平行四边形及特殊平行四边形知识点(经典完整版)

合集下载

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

平行四边形知识点总结

平行四边形知识点总结

平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。

二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。

(2)平行四边形的邻边之和等于周长的一半。

2、角的性质(1)平行四边形的两组对角分别相等。

(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。

3、对角线的性质(1)平行四边形的对角线互相平分。

(2)两条对角线把平行四边形分成的四个三角形的面积相等。

4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。

三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。

这是根据平行四边形的定义直接得出的判定方法。

2、两组对边分别相等的四边形是平行四边形。

如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。

3、一组对边平行且相等的四边形是平行四边形。

先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。

4、两组对角分别相等的四边形是平行四边形。

因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。

5、对角线互相平分的四边形是平行四边形。

通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。

四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。

五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。

2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。

3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。

4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。

平行四边形和特殊平行四边形的知识要点

平行四边形和特殊平行四边形的知识要点
等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴
4、对角线互相垂直平分,每一条对角线平分一组对角。
1、有一组邻边相等的平行四边形
2、四条边都相等的四边形
3、对角线互相垂直平分的四边形
4、对角线互相垂直的平行四边形
5、菱形的面积=两对角线乘积的一半
既是中心对称也是轴对称图形



1、四条边都相等
2、四个角都是直角
3、对角线互相垂直平分且相等,每一条对角线平分一组对角。
平行四边形和特殊平行四边形的知识要点
图形名称
性质定理
判定定理
对称性





1、对边平行且相等
2、对角相等
3、对角线互相平分
1.两组对边分别平行的四边形。
2.两组对边分别相等的四边形。
3.两组对角分别相等的四边形
4.对角线互相平分的四边形
5.一组对边平行且相等的四边形。中来自心对称




1、对边平行且相等
1、邻边相等的矩形是正方形
2、有个角是直角的菱形
3、对角线互相垂直平分且相等的四边形
既是中心对称也是轴对称图形




1、等腰梯形两腰相等、两底平行.
2、等腰梯形在同一底上的两个角相等.
3、等腰梯形的对角线相等.
1、两腰相等的梯形是等腰梯形.
2、在同一底上的两个角相等的梯形是等腰梯形.
3、对角线相等的梯形是等腰梯形.
2、对角相等且四个角都是直角
3、对角线互相平分且相等
1、有一个角是直角的平行四边形
2、对角线相等的平行四边形
3、有3个角是直角的四边形(1、直角三角形斜边上的中线等于斜边的一半。2、三角形的中位线平行于第三边,且等于第三边的一半)

平行四边形及特殊平行四边形知识点总结

平行四边形及特殊平行四边形知识点总结

平行四边形及特殊平行四边形知识点总结平行四边形、矩形、菱形、正方形的共同性质是:对边平行且相等,对角线相等。

其中,矩形还有一个特殊性质是有一个角为直角,菱形还有一个特殊性质是四条边相等,正方形则同时满足矩形和菱形的特殊性质。

2.判定方法小结:1)判定平行四边形的方法:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;⑤一组对边平行且相等。

2)判定矩形的方法:①有一个角是直角;②对角线相等;③有三个角是直角;④对角线相等且互相平分。

3)判定菱形的方法:①有一组邻边相等;②对角线互相垂直;③四边都相等;④对角线互相垂直平分。

4)判定正方形的方法:①有一组邻边相等且有一个角是直角;②对角线互相垂直且相等;③对角线互相垂直平分且相等。

3.基础达标训练:1)两条对角线的四边形是平行四边形;2)两条对角线的四边形是矩形;3)两条对角线的四边形是菱形;4)两条对角线的四边形是正方形;5)两条对角线的平行四边形是矩形;6)两条对角线的平行四边形是菱形;7)两条对角线的平行四边形是正方形;8)两条对角线的矩形是正方形;9)两条对角线的菱形是正方形。

1.以不在同一直线上的三个点为顶点作平行四边形,最多能作1个。

2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是8cm和12cm。

3.在平行四边形ABCD中,直线通过两对角线交点O,分别与BC和AD相交于点E和F。

已知BC=7,CD=5,OE=2,则四边形ABEF的周长为多少?答案:C。

16解析:根据平行四边形的性质,AE=CD=5,BF=BC=7.由于OE=2,因此EF=BC-OE=5.所以ABEF是一个边长分别为5和7的矩形,周长为2(5+7)=16.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为多少?答案:B。

6解析:由于CE∥BD,DE∥AC,因此三角形AOD和BOC相似,三角形COE和DOE相似。

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
2.菱形(重点):
平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质

有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:

特殊的平行四边形章节知识点归纳(全)

特殊的平行四边形章节知识点归纳(全)

5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(

(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(

AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )

O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(

(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(

(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(

(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(

7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.

