E 2m
2
③
利用上面的两个公式消去 p,E 得:
7
2 2 ( x , t ) ( x, t ) 可得: i t 2m x 2
④
这就是一维空间运动的自由粒子的薛定谔方程。
2.薛定谔方程的一般形式
若粒子不是自由的,而是在某力场中运动,其 势能函数为EP=V(x,t),则粒子的总能量应为:
利用复数计算公式
e
ix
cos x i sin x
上式可以记为
y Ae
i E t px
1.自由粒子的薛定谔方程
动量为P 、质量为m、能量为E的自由粒子, 沿 x 轴运动的波函数为:
( x, t ) 0e
i ( Et px )
5
对时间求微商,得到:
9
3.建立薛定谔方程的一般方法 (1)找出粒子总能E与动量P的关系式; (2)把关系式中的E和P算符化:
(3)把经算符化后的关系式分别作用在上,即可 得到所需的薛定谔方程。 4.定态薛定谔方程 如果粒子的势能并不随时间而变化,即V=V(x,y,z), 它不包含时间。在经典力学中这相应于粒子机械能守 恒的情况,在这种情况下,可以用分离变量法把波函 数写成空间坐标函数和时间函数的乘积,即:
2
引入薛定谔方程的想法是:我们先假定自由粒子的波动是平面波,则微分方程的最基 本的形式可以由平面波引入,再由有势能存在的情况下作相应的修正得出薛定谔方程。 它的正确性是由其结果能够解释已知的实验事实,并且能够推断出尚未发现的实验现 象来验证的。
3
1926年,薛定谔提出了薛定谔方程做为量子力 学的一个基本方程来描述微观粒子的运动。当微观 粒子所处的力场确定后,粒子所处的状态可以由薛 定谔方程求解。
一、薛定谔方程
要建立微观粒子的运动方程,应包含时间及空 间变量。这个方程还应满足以下两个条件:(1)方 程是线性的,即如果1和2都是这方程的解,那么 1和2的线性迭加(a1 +b2)也应是方程的解。 这是由态迭加原理(干涉现象)决定的;(2)这个 方程的系数不应包含状态的参量,如动量、能量等。 否则方程只能被粒子的部分状态所满足,不能被各 种可能的状态所满足。
4
x 首先看平面波的波动方程: y A cos2 t 将其用于自由粒子则: 1 2 h x A cos E t px y A cos h t h
p 或p i
2 2 2
ˆ i , p 写成式子: E ˆ i t i j k x y z
2
2 ˆ 引入哈密顿算符: H V 2m 这就是薛定谔方 ˆ 则⑦式可写为: H i 程的一般形式。 t
2-1
薛定谔方程及 其简单应用
1
奥地利物理学家,1933年诺贝尔物理奖获得者。 薛定谔是著名的理论物理学家,量子力学的重要奠基人 之一,同时在固体的比热、统计热力学、原子光谱及镭 的放射性等方面的研究都有很大成就。 薛定谔方程是在德布罗意提出的物质波的基础上建立起 来的。他把物质波表示成数学形式,建立了称为薛定谔 方程的量子力学波动方程。 薛定谔对分子生物学的发展也做过工 作。由于他的影响,不少物理学家参 与了生物学的研究工作,使物理学和 生物学相结合,形成了现代分子生物 学。