张量分解方法研究

合集下载

随机映射和张量分解方法在推荐系统中的应用研究

随机映射和张量分解方法在推荐系统中的应用研究

随机映射和张量分解方法在推荐系统中的应用研究下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!推荐系统是如今互联网应用中普遍存在的一种服务,它可以根据用户的历史行为和兴趣来向用户推荐相关内容,从而提高用户体验和服务精准度。

张量分解与张量计算方法

张量分解与张量计算方法

张量分解与张量计算方法随着信息技术的不断发展,数据处理和分析的方式也在不断改变。

张量计算方法作为一种重要的数学工具,正在得到越来越广泛的应用。

而张量分解作为张量计算方法的核心,其在数据处理和分析上的应用也越来越受到关注。

一、什么是张量?张量在物理学和工程学中是一种重要的数学工具。

其表现形式可以是阶数不同的多维数组。

例如,标量可以看作是零阶张量,向量可以看作是一阶张量,矩阵可以看作是二阶张量。

一般地,n 维张量可以表示为由n个指标指定位置上元素的数组。

在实际应用中,张量在物理学、工程学、化学、材料学、计算机科学等领域中得到了广泛的应用。

这些应用主要涉及到标量、向量等不同维度的数据集合,包括流体力学、量子力学、信号处理等等。

二、张量分解的概念和方法当涉及到多维数据集合时,传统的矩阵和向量的处理方法已经不再适用。

这时候,张量分解方法就显得尤为重要。

张量分解是一种将多维数据映射到低维空间中的方法,可以将多维数据转化为一组基础因子(Factors),从而更容易对数据进行分析、处理和可视化。

张量分解方法是对张量进行降维处理的方法。

这种方法通过将高维数据映射到低维空间来实现简化数据集合的目的。

常见的张量分解方法包括Principal Component Analysis (PCA)、N-Mode Singular Value Decomposition (N-SVD)、Canonical Polyadic Decomposition (CPD)等。

