薛定谔方程及其简单应用共37页文档
18.0 薛定谔方程及其应用

一维运动粒子的含时薛定谔方程
Ψ ( x , t ) = ψ ( x )φ (t ) = ψ 0 ( x ) e
2 2
− i 2 π Et / h
在势场中一维运动粒子的定态薛定谔方程 势场中一维运动粒子的定态薛定谔方程 运动粒子的定态
d ψ 8π m + ( E − E p )ψ ( x ) = 0 2 2 dx h
一. 物质波的波函数
微观粒子 具有波动性
1925年薛定谔 年薛定谔
用物质波波函数描述 微观粒子的概率波
轴正方向运动,由于其能量、动量为常量, 例如 自由粒子沿 x 轴正方向运动,由于其能量、动量为常量, 不随时间变化,其物质波是单色平面波, 所以 v 、 λ 不随时间变化,其物质波是单色平面波,波 函数为
r 2 r * r dW =|Ψ(r,t)| dV =Ψ(r,t)Ψ (r,t)dV
2. 归一化条件 (粒子在整个空间出现的概率为 粒子在整个空间出现的概率为1) 粒子在整个空间出现的概率为
r 2 ∫∫∫|Ψ(r,t)| dxdydz =1
3. 波函数必须单值、有限、连续 波函数必须单值、有限、 概率密度在任一处都是唯一、有限的 概率密度在任一处都是唯一、有限的, 并在整个空间内连续
2
归一化条件 归一化条件
2 a A sin 2 0
∫−∞ ψ
∞
2
dx = ∫ ψψ dx = 1
* 0
a
∫
nπ xd x = 1 a
2 A= a
ψ ( x) =
2 nπ sin x , (0 ≤ x ≤ a ) a a
d ψ 8π mE + ψ = 0 ∞ Ep ∞ 波动方程 2 2 dx h
2 2
薛定谔方程及其简单应用

75.5neV
当n>>1时,能量相对间隔
En En
21 nn
当
n 时
E E 量子化不显著。
n
n
经典物理可看成是
n 时量子物理的特殊情况。
H
26
a =102 m时:
E
n 2h 2 8ma 2
8n29(.61.61301310314)024
3.7 810 1n 52ev
显然电子在宏观尺度上运动时其能级差是很小的。
H
24
经典理论中,处于无限深方势阱中粒子
的能量为连续值,粒子在阱内运动不受限制, 各处概率相等。
| |2
n4
随着能级的升高,几率密度的峰值增多,
当
时,粒子在势阱内各处出现的概率
n 相等,量子力学的结果过渡到经典力学的情
况。
n3 n2
0
a/2
n1 a
从以上分析可知:对于无限深势阱来说,粒子只能在势阱U=0的区域能运 动。。
2 m 2d2d 32 (x x)E 3(x), xa
aa
n 很大时,相邻波腹靠得很近,接近经典 力学各处概率相同。
H
3x
E3
2x
E2
1x E 1
o
n+1个
x a节点
稳定的驻波能级23
一维无限深方势阱中粒子的能级、波函数和几率密度
n4
| |2
4
16E1
3
n3
9E1
n2
n1 0
a/2
2
1 a0
a/2
4E1 E1 a Ep 0
对于不同的量子数,在阱内某一特定的点,粒子出现的几率是不同的。
粒 r 处 子 的 在 2 ( 几 r ,t) ( *r ,t 率 )
《薛定谔方程》课件

波函数需要满足归一化条件,即 ∫Ψ*(r,t)Ψ(r,t)dV=1,以确保粒 子存在于有限空间内。
时间演化算符
时间演化算符定义
时间演化算符描述波函数的演化过程,通常表示为 U(t),其中t是时间。
时间演化算符的性质
时间演化算符是幺正算符,即U(t)U*(t)=I,其中I是 单位算符。
时间演化算符的作用
时间演化算符可以将初始时刻的波函数演化到任意时 刻的波函数。
能量算符
能量算符定义
能量算符描述微观粒子的能 量,通常表示为H。
能量算符的性质
能量算符是厄米特算符,即 H=H*。
能量算符的作用
能量算符可以将波函数投影 到能量本征态上,得到粒子 的能量。
边界条件和初始条件
边界条件
描述波函数在边界上的行为,如周期 边界、反射边界等。
原理
通过选取适当的变分函数,将薛定谔方程的 求解问题转化为求变分极值的问题。
步骤
选取合适的变分函数,将薛定谔方程转化为变分问 题,然后利用变分法的基本原理求解该问题。
应用范围
适用于具有某些特殊性质的薛定谔方程,如 具有对称性、周期性等性质的问题。
04
薛定谔方程的经典实例
一维无限深势阱
描述
一维无限深势阱是一个理想化的模型,用于描述粒子在一维空间中的 运动,其中势能只在有限区域内存在。
在生物学中,它可以用来描述生物分子的结构和性质, 如蛋白质的结构和功能等。
02
薛定谔方程的基本概念
波函数
01
波函数定义
波函数是描述微观粒子状态的函 数,通常表示为Ψ(rห้องสมุดไป่ตู้t),其中r是 位置向量,t是时间。
02
波函数的性质
B11_薛定谔方程