(完整版)四边形知识点总结(已整理)

(完整版)四边形知识点总结(已整理)

四边形知识点总结6.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒ABCD 是等腰梯形 7.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 注:被中位线分成的三角形的周长是原三角形的1/2 被中位线分成的三角形的面积是原三角形的1/48.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 注:梯形的面积等于中位线乘高.第二部分、常用的辅助线技巧1.平行四边形与特殊的平行四边形常见的辅助线:①.平行四边形:(1)连对角线或平移对角线 (2)过顶点作对边的垂线构造直角三角形 ②.菱形:(1)作菱形的高;(2)连结菱形的对角线.注意:当菱形有一个内角为60°或有一条高垂直平分底边时连接对角线即可得到等边三角形。

③.矩形:计算题型(翻折问题),一般通过作辅助线(垂线等)构造直角三角形借助勾股定理解题 证明题型(探究问题),一般连接对角线借助对角线相等来解决问题注意:当矩形的对角线与一边(或另一条对角线)的夹角为60°时,其对角线与边长围成的三角形是等边三角形。

④.正方形:连接对角线 2.梯形中常见的辅助线:①.延长两腰交于一点(使梯形问题转化为三角形问题。

若是等腰梯形则得到等腰三角形。

)②.平移一腰(使梯形问题转化为平行四边形及三角形问题。

)③.作高(使梯形问题转化为直角三角形及矩形问题。

)④.平移一条对角线(得到平行四边形ACED ,使CE=AD ,BE 等于上、下底的和,S 梯形ABCD =S DBE )⑤.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。

(可得△ADE ≌△FCE ,所以使S 梯形ABCD =S △ABF .)。

平行四边形及特殊的平行四边形知识点归纳总结

平行四边形及特殊的平行四边形知识点归纳总结

平行四边形及特殊的平行四边形知识点归纳总结平行四边形,就像是数学世界里的一个灵动的精灵,总是充满着各种奇妙的特点和变化。

先来说说平行四边形的定义吧。

两组对边分别平行的四边形就是平行四边形。

这就好比两个人,各自朝着不同的方向前进,但是步伐始终保持平行,是不是很有趣?平行四边形的性质那可不少。

它的对边相等,这就像双胞胎一样,长得一模一样,不分彼此。

对边平行就更不用说啦,一直朝着相同的方向延伸,不离不弃。

还有啊,它的对角相等,邻角互补。

这就好像是好朋友,有相同的兴趣爱好,也能互相补足。

平行四边形的判定方法也很重要哦。

两组对边分别平行的四边形,这是定义判定,就像一把最直接的钥匙打开大门。

两组对边分别相等的四边形,这不就像是找到了两个一模一样的拼图块,拼在一起就是完整的图形嘛。

一组对边平行且相等的四边形,这就好比一个人既有前进的方向,又有足够的实力,肯定能到达目的地。

对角线互相平分的四边形,就像两个人共同分享一个宝贝,公平分配,和谐共处。

说完平行四边形,咱们再来瞧瞧特殊的平行四边形。

菱形,那可是有棱有角的美。

菱形的四条边都相等,这不就像是四个一样高的小伙伴手拉手站成一圈。

菱形的对角线互相垂直且平分,各自都有自己的职责,又能互相配合。

矩形呢,方方正正,有规有矩。

矩形的四个角都是直角,就像是四个坚定的战士,昂首挺胸,威风凛凛。

矩形的对角线相等,仿佛是两条实力相当的巨龙,不分上下。

正方形就更厉害啦,它既是菱形又是矩形,集两家之长。

正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。

这就如同一个全能的超人,无所不能。

掌握这些知识点,就像是拥有了一把打开数学宝藏的钥匙。

当你在数学的海洋中遨游时,这些知识能让你如鱼得水,轻松应对各种难题。

难道你不想拥有这样的能力吗?还不赶紧把这些知识装进你的脑袋里,让它们成为你攻克数学难题的有力武器!总之,平行四边形及特殊的平行四边形的知识点就像是一个丰富多彩的宝藏库,等待着我们去探索、去挖掘、去运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形矩形菱形正方形图形
性质①对边且;
②对角;邻角;
③对角线;
④对称性:平行四边形不是轴对称图形.
①对边且;
②对角且四个角都是;
③对角线;
④对称性:轴对称图形(对边中点连线所在直
线,2条).
①对边且四条边都;
②对角;
③对角线且每条对角
线;
④对称性:轴对称图形(对角线所在直线,2
条)
①对边且四条边都;
②对角且四个角都是;
③对角线且每条对角线
(即与边的夹角
度);
④对称性:轴对称图形(4条)
判定方法
①的
四边形是平行四边形;
②的
四边形是平行四边形;
③的
四边形是平行四边形;
④的
四边形是平行四边形;
⑤的
四边形是平行四边形;
①是矩形;
②是矩形;
③是矩形;
①是菱形;
②是菱形;
③是菱形;
①有一组的矩形是正方形;
②对角线的矩形是正方形;
③有一个角是的菱形是正方形;
④对角线的菱形是正方形.;
⑤有一组且有一个角是的
平行四边形是正方形;
⑥对角线且的
平行四边形是正方形.⋅⋅⋅⋅⋅⋅
正方形的判定方法很多,所有以平行四边形,
矩形,菱形三者的判定作为条件的四边形都是
正方形.
面积
一、本章知识框架图
正方形与平行四边形、矩形、菱形之间的关系有怎样的包含关系?请填入下图中.
平行四边形
二、几种特殊四边形的常用说理方法与解题思路分析
(1)判定矩形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的有一个角为直角.
②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.
③说明四边形ABCD的三个角是直角.
(2)判定菱形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.
②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.
③说明四边形ABCD的四条边相等.
(3)判定正方形的常用方法
①先说明四边形ABCD矩形,再说明对角线互相垂直.
②先说明四边形ABCD为矩形,再说明一组邻边相等.
③先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.
④先说明四边形ABCD为菱形,再说明菱形ABCD对角线相等.
⑤先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角(或对角线相等)且有一组邻边相等(对角线互相垂直).即一般思路为先说明是平行四边形,再说明是矩形(菱形),最后说明是菱形(矩形).。

相关文档
最新文档