大学有机化学.炔烃和二烯烃

合集下载

西北大学有机化学7

西北大学有机化学7

杂化,线型分子。

两个π轨道互相垂直,
之间的键长相同,与单烯烃中的双键键长
明显要短。

这种现象称为键长的平均化。

基本要求:
了解炔烃的物理性质。

掌握结构及命名。

掌握炔烃与氢、卤素、卤化氢、水和醇的反应,掌握炔烃的硼氢化、成环聚合、氧化、炔化物的生成等反应。

会通过二卤代烷脱卤化氢、炔烃的烷基化来制备炔烃。

了解共轭二烯烃的物理性质,熟悉其结构、π-π共轭。

熟悉共轭二烯的加氢、加卤素和卤化氢及其反应历程。

了解氢化热、速度控制和平衡控制的概念、掌握Diels-Alder反应。

了解天然橡胶、合成橡胶。

有机化学第5章 炔烃 二烯烃

有机化学第5章  炔烃  二烯烃

Br
NaNH2的矿物油 , 150-160o C
NaNH2
KOH-C2H5OH
叁键移位
CH3CH2CCH
5.5.3 由金属炔化物制备炔烃
CH3CH2CCH
空气,CuCl , NH3 , CH3OH
CH3CH2CC-CCCH2CH3 二聚
R’X
RMgX NaNH2
CH3CH2C CMgX
CH3CH2C CNa
HC C乙炔基 ethynyl CH3C C1-丙炔基 1-propynyl HC CCH22-丙炔基 2-propynyl
•戊炔 的构造异构体: CH3CH2CH2C CH 1-戊炔 CH3CH2C CCH3 2-戊炔 (2) 炔烃的命名
• 系统命名:
CH3CHC CH CH3 3-甲基-1-丁炔
烯醇式
酮式
3 加卤素
*1 CH2=CH-CH2-CCH + Br2 (1mol)
CH2BrCHBr-CH2-CCH
Cl2 FeCl3
H Cl C C
Br2

Cl H
*2 HCCH
Cl2 FeCl3
CHCl2-CHCl2
反应能控制在这一步。
*3 加氯必须用催化剂,加溴不用。
4 硼氢化反应
R2BH
R-CCCu
HNO3
5.4.2 加成反应
1 加HX
*1 与不对称炔烃加成时,符合马氏规则。 *2 与HCl加成,常用汞盐和铜盐做催化剂。 *3 由于卤素的吸电子作用,反应能控制在一元阶段。 *4 反式加成。
CH3CH2CCCH2CH3 + HCl
催化剂
CH 3CH2 H C C Cl CH 2CH3

有机化学C第6章 炔烃和二烯烃问题参考答案

有机化学C第6章 炔烃和二烯烃问题参考答案

第6章 炔烃和二烯烃问题参考答案1.炔烃没有顺反异构体。

因为三键碳是sp 杂化,为直线形构型,故无顺反异构现象。

2.HC CCH 2CH 2CH 2CH 3H 3CC CCH 2CH 2CH 3H 3CH 2CC CCH 2CH 2CH 3HCCCHCH 2CH 3HCCCH 2CHCH 3HCCCCH 3H 3CC CCHCH 3CH 3CH 3CH 3CH 3CH 31-己炔2-己炔3-己炔3-甲基-1-戊炔4-甲基-1-戊炔3,3-二甲基-1-丁炔4-甲基-2-戊炔3.化)4. 表面上看来,碳碳三键更具不饱和性,那末怎样来理解这些事实呢? 解释烯烃比炔烃更容易亲电加成的原因,有以下三点:(1).由于三键和双键的碳原子的杂化状态不同三键碳原子的杂化状态为sp ,较双键(sp 2)的s 成份为多,由于s 成份的增加,使sp 杂化轨道比sp 2杂化轨道的直径短,因而造成碳碳三键较双键为短。