U ( r , t )
2 2
引入拉普拉斯算符 引入哈密顿算符
(Hamiltonian operator)
2
2 2
2
x
y
2 2
薛定谔方程:
i t ˆ H
z
ˆ H
2 U (r , t )
2m
4、关于薛定谔方程的说明 是量子力学的一个基本原理;是量子力学的基本方程, 描述非相对论性粒子波函数的演化规律。 是线性齐次微分方程,解满足态叠加原理 若 1 和 2 是方程的解,则它们的线性组合 (C11+C22)也一定是方程的解。 方程中含有虚数 i 它的解 是复函数,复数不能直接测量。 而 的模方代表概率密度,可测量。 2 薛定谔方程关于时间是一阶的,这 2 2 u 2 不同于经典波动方程(时间二阶) t
U ( r , t )
若势函数U不显含t,为求解薛定谔方程,分离变量 (r , t ) (r ) T (t )
ˆ 代入薛定谔方程,得 i d T ( t ) ( r ) [ H ( r )]T ( t ) dt
dT(t ) 除以 ( r ) T ( t ) ,得 i
( x ) A sin kx ) 待定常数A、 由 应满足的物理条件决定。 (
以上的解已自然满足单值,有限的条件。 连续条件: 由于边界外 = 0,所以有:
x a 2 a , 0 A sin ( ka 2 ) 0
ka 2
l1
2 l1 l 2 ) l ( l
x
, 0 A sin (
15 量子物理学的诞生 薛定谔方程及应用

一维自由粒子的 含时薛定谔方程
2、一维势场 U ( x , t ) 中运动粒子薛定谔方程
P E Ek U U 2m Ψ i EΨ t 2Ψ P2 2 Ψ 2 x
2
Ψ i P2 [ U ( x , t )]Ψ t 2m
Ψ ( x, t ) Ψ oe
x
E p0
A B
2 一维无限深势阱
0
0
a x
U (x)
0 0< x < a
x 0, x a
U 与t 无关,写出定态定谔方程
1
1= 0
d Φ UΦ EΦ 2 2m dx
2 2
0 2
3
3 = 0
1 势阱外
dΦ Φ EΦ 2 2m dx
2 2
x
0
a
x
讨论
1.能量只能取分立值 是解薛定谔方程自然而然得到的结论。 按经典理论……粒子的“能量连续”; 但量子力学……束缚态能量只能取分立值(能级)
2.当 m 很大(宏观粒子)时,能量连续, 量子 经典。 3.最低能量不为零(称零点能) 2 2 E1 0 2 ———符合不确定关系。 2 ma
2 2 Φ UΦ EΦ 2m
定态薛定薛方程 一维定态薛定谔方程
2m Φ 2 ( E U )Φ 0
2
d 2Φ( x ) 2m 2 (E U)Φ( x ) 0 2 dx
势阱中的粒子 势垒 谐振子
一、 一维无限深势阱
1 势阱
U (x)
金属表面
金属中自 由电子的 势能曲线
推广到三维情况, 2 2Ψ Ψ U ( x , t )Ψ i 薛定谔方程可写为: 2
第二十七章薛定谔方程ppt课件

p 2x
2m(U0 E)
粒子进入该区域的速度为
xpx 2
v v p 2(U0 E)
m
m
则粒子进入的时间不确定度为
x
m
t
v 2 2m(U0 E) 2(U0 E) 4(U0 E)
根据能量-时间的不确定关系,粒子能量的不确定度为
E 2t 2(U0 E)
En
pn2 2m
,
k
n
a
x0 a 2
16E1
9E1 4E1 E1
ax
粒子的德布罗意波长
k n
n
h pn
2a n
2
k
a
, n 1, 2,...
波长也是量子化的,为势阱宽度2倍的整数分之一
n与两端固定弦的驻波波 长形式相同(见P158式n=2L/n)
n
n (x) 2
En
L
4 a 2
1 2L 1 2
2.无限深方势阱中粒子的波函数
一维定态薛定谔方程
2
2m
2
x2
U x
E
势阱外:x<0,x>a区域(边界条件),U=∞,不会有粒子
存在,则
0 , x 0, x a
势阱内:0≤x≤a区域,U=0,则有方程
2
x2
2mE
2
0
令
k2
2mE
2
k
2mE
2
x2
k 2
0
2
x2
k 2
0
与简谐运动方程
d2x dt 2
用波函数来描述微观粒子的运动
经典波的波函数:
机械波 y(x,t) Acos 2π( t x )
薛定谔方程及其应用