其中,CPD方法是最常用的张量分解方法之一。

其主要思想是将原始数据转化为多个基础矩阵(Factor Matrix)的乘积形式,从而将高维数据分解为若干个比较容易处理的低维矩阵。

三、张量计算方法的应用张量计算方法在现代科学、工程、医学等领域中都有重要应用。

在医学领域中,张量计算方法被广泛应用于脑神经元的结构分析、脑胶质瘤的诊断、心肌收缩行为的模拟等领域。

在机器学习领域中,张量计算方法也是一个重要的工具。

张量分解稀疏张量wthres阈值处理

张量分解稀疏张量wthres阈值处理

文章标题:深度探讨张量分解稀疏张量wthres阈值处理的方法和应用引言在信息科学领域,张量分解是一项重要的技术,用于处理高维数据,特别是稀疏张量。

其中,wthres阈值处理是一种常见的方法,能够帮助我们更好地理解数据的结构和特征。

本文将深入探讨张量分解稀疏张量wthres阈值处理的方法和应用,帮助读者更好地理解和运用这一技术。

一、张量分解的基本概念1. 张量的概念张量是信息科学中一个重要的概念,它是一种多维数组或矩阵的扩展。

在现实世界中,许多数据可以被表示为张量,例如图像数据、视频数据和传感器数据等。

2. 张量分解的意义张量分解是将高维的张量数据进行分解,以便更好地理解数据的内在结构和特征。

通过张量分解,我们可以把复杂的高维数据转化为更简洁、更易于理解的形式,有助于数据的降维和特征提取。

二、稀疏张量的特点1. 稀疏张量的定义稀疏张量是指大部分元素为0的张量,这种数据在实际应用中非常常见。

在社交网络数据中,用户与用户之间的互动关系可以被表示为稀疏张量。

2. 稀疏张量的挑战稀疏张量的处理具有一定的挑战性,因为大部分元素都是0,所以需要特殊的方法来有效地分解和处理这种数据,同时保留数据的有用信息。

三、wthres阈值处理的方法1. wthres阈值处理的原理wthres阈值处理是一种常见的方法,用于处理稀疏张量。

它的基本思想是对张量的元素进行阈值处理,将小于阈值的元素置0,从而消除噪声和无用信息。

2. wthres阈值处理的应用wthres阈值处理可以应用于多个领域,如图像处理、信号处理和网络分析等。

在实际应用中,可以根据具体的情况选择合适的阈值和处理方法,以达到最佳的效果。

四、张量分解稀疏张量的技术挑战与解决方法1. 技术挑战张量分解稀疏张量在实际应用中也面临一些挑战,比如计算复杂度高、噪声干扰等问题。

如何有效地解决这些问题,是当前研究的热点之一。

2. 解决方法针对张量分解稀疏张量的技术挑战,有许多解决方法,如采用高效的分解算法、优化数据结构和引入先进的噪声处理技术等。

分布式的增量式张量tucker分解方法

分布式的增量式张量tucker分解方法

分布式的增量式张量Tucker分解方法一、概述随着大数据和人工智能的兴起,张量分解作为一种重要的数据分析方法,具有越来越广泛的应用。

张量Tucker分解是其中一种经典的张量分解方法,它能够将高维张量进行低维近似表示,从而帮助我们更好地理解和处理数据。

然而,传统的Tucker分解方法在处理大规模数据时速度缓慢,因此研究人员提出了分布式的增量式张量Tucker分解方法,以适应大规模数据的需求。

二、传统的张量Tucker分解1. 张量的定义在介绍Tucker分解方法前,我们先来了解一下张量的基本概念。

张量是一种多维数组,可以看作是矩阵在高维空间的推广。

在数据分析中,我们常常会遇到高维数据,而张量可以很好地用来表示和处理这些数据。

2. Tucker分解的原理Tucker分解是将一个高阶张量表示为一组低阶张量的乘积的过程。

具体来说,对于一个三阶张量A,Tucker分解可以表示为A = G x1 U x2 V x3 W,其中G是核张量,U、V、W分别是模式1、模式2和模式3的矩阵。

通过Tucker分解,我们可以用较低的维度来表示原始张量,从而实现数据的降维和压缩。

3. 传统Tucker分解的局限性尽管Tucker分解在数据分析中具有重要意义,但传统的Tucker分解方法在处理大规模数据时存在速度较慢、内存消耗较大的问题。

这主要是因为传统方法需要一次性加载整个张量数据,并在单机上进行分解,无法很好地应对大规模数据的需求。

三、分布式的增量式张量Tucker分解方法1. 分布式计算框架针对传统Tucker分解方法的局限性,研究人员提出了分布式的增量式张量Tucker分解方法。

该方法基于分布式计算框架,通过将张量分解任务分配给多台计算机进行并行处理,实现了对大规模数据的高效处理。