所以在炔烃中形成π键的两个p 轨道的重叠程度较烯烃为大,使炔烃中的π键更强些。

而且由于不同杂化状态的电负 性为sp >sp 2>sp 3,炔烃分子中的sp 碳原子和外层电子(π电子)结合得更加紧密,使其不易给出电子,因而使快烃不易发生亲电加成反应。

(2).由于电子的屏蔽效应不同炔烃和烯烃分子中,都存在着σ电子和π电子,可以近似地看成π电子是在σ电子的外围。

σ电子受原子核的吸引而π电子除受原子核的吸引外还受内层电子的排斥作用,因而就减弱了受核的束缚力,即为电子的屏蔽效应。

乙烯分子中有五个σ键,即有五对σ电子,而乙炔分子中只有三个σ键即只有三对σ电子,因而乙烯分子中的电子的屏蔽效应大于乙炔分子,所以乙烯分子中的π电子受原子核的吸引力小,易给出电子,也就容易发生亲电加成反心,而乙炔则较难。

(3).炔烃比烯烃的加成较难的原因,还可以从形成的中间体碳正离子的稳定性不同来说明:R CH CH 2+E+R +H C H 2C E RCCH+E +RC +C HE由于烷基正离了要比烯基正离子稳定些,所以烯烃的亲电加成较易。

炔烃和二烯烃

炔烃和二烯烃

第四章炔烃和二烯烃(I )炔烃一、定义、通式和同分异构体定义:分子中含有碳碳叁键的不饱和烃。

通式:C n H 2n-2同分异构体:与烯烃相同。

二、结构在乙炔分子中,两个碳原子采用SP 杂化方式,即一个 2S 轨道与一个2P 轨道杂化, 组成两个等同的 SP 杂化轨道,SP 杂化轨道的形状与 SP 2、SP 3杂化轨道相似,两个SP 杂化 轨道的对称轴在一条直线上。

两个以SP 杂化的碳原子,各以一个杂化轨道相互结合形成碳碳6键,另一个杂化轨道各与一个氢原子结合,形成碳氢 6键,三个6键的键轴在一条直线上,即乙炔分子为直线型分子。

每个碳原子还有两个末参加杂化的P 轨道,它们的轴互相垂直。

当两个碳原子的两P轨道分别平行时,两两侧面重叠,形成两个相互垂直的 n 键。

三、命名炔烃的命名原则与烯烃相同,即选择包含叁键的最长碳链作主链,碳原子的编号从 距叁键最近的一端开始。

若分子中即含有双键又含有叁键时,则应选择含有双键和叁键的最长碳链为主链, 并将其命名为烯炔(烯在前、炔在后)。

编号时,应使烯、炔所在位次的和为最小。

例如:CfCfCHCHDHC 三 CH3-甲基-4-庚烯-1-炔CH 3但是,当双键和叁键处在相同的位次时,即烯、炔两碳原子编号之和相等时,则从 靠近双键一端开始编号。

如:Cf 二C 比三CH1-丁烯-3-炔四、 物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为 固体。

简单炔烃的沸点、熔点和相对密度比相应的烯烃要高。

炔烃难溶于水而易溶于有机溶剂。

五、 化学性质 (一)加成反应1、催化加氢炔烃的催化加氢分两步进行,第一步加一个氢分子,生成烯烃;第二步再与一个氢分加成,生成烷烃。

催化剂HC 三 CH + H 2 —CH2、加卤素炔烃与卤素的加成也是分两步进行的。

先加一分子氯或溴,生成二卤代烯,在过量 的氯或溴的存在下,再进一步与一分子卤素加成,生成四卤代烷。

HC 三CH + Br2 -------- Br=CHBrCHB 广2CHB 2虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难。

有机化学【炔烃 二烯烃】

有机化学【炔烃 二烯烃】

C-H键长 :
0.110nm (Csp3-Hs)
轨道形状:
碳的电负性: pka:








随 S 成 份 的 增 大, 逐 渐 增 大 ~50 ~40 ~25
二、炔烃的异构和命名
炔烃从丁炔开始有构造异构现象。炔烃的 构造异构现象也是由于碳链不同和三键位置不 同所引起的,但由于在碳链分支的地方,不可 能有三键存在,所以炔烃的构造异构体和比碳 原子数目相同的烯烃少些。例如,丁烯有三个 构造异构体,而丁炔只有两个:
H
H
(2)碱金属和液氨还原
R-C C-R'
Na, NH3
R H C C
H R'
炔烃被还原成反式烯烃
此条件下双键不被还原
反应机理:
H 3C C C CH3 + Na
- Na
H 3C
C
C
CH3
H N H2 - NH 2
a ra d ic a l a n ion H H 3C C C CH3 a v in y lic r ad ica l H H 3C C C CH3 a v in y lic a n io n
具有活泼氢原子的炔烃和硝酸银的氨溶液或 氯化亚铜的氨溶液发生作用,迅速生成炔化银的 白色沉淀或炔化亚铜的红色沉淀。
Ag(NH3)2NO3 RC≡CH
Cu(NH3)2Cl RC≡CCu↓ RC≡CAg↓
例:
CH3-CCH
Ag (NH3)+2NO3
CH3 -CC Ag
Cu (NH3)+2Cl
与HCl加成,常用汞盐和铜盐做催化剂
HC≡CH+HCl
Cu2Cl2 或HgSO4

4第四章 炔烃 二烯烃

4第四章 炔烃 二烯烃
H2O
RCCR` KMnO4 RCOOH + R`COOH
H2O
(2) 缓慢氧化——二酮
OO
CH3(CH2)7CC(CH2)7COOH
KMnO4 H2O
CH3(CH2)7-C-C-(CH2)7COOH
pH=7.5
92%~96%
•利用炔烃的氧化反应,检验叁键的存在及位置
•这些反应产率较低,不宜制备羧酸或二酮.
有机化学 Organic Chemistry 第四章 炔烃 二烯烃
第四章 炔烃 二烯烃
(一) 炔烃
定义:分子中含有碳碳叁键的烃叫做炔烃,它的通式:
CnH2n-2 官能团为: -CC-
4.1 炔烃的异构和命名**
(1)异构体——从丁炔开始有异构体.
•同烯烃一样,由于碳链不同和叁键位置不同所引起的.由 于在碳链分支的地方不可能有叁键的存在,所以炔烃的 异构体比同碳原子数的烯烃要少. •由于叁键碳上只可能连有一个取代基,因此炔烃不存在 顺反异构现象.
炔烃和烯烃一样,也能和卤化氢、卤素等起亲电加成反
应,但炔的加成速度比烯慢
(A) 和卤素的加成
Br2
RC CR
Br
+
RC CR
Br-
反式加成
Br
R
CC
R
Br
卤素的活性F2>Cl2>Br2>I2
Br Br Br2 R C C R
这一反应可用于炔烃的鉴别。
Br Br
控制条件也可停止在一分子加成产物上.
❖加氯必须用FeCl3作催化剂。
•含有双键的炔烃在命名时,一般 先命名烯再命名炔 .
碳链编号以表示双键与叁键位置的两个数字之和最小
为原则。在同等的情况下,要使双键的位次最小。