薛定谔方程及其应用薛定谔方程是量子力学的基础方程之一,描述了微观粒子的行为和性质。
它由奥地利物理学家薛定谔于1925年提出,被广泛应用于原子物理、分子物理、凝聚态物理等领域。
本文将介绍薛定谔方程的基本原理以及其在量子力学研究和实际应用中的重要性。
薛定谔方程是描述量子力学体系中粒子的波动性质的基本方程。
它的一般形式为:iħ∂Ψ/∂t = ĤΨ其中,i是虚数单位,ħ是约化普朗克常数,Ψ是波函数,t是时间,Ĥ是哈密顿算符。
薛定谔方程是一个偏微分方程,描述了波函数随时间的演化规律。
通过求解薛定谔方程,可以得到粒子的波函数,从而计算出粒子的能量、动量、位置等物理量。
薛定谔方程的解可以用波函数表示,波函数的模的平方表示了粒子存在于不同位置的概率。
波函数的具体形式取决于体系的边界条件和势能场。
对于自由粒子,波函数可以用平面波表示;对于束缚态,波函数则由边界条件和势能场决定。
薛定谔方程的解可以通过数值计算或近似方法求得。
薛定谔方程在量子力学的研究中起着重要的作用。
它可以用来描述原子和分子的电子结构,解释化学反应的机理,预测材料的性质等。
在原子物理中,薛定谔方程被用来计算原子的能级和光谱线;在分子物理中,薛定谔方程可以用来研究分子的振动和转动;在凝聚态物理中,薛定谔方程被用来描述电子在晶体中的行为和导电性质。
除了用于研究基本粒子和物质的性质,薛定谔方程还被应用于量子计算和量子通信等领域。
量子计算是一种基于量子力学原理的新型计算方法,利用量子叠加和量子纠缠的特性,可以在某些情况下比传统计算方法更高效。
薛定谔方程提供了描述量子比特(qubit)行为的数学工具,为量子计算的实现提供了理论基础。
此外,薛定谔方程还被应用于量子力学中的一些基本现象的研究,如量子隧穿效应、量子干涉和量子纠缠等。
这些现象在实验室中已经得到了验证,并且在量子信息科学和量子技术的发展中发挥着重要作用。
总之,薛定谔方程是量子力学的基本方程之一,描述了微观粒子的波动性质。
张丹海《简明大学物理》11-7 薛定谔方程

得
f (t ) 2 i (r ) f (t )( V ) (r ) t 2m
2
两边同除以 Ψ ( r , t ) Ψ ( r ) f ( t ) 得
i f (t ) f (t ) t 1 2 (r ) V ( r ) 2m
上页
下页
返回
帮助
11-7 薛定谔方程
第十一章 量子物理基础
扫描遂穿显微镜 ( STM )原理图
上页
下页
返回
帮助
11-7 薛定谔方程
第十一章 量子物理基础
扫描隧道显微镜中的原子形象
量子围栏照片
上页
下页
返回
帮助
0 xa
2
d (x) dx
2m E
2
E ( x )
2m
令 k
d
2
dx
2
k 0
2
上式的通解为
( x ) A sin kx B cos kx
上页 下页 返回 帮助
11-7 薛定谔方程
第十一章 量子物理基础
( x ) A sin kx B cos kx
粒子的能量虽不足以超越 势垒 , 但在势垒中似乎有一个 隧道, 入 能使少量粒子穿过而进 的区域 , 所以人
(x)
1
2
3
x a
o
a
x
们形象地称之为隧道效应。
隧道效应的本质:来源于微观粒子的波粒二相。
上页
下页
返回
帮助
11-7 薛定谔方程
应用
第十一章 量子物理基础
1981年宾尼希和罗雷尔利用电子的隧道效应制成了扫描遂 穿显微镜 ( STM ), 可观测固体表面原子排列的状况。1986年 宾尼希又研制了原子力显微镜。