2. 增量式分解与传统的一次性加载整个张量数据并进行分解不同,增量式张量Tucker分解方法可以逐步处理张量数据。

具体地,它可以将原始张量分解为若干小块的子张量,并在每个子张量上进行分解计算。

基于张量分解的红外弱小目标检测算法研究

基于张量分解的红外弱小目标检测算法研究

基于张量分解的红外弱小目标检测算法研究红外遥感技术在军事、安防等领域中具有重要的应用价值。

在红外图像中,弱小目标的检测一直是一个具有挑战性的问题。

为了克服这个问题,许多基于张量分解的红外弱小目标检测算法被提出和研究。

红外弱小目标通常指的是红外图像中的低对比度、低亮度等目标。

由于受到红外图像采集设备的限制以及背景干扰的影响,直接从红外图像中提取目标非常困难。

因此,基于张量分解的红外弱小目标检测算法成为了解决这一问题的有效方法。

首先,需要了解什么是张量分解。

张量分解是一种多线性代数方法,用于将多维数据分解为低维子空间。

在红外图像中,将红外图像数据分解为局部特征空间可以提高目标的显著性,从而实现目标的检测。

基于张量分解的红外弱小目标检测算法通常包括以下几个步骤。

首先,对红外图像进行预处理。

预处理的目的是降低图像中的噪声以及增强目标的对比度。

常用的预处理方法包括直方图均衡化、滤波等。

然后,利用张量分解技术对预处理后的红外图像进行分解。

张量分解可以将原始红外图像分解为几个低维子空间,每个子空间对应一个特定的图像特征。

常用的张量分解方法包括SVD(奇异值分解)、Tucker分解等。

接下来,通过对分解后的子空间进行处理,提取目标特征。

通常采用一些特征提取方法,如局部二值模式(LBP)、主成分分析(PCA)等。

这些特征能够更好地描述目标的纹理和形状信息。

最后,采用目标检测算法对提取的特征进行分类和检测。

常用的目标检测算法有支持向量机(SVM)、卷积神经网络(CNN)等。

这些算法可以根据提取的特征判断目标是否存在,并给出目标的位置和类别。

在实际应用中,基于张量分解的红外弱小目标检测算法已经取得了一定的成果。

这些算法在红外图像中有效地提取了目标的显著性特征,对低对比度、低亮度等弱小目标的检测取得了较好的效果。

然而,基于张量分解的红外弱小目标检测算法仍然存在一些挑战和问题。

首先,由于红外图像中存在的复杂背景干扰和噪声,目标特征的提取和目标检测的准确性还有待进一步提高。

张量块向分解

张量块向分解

张量块向分解1. 引言张量是线性代数中的重要概念,它在数学、物理、工程等领域中具有广泛的应用。

张量块是由多个张量组成的复合结构,也称为高阶张量。

在某些情况下,我们可能需要将张量块进行分解,以便更好地理解和处理数据。

本文将介绍张量块的概念和分解方法,并探讨其在实际应用中的意义和效果。

2. 张量块的定义张量块是由多个张量按照一定规律排列组合而成的结构。

它可以看作是一个多维数组,每个维度都对应一个张量。

例如,一个二维张量块可以表示为:[[T1, T2],[T3, T4]]其中T1、T2、T3和T4分别是四个二维张量。

张量块可以有任意多的维度,每个维度可以有任意多的张量。

3. 张量块的分解方法张量块的分解方法有很多种,常用的方法包括SVD分解、CP分解和Tucker分解。

这些方法可以将张量块分解成更简单的子结构,从而方便后续的处理和分析。

3.1 SVD分解SVD(Singular Value Decomposition)是一种常用的张量块分解方法。

它将张量块分解为三个矩阵的乘积,即:A = U * Σ * V^T其中A是待分解的张量块,U、Σ和V分别是三个矩阵。

U和V是正交矩阵,Σ是对角矩阵。

SVD分解可以将张量块的信息压缩到较低维度的矩阵中,从而减少数据的存储和计算量。

3.2 CP分解CP(Canonical Polyadic)分解是另一种常用的张量块分解方法。

它将张量块分解为多个张量的线性组合,即:A = sum(lambda_i * [u1_i, u2_i, ..., un_i])其中A是待分解的张量块,lambda_i是权重系数,u1_i、u2_i、…、un_i是一组张量。

CP分解可以将张量块分解为一组低秩张量的线性组合,从而提取出张量块中的主要特征。

3.3 Tucker分解Tucker分解是一种综合了SVD和CP分解的张量块分解方法。

它将张量块分解为一个核张量和一组模态张量的乘积,即:A = G * [U1, U2, ..., Un]其中A是待分解的张量块,G是核张量,U1、U2、…、Un是一组模态张量。