有机化学总结:炔烃和二烯烃

有机化学总结:炔烃和二烯烃

CH3
CH3
2,2,5,5-四甲基-3-己炔 2,2,5,5-tetramethyl-3-hexyne
三、炔烃的命名
Ø 同时含有碳碳叁键和
321
CH3
CH
C H
C
CH
3-戊烯-1-炔 3-penten-1-yne
[主链]: 选择含双键叁键在内的最长碳链, 并按其碳原子数称“某
Ø 停留在烯烃产物时:反式加成
Ø 过氧化物效应: 在过氧化物存在下与HBr加成符合反马氏规则。
邻二卤代物
3、加水(水合)--- 制备醛酮
加成方向符合马氏规则 Ø 互变异构(tautomerism):两种异构分子通过质子转移位置而
相互转变。
3、加水(水合)--- 制备醛酮
Hg2+
Hg2+
Hg2+
四、炔烃的物理性质 自学 五、炔烃的化学性质
加成反应、氧化反应
2个π 键
活泼H
炔氢的反应
(一)炔烃的加成反应 1、加氢还原 a、催化加氢(Catalytic Hydrogenation)
RC CH H2 Cat.
Alkyne
RHC CH2 H2 Cat.
Alkene
RCH2CH3 Alkane
Ø 催化剂:Pt、Pd、Ni(催化活性好)。 Ø 一般催化剂不能使反应停留在烯烃。(彻底氢化)
Ø 注意水合产物区别: 乙炔水合产物为乙醛,其他炔烃水合产物均为酮。
Ø 炔烃水合反应机理(了解):
(二)炔烃的氧化反应
羧酸
Ø 应用:鉴别碳碳叁键。 Ø 现象:高锰酸钾的紫色逐渐褪去。
羧酸
(三)炔烃的聚合反应
Cu2Cl2
Ø 应用:合成烯炔化合物。(合成题常考) Ø 注意催化剂条件!