张量的分解与应用

张量的分解与应用张量是现代数学和物理学中的重要概念,它在各个领域都有着广泛的应用。

张量的分解是将一个复杂的张量表示为若干个简单的张量的乘积的过程,它在数据分析、图像处理、机器学习等领域中具有重要的意义。

让我们了解一下张量是什么。

张量可以被看作是多维数组或矩阵的推广。

在数学上,张量的定义涉及到线性代数和多线性代数的概念。

在物理学中,张量是描述物理量在空间中的变化和转换规律的数学工具。

张量的阶数表示了它的维度,例如,一阶张量是一个向量,二阶张量是一个矩阵,三阶张量是一个立方体。

张量的分解是将一个复杂的张量表示为若干个简单的张量的乘积的过程。

这种分解可以使得原始的张量表示更加简洁和易于处理。

其中最著名的分解方法之一是奇异值分解(Singular Value Decomposition,简称SVD)。

奇异值分解将一个矩阵分解为三个矩阵的乘积:一个包含了原始矩阵的所有信息的对角矩阵,一个包含了原始矩阵的列空间的正交矩阵,和一个包含了原始矩阵的行空间的正交矩阵。

奇异值分解在数据分析和图像处理中有着广泛的应用。

在数据分析领域,张量的分解可以用于降维和特征提取。

通过将一个高维的数据张量分解为若干个低维的张量的乘积,我们可以减少数据的维度,并且保留数据中的重要特征。

这在处理大规模数据和高维数据时非常有用,可以帮助我们更好地理解数据和发现数据中的模式。

在图像处理领域,张量的分解可以用于图像压缩和图像恢复。

通过将一个图像张量分解为若干个低秩的张量的乘积,我们可以减少图像的存储空间和传输带宽。

同时,通过对这些低秩张量进行逆向分解,我们可以恢复原始的图像,尽可能地减少信息的损失。

这在图像传输和存储中非常有用,可以提高图像的传输速度和节约存储空间。

在机器学习领域,张量的分解可以用于矩阵分解和张量分解的模型。

这些模型可以用于推荐系统、社交网络分析、文本挖掘等任务。

通过将一个高维的数据张量分解为若干个低秩的张量的乘积,我们可以在保持模型准确性的同时,减少模型的复杂度和参数量。

张量分解方法在信号处理与压缩中的应用

张量分解方法在信号处理与压缩中的应用信号处理和压缩是现代通信领域中的重要问题,而张量分解方法则是一种有效的工具,可以用于对信号进行分析、处理和压缩。

本文将介绍张量分解方法在信号处理与压缩中的应用,并探讨其优势和局限性。

一、张量分解方法的基本原理张量分解方法是一种多维数据分析技术,它将高维数据表示为低维子空间的线性组合。

在信号处理中,我们通常将信号表示为一个多维张量,其中每个维度表示信号的不同特征或属性。

通过张量分解方法,我们可以将信号分解为若干个低维子空间,从而实现信号的降维和去冗余。

二、张量分解方法在信号处理中的应用1. 压缩信号表示张量分解方法可以用于对信号进行压缩表示。

通过将信号分解为若干个低维子空间,我们可以提取信号中的主要信息,并丢弃冗余和噪声。

这样可以大大减小信号的存储和传输开销,同时保持信号的重要特征。

2. 信号降噪在实际应用中,信号常常伴随着噪声。

张量分解方法可以通过分解信号为低维子空间,将噪声与信号分离开来。

通过对低维子空间进行滤波和去噪处理,可以有效提高信号的质量和可靠性。

3. 信号分析与特征提取张量分解方法可以用于对信号进行分析和特征提取。

通过将信号分解为若干个低维子空间,我们可以提取出信号中的主要特征和模式。

这对于信号分类、识别和模式匹配等任务非常有用。

三、张量分解方法的优势和局限性1. 优势张量分解方法具有较强的表示能力和灵活性。

通过合理选择分解方法和参数,我们可以根据具体问题对信号进行高效的表示和处理。

同时,张量分解方法还能够处理非线性和高度非均匀的信号,具有较好的适应性。

2. 局限性张量分解方法在处理高维数据时,可能会面临计算复杂度较高的问题。

尤其是当数据规模较大时,计算和存储开销会变得非常大。

此外,张量分解方法对于信号中的噪声和异常值比较敏感,需要额外的处理和优化。

四、结语张量分解方法是一种强大的工具,可以应用于信号处理和压缩中。

通过合理选择分解方法和参数,我们可以实现对信号的降维、去噪和特征提取等任务。

4种张量分解方法用于人脸识别的效果对比和分析

Re c o gn i t i o n
HU Xi a o - pi n g
( S c h o o l o f Co mp u t e r& I n f o r ma t i o n , An q i n g No r ma l Un i v e r s i t y , An q i n g , An h u i , 2 4 6 1 3 3 , C h i n a )
张量分解方法显 示理论上 分析Hi g h e r - Or d e r O r t h o g o n a l I t e r a t i o n( H O Or )  ̄ 度 最好 ,4  ̄ - - / g _ 4 种方法用到 实际
较 了4 种 经典的张量分解方 法.实验 结果表 明 ,张量方法在压缩率大的情况 下,其性 能有显著 的提 高.不同的
人脸数 据上 并没有 多大差 别.考虑 到H i e r - O r d e r S i n g u l a r V a l u e D e c o m p o s i t i o n ( H O — s V D ) 方法相 对比较 简单 ,
人 脸 识 别研 究时 可选 用此 方 法 .
关键词 :人 脸识 别 ;张量分解 ;主 成分 分析 ;张量
中图分类号 :T P 3 9 1 . 4 文献标识码 :A 文章编 号 :1 6 7 2 — 7 3 0 4 ( 2 0 1 7 ) 0 1 - 0 0 6 7 — 0 6
Co m pa r i s o n a nd A na l v s e s o f Fon M e t ho d s o n Fa c e
( 安庆师范大学 计算机与信息学 院 , 安徽


安庆 2 4 6 1 3 3 )

张量分解算法研究与应用综述

张量分解算法研究与应用综述熊李艳;何雄;黄晓辉;黄卫春【摘要】张量分解是处理大规模数据的一种方法,它能有效的对数据进行降阶,由于高阶张量具有唯一性、对噪声更鲁棒、不破坏原数据的空间结构和内部潜在信息等优点,被广泛应用于神经科学、信号处理、图像分析、计算机视觉等领域.论文首先对传统的降维方法进行了介绍,指出这些方法存在的问题和不足.其次对张量分解的三种经典算法:CP分解、Tucker分解以及非负张量分解从算法的求解、基本思想、算法框架以及算法应用等方面进行概括分析,对CP分解算法和Tucker分解算法从多角度进行对比分析.最后对张量分解的现状以及实际应用进行了归纳和总结,并对未来的研究发展趋势进行了分析和展望.%Tensor decomposition is a significant method to deal with large-scale data, which can reduce the data effectively.The high-order tensor is widely used in neuroscience,signal processing,image analysis,computer vi-sion and other fields as it has such advantages as uniqueness, robustness to noises and zero impact on the origi-nal data of the spatial structure and internal potential information. In this paper, the traditional dimensionality reduction methods were introduced firstly, and their problems and shortcomings were also discussed. Secondly, general analysis of three classical algorithms of tensor decomposition was carried out from the aspects of algo-rithm, basic ideas, algorithm framework and algorithm applications of CP decomposition, Tucker decomposition and non-negative tensor decomposition. Then, The CP decomposition algorithm and the Tucker decomposition algorithm were compared and analyzed from different angles. Finally, the presentsituation, practical application and future research trends of tensor decomposition were summarized and analyzed.【期刊名称】《华东交通大学学报》【年(卷),期】2018(035)002【总页数】9页(P120-128)【关键词】张量;CP分解;Tucker分解;非负张量分解【作者】熊李艳;何雄;黄晓辉;黄卫春【作者单位】华东交通大学信息工程学院,江西南昌330013;华东交通大学信息工程学院,江西南昌330013;华东交通大学信息工程学院,江西南昌330013;华东交通大学软件学院,江西南昌330013【正文语种】中文【中图分类】TP301.61 数据降维及张量概述随着互联网时代的不断发展,数据规模越来越大,数据的结构往往具有高维特性,对高维数据进行处理,人们可以挖掘出有价值的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k
n 1
N
A( n )
2R N 1
这里 kA 表示矩阵 A 的k-秩:任意k列都线性无关的最大 的k
26