第五章 炔烃和二烯烃

第五章 炔烃和二烯烃
H
超共轭
38
+
CH3CHCH3
6 (σ- p)
+
CH3CCH3
+
CH3
9 (σ- p)
39
碳正离子稳定性
H
HH C H
H
H C C+ > H C
H
H
C+ > H C
HH C H
HH C H
H
H
H
C+ > H C+
H
H
H
H
C-Hσ键:9
6
3
0
自由基稳定性
CH3
H
H
H
> H3C C
H3C C
> H3C C > H C
H
Br
Br Br2 H
Br Br
H
H
Br Br
分子中同时存在双键和三键时,加成首先在双键上进行。
CH3 C C CH CH2 Br2 (1mol)
CH3 C C CH CH2 Br Br
主要原因:炔烃的电子云是圆筒状,高度离域,更加稳定。
炔烃可使溴的四氯化碳溶液褪色,此反应也可作 为炔烃的鉴定试验,但褪色速率比烯烃慢。
与高锰酸钾反应 --- 不饱和键断裂
HC R1C
CH KMnO4
H+
CR2 KMnO4
H+
CO2 R1COOH
R2COOH
产物为二氧化碳和羧酸,无酮生成。该反应能 用于炔烃的鉴定。
17
(四)亲核加成( 烯烃不发生此反应 )
这类试剂的活性中心是带负电荷部分或电子云密度较大的部位,因此进 攻试剂具有亲核性,称亲核试剂。由亲核试剂引起的加成反应称亲核加 成反应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H2C H C C H CH2 > H2C C H C H CH2
e) 负电荷在电负性更大的原子上更稳定
H2C C H O > H2C C H O -
第二节、二烯烃
4. 共振论的另外两条原则
a) 能量越低、越稳定的极限式对共振杂化体 的贡献越大。
b) 参加共振的极限式越多,杂化体越稳定。
第二节、二烯烃
在催化剂存在下可与氢加成,一般直接成烷烃。
HC CH H2 Pt H2C CH2 H2 Pt H3C CH3
1 H2 Pt
第一节、炔烃
(1) 与氢(H2)加成
一些特殊的催化剂可使反应停留在烯的阶段:
Lindlar Pd H2
Lindlar催化剂:Pd/BaSO4/喹啉 顺式加成,是制备顺式烯烃的有用方法。
1) B2D6 2) CH3COOH D
H
第一节、炔烃
(3) 亲核加成反应——烯基化
Nu + HC
-
CH
H+ Nu Nu
HC
CH
EtOH 。 150 C, 0.1~1.5 MPa
O
EtOH
O
+ RS Na
-
+
EtOH
SR
HC
CH + HCN
CuCl2/HCl
CN
第一节、炔烃
2. 末端炔烃的酸性,炔化物的生成
1.4 炔烃的化学性质
炔烃的化学性质与烯烃相似,可以发生加成、 氧化、聚合等不饱和烃的的反应,炔烃加成可 以加成两分子试剂,反应活性较烯烃低。
炔烃反应部位: R-CH2-C≡C-H (1) (2) (1) 三键上的加成反应 (2) 较活泼氢的反应
第一节、炔烃
1. 加成反应 (1) 与氢(H2)加成
Br
稳定性:
Br Br
Br
>
Br
第二节、二烯烃
4. 共轭效应的概念
第一节、炔烃
2. 金属炔化物的炔基化反应
强碱 C- +
RC CH
RC
R' X
RC CR' + X-
+
Br
HC CH
NaNH2 NH3
HC C-Na+
Br
+ NaBr
第一节、炔烃
3. 四卤代烷脱卤素
X R X
X X
R'
Zn
RC
CR' + 2 ZnX2
第一节、炔烃
4. 乙炔的工业生产
碳化钙(电石)法
聚合反应
。 500 C
Ni(CN)2 。 50 C, 1.5~2.0 MPa
2 HC CH
CuCl2, NH4Cl heat
第一节、炔烃
4. 聚合和偶联反应
氧化偶联反应
2 HC CH Cu2Cl2, NH3 MeOH
Glaser反应
2
Cu(OCOCH3)2 pyridine, O2
+ ……
第一节、炔烃
炔烃的亲电加成反应活性比烯烃小。
RC CH + E+ RC CHE A
-
A RC CHE
烯基正碳离子很不 稳定,较难生成 sp杂化的碳原子电负性大于sp2 杂化的碳原子,而且其杂化轨 道更短,因此更难给出电子与 亲电试剂结合。
第一节、炔烃
(2) 亲电加成反应 a. 与卤素的加成
Br Br2 Br Br2 Br Br Br Br
1.5 炔烃的制备 1. 二卤代烷脱卤化氢
X R X NaNH2 or KOH/alcohol/heat R X X R
邻二卤代烷
+ 2 HCl
偕二卤代烷
Br KOH/EtOH heat Br
第一节、炔烃
1. 二卤代烷脱卤化氢
强碱条件下三键的异构化
Br Br KOH/EtOH heat
NaNH2 。 150 C
a) 电荷越分散越稳定
H2C C H C H CH2 > H2C H C C H CH2
b) 越具有完整价电子层越稳定
H2C O H > H2C O H
c) 共价键数目越多越稳定
H2C C H C H CH2 > H2C H C C H CH2
第二节、二烯烃
3. 共振极限式的相对稳定性
d) 异号电荷相隔越近越稳定
HX R
HX
符合马氏规则
卤代烯
HC CH HCl HgCl2
偕二卤代烷
聚合 Cl PVC
加成反应活性:HI > HBr > HCl
第一节、炔烃
b. 与卤化氢的加成
过氧化物效应——反马氏加成
HBr ROOR'
Br Br + Br
1-溴-1-戊烯
1,2-二溴戊烷
第一节、炔烃
c. 与水的加成
汞盐催化的与水加成
R + H2O H2SO4 HgSO4 OH R R O
烯醇
Hg2+ Hg2+ R

-Hg2+ H+
OH R Hg+
OH2 H2O R Hg+
-H+
反应遵从马氏规则
第一节、炔烃
c. 与水的加成
+ H2O H2SO4 HgSO4 OH + OH
O O
+ H2O
H2SO4 HgSO4
OH + OH
O
第一节、炔烃
第一节、炔烃
c. 与水的加成
R
R
+ BH3
R
BH2
2R R B R
烯基硼
H2O2 OHO O
3 R
OH + H BO 3 3
H2O
R
B O
R
R
RCH2CHO