张量的低秩近似
◦ 然而在低秩近似方面,高阶张量的性质比矩阵SVD差
Kolda给出了一个例子,一个立方张量的最佳秩-1近似并不 包括在其最佳秩-2近似中,这说明张量的秩-k近似无法渐进 地得到 下面的例子说明,张量的“最佳”秩-k近似甚至不一定存在
◦ 性质:A B C A B C A B C
16

矩阵的Hadamard乘积
◦ A I ×J , B I ×J ,则
a11b11 a b A B 21 21 aI 1bI 1
◦ 性质: A B
T
a12 b12 a22 b22 aI 2bI 2
24

张量的秩
◦ 不同于矩阵的秩,高阶张量的秩在实数域和复数域上不一 定相同。例如一个三阶张量 X
在实数域内进行秩分解得到的因子矩阵为
1 0 X1 0 1
0 1 X2 1 0
而在复数域内进行分解得到的因子矩阵为
1 0 1 A 0 1 1
X n U i i
1
n1 jin1iN
xi1i2iN u jin
in 1
n
◦ 这个定义可以写成沿mode-n展开的形式
Y X n U Y(n) UX( n)
◦ 性质:X m A n B X n B m A, m n
X n A n B X n BA
◦ 对于给定的成分数目,怎么求解CP分解?
目前仍然没有一个完美的解决方案 从效果来看,交替最小二乘(Alternating Least Square)是 一类比较有效的算法
29

CP分解的计算
◦ 以一个三阶张量 X 为例,假定成分个数 R 已知,目标为
ˆ min X X ˆ
X
ˆ a b c λ; A, B, C s.t. X rr r r
in 1
In
◦ 性质:
X m a n b X m a n1 b X n b m a, m n
13

矩阵的Kronecker乘积
◦ A I ×J , B K ×L ,则
a11B a12 B a B a B 21 22 AB aI 1B aI 2 B
12

n-mode(向量)乘积
×I N ◦ 一个张量X I1×I2 × 和一个向量 v In 的n-mode × I n1× I n1× × IN 乘积 X n v I1× ,其元素定义为
X n v i i
1
n1in1iN
xi1i2iN vin
a1 J B a2 J B IK ×JL aIJ B
◦ 性质: A BC D AC BD
A B
+
A+ B+
14

矩阵的Kronecker乘积
◦ 矩阵的Kronecker积还和张量和矩阵的n-mode乘积有如 下关系
A
( n 1)
A
(1) T

23

张量的秩和秩分解
◦ 张量 X 的秩定义为用秩一张量之和来精确表示 X 所需要 的秩一张量的最少个数,记为 rank( X ) ◦ 秩分解:
rank( X )
X

r 1
(2) ( N) a(1) a a r r r
可见秩分解是一个特殊的CP分解,对应于矩阵的SVD ◦ 目前还没有方法能够直接求解一个任意给定张量的秩,这 被证明是一个NP-hard问题
19

CP分解的张量形式
◦ 将一个张量表示成有限个秩一张量之和,比如一个三阶张 量可以分解为
X A, B, C a r b r cr
r 1
R
X

a1
c1
b1

a2
c2
b2

aR
cR
bR
三阶张量的CP分解
20

CP分解的矩阵形式
◦ 因子矩阵:秩一张量中对应的向量组成的矩阵,如
X a1 b1 c2 a1 b2 c1 a2 b1 c1 1 1 1 Y a1 a2 b1 b2 c1 c2 a1 b1 c1
27