硼酸酯
第一节、炔烃
c. 与水的加成
烯基硼和醋酸反应生成顺式烯烃(硼氢化-还原 反应)
R R' R R' B R' + 3 CH3COOD R 3 R R' D
第一节、炔烃
(1) 与氢(H2)加成
液氨/钠还原氢化:
+ 2 Na + 2 NH3
+ 2 NaNH2
Na/NH3 85%
反式加成,可制备反式烯烃。
第一节、炔烃
(1) 与氢(H2)加成
液氨/钠还原氢化机理:
Na + Na+
NH3 -NH2H Na H + Na+
NH3 -NH2H
H
第一节、炔烃
(2) 亲电加成反应
第二节、二烯烃
特点二:共轭体系更加稳定 共轭体系能量降低——碳碳双键平均氢化热 较烯烃低。
R R' H2 R R' H ~ -125.5 kJ/mol
2 H2
H = -254.1 kJ/mol
2 H2
H = -223.1 kJ/mol
第二节、二烯烃
2.3 共振论 1. 概念
当一个分子、离子或自由基按价键规则 无法用一个经典的结构式圆满表达时,可 以用若干经典结构式的共振来表达该分子 的结构。
c. 与水的加成
只有一种情况得到醛——乙炔反应得到乙醛
H2SO4 HgSO4
HC
CH + H2O
OH
CH3CHO
乙醛
第一节、炔烃
c. 与水的加成
硼氢化-氧化反应——反马氏加成
R
R + BH3 R BH2
2 R R B R
烷基硼
H2O2 OHO O
3 R
OH + H BO 3 3
H2O
R
B O
R
R
硼酸酯
第五章
炔烃和二烯烃
第一节、炔烃
1.1 炔烃的结构
炔烃:分子中含碳碳三键的碳氢化合物。 通式:含有一个碳碳三键的开链烯烃的通式为 CnH2n-2。 特点:碳碳三键两端的碳原子采用sp杂化。因此 ,碳碳三键中,一根为“头碰头”的σ键,另两 根为“肩并肩”的π键。
第一节、炔烃
1.1 炔烃的结构
乙炔分子:
2Z, 5E-2, 5-辛二烯
2Z, 4Z, 6E-2, 4, 6-辛三烯
S-反-1, 3-丁二烯
S-顺-1, 3-丁二烯
第二节、二烯烃
2.2 共轭二烯烃的结构特点
σ键平面与纸面垂直 π键平面与纸面平行 π电子产生离域,形 成共轭π键
球棍模型
第二节、二烯烃
特点一:键长平均化
正常C-C键长:154 pm;正常C=C键长:134 pm
2.4 共轭效应 1. 1, 3-丁二烯的分子轨道
能形成离域 键的体系称 为共轭体系
第二节、二烯烃
2. 共轭体系的特点
形成共轭体系的原子共平面; 有若干个未杂化可以平行重叠的p轨道; 有一定数量的供成键用的p电子,电子离域化; 键长平均化; 性质较稳定; 极化后电子云密度交替分布。
第二节、二烯烃
酸性:炔氢>烯氢>烷氢 水 CH≡CH NH3 CH2=CH2 CH3CH3 pKa 15.6 ~25 ~36 ~44 ~49
RC CH + NaOH RC CNa + H2O ?
NH3 + R3C-
R3CH + NH2-
?
第一节、炔烃
2. 末端炔烃的酸性,炔化物的生成
NaNH2 R-C≡CH Ag (NH3)+2NO3 Cu (NH3)+2Cl
第二节、二烯烃
1. 概念
1, 3-丁二烯可视为以下7种极限式的共振杂化体:
相关文档
最新文档