张量的低秩近似
a1 J b1 J a2 J b2 J I ×J aIJ bIJ
A B AT A BT B
A B A A B B
+ T T


+
A B
T
17
CP分解
18

CP分解的其他名字
彭毅
1
基本概念及记号
2

张量(tensor)
◦ 多维数组
一阶张量 (向量)
三阶张量 二阶张量 (矩阵)
3

张量空间
◦ 由若干个向量空间中的基底的外积张成的空间








向量的外积和内积
4

阶(order/ways/modes/rank)
◦ 张成所属张量空间的向量空间的个数
一阶张量(向量): x {xi } 二阶张量(矩阵): X {xij } 三阶或更高阶张量: X {xijk } 零阶张量(数量): x
X a(1) a(2) a( N )
c
X
b

a
三阶秩一张量:X
abc
9

(超)对称和(超)对角
◦ 立方张量:各个mode的长度相等 ◦ 对称:一个立方张量是对称的,如果其元素在下标的任意 排列下是常数。如一个三阶立方张量是超对称的,如果
xijk xikj x jik x jki xkij xkji ,i, j , k ◦ 对角:仅当 i1 i2 iN 时,xi1i2iN 0
34

Tucker分解
◦ Tucker分解是一种高阶的主成分分析,它将一个张量表示 成一个核心(core)张量沿每一个mode乘上一个矩阵。 对于三阶张量 X I ×J ×K 来说,其Tucker分解为
X ,Y xi1i2iN yi1i2iN
i1 1 i2 1 iN 1
I1
I2
IN
(Frobenius)范数:
X
X,X
2 x i1i2iN i1 1 i2 1 iN 1
I1
I2
IN
8

秩一张量/可合张量
×I N ◦ N阶张量 X I1×I2 × 是一个秩一张量,如果它能被写 成N个向量的外积,即
r 1
R
◦ 作为ALS的一个子问题,固定 B 和 C ,求解
min X(1) Adiag( λ) C B
A
T F
得 Adiag(λ) X(1) C B X(1) C B C C B B
T
+



T
T

+
再通过归一化分别求出 A 和 λ
30

张量的(超)对角线
10

展开(matricization/unfolding/flattening) ◦ 将N阶张量 X 沿mode-n展开成一个矩阵 X( n)
X (1)

三阶张量的mode-1展开
11

n-mode(矩阵)乘积
×I N ◦ 一个张量X I1×I2 × 和一个矩阵 U J ×In 的n-mode × I n1× J× I n1× × IN 乘积 X n U I1× ,其元素定义为 I
CP分解的计算
◦ ALS算法并不能保证收敛到一个极小点,甚至不一定能收 敛到稳定点,它只能找到一个目标函数不再下降的点 ◦ 算法的初始化可以是随机的,也可以将因子矩阵初始化为 对应展开的奇异向量,如将 A 初始化为 X(1) 的前 R 个左奇 异向量
31

CP分解的应用
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 计量心理学 语音分析 化学计量学 独立成分分析 神经科学 数据挖掘 高维算子近似 随即偏微分方程 …………
三阶张量: X
I ×J ×K
5

纤维(fiber)
mode-1 (列) 纤维:x: jk
mode-2 (行) 纤维:xi:k
mode-3 (管) 纤维:xij:
6

切片(slice)
水平切片:Xi::
侧面切片:X: j:
正面切片:X::k ( Xk )
7

内积和范数
× IN ◦ 设 X ,Y I1×I2 × 内积:
Y X 1 A(1) N A( N ) Y( n) A X( n) A
( n) (N)
A
( A
(1) T

15

矩阵的Khatri-Rao乘积
◦ A I ×K , B J ×K ,则
A B a1 b1 a2 b2 aK bK IJ ×K
◦ 对于高阶张量,有
r 1 (1) (2) ( N) (1) (2) ( N) X λ ; A , A , , A a a a r r r r r 1 R
相关文档
最新